
Intelligent Information Management, 2014, 6, 45-54
Published Online March 2014 in SciRes. http://www.scirp.org/journal/iim
http://dx.doi.org/10.4236/iim.2014.62007

How to cite this paper: Yaman, A., et al. (2014) Evolutionary Algorithm Based Approach for Modeling Autonomously Trad-
ing Agents. Intelligent Information Management, 6, 45-54. http://dx.doi.org/10.4236/iim.2014.62007

Evolutionary Algorithm Based Approach for
Modeling Autonomously Trading Agents
Anil Yaman, Stephen Lucci, Izidor Gertner
Department of Computer Science, The City College of New York, New York, USA
Email: anilyaman00@gmail.com, lucci@cs.ccny.cuny.edu, csicg@cs.ccny.cuny.edu

Received 12 February 2014; revised 5 March 2014; accepted 24 March 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
The autonomously trading agents described in this paper produce a decision to act such as: buy,
sell or hold, based on the input data. In this work, we have simulated autonomously trading agents
using the Echo State Network (ESNs) model. We generate a collection of trading agents that use
different trading strategies using Evolutionary Programming (EP). The agents are tested on EUR/
USD real market data. The main goal of this study is to test the overall performance of this collec-
tion of agents when they are active simultaneously. Simulation results show that using different
agents concurrently outperform a single agent acting alone.

Keywords
Artificial Intelligence; Autonomous Agents; Artificial Life; Evolutionary Computation; Neural
Networks; FOREX

1. Introduction
Foreign Exchange Market (FOREX) is a complex adaptive system involving a large number of dynamic net-
works of interacting agents. It reflects the collective behavior of participants whose behaviors evolve and self-
organize corresponding to a series of historical events. Due to this complexity, the problem of predicting the fu-
ture price is one of the most challenging problems for the machine learning community. There are two theories
suggested concerning the viability of the predictability of the future price of a financial instrument. Efficient
Market Hypothesis (EMH) states that no information can be accountable since the price is immediately absorbed
by all the new information [1]. Random Walk Theory (RWT) states that the past price cannot be used to predict
the price in the future, because the price movement is random and completely independent from the past [2].
These theories offer a challenge to researchers who try to extract features and make predictions. Recent devel-
opments in computational tools allow researchers to design algorithms that can trade online. Another question

http://www.scirp.org/journal/iim
http://dx.doi.org/10.4236/iim.2014.62007
http://dx.doi.org/10.4236/iim.2014.62007
http://www.scirp.org
mailto:anilyaman00@gmail.com
mailto:lucci@cs.ccny.cuny.edu
mailto:csicg@cs.ccny.cuny.edu
http://creativecommons.org/licenses/by/4.0/

A. Yaman et al.

46

arises, which is whether a computer can do a better job in predicting prices. As a result, researchers have started
to apply machine learning algorithms and test the efficiency of these algorithms.

Artificial Neural Networks (ANNs) are often-used tools in prediction algorithms [3]-[6]. These algorithms
usually use fundamental and/or technical analysis as inputs and produce the prediction of the price value as out-
put. The networks are trained using the back-propagation algorithm (BP) [7] [8]. However, BP may get stuck in
a local minimum due to its use of gradient descent information. Additionally, the error function should be diffe-
rentiable. Autonomously trading neural network based agents on the other hand, are simulations of real world
traders with limited capabilities [5] [9]-[11]. They produce action outputs such as: buy, sell or hold based on the
stream of input data. In this framework, evolutionary algorithms are more suitable than BP since the error func-
tion is not differentiable.

In this work, we used Echo State Networks (ESNs) in the decision mechanisms of the autonomous agents. We
evolved the network weights using Evolutionary Programming (EP). The evolutionary algorithm can provide a
variety of agents that use different trading strategies. The problem lies in the selection of the agent that is likely
to be successful on the test data. This is a difficult decision because even the best agent may often be wrong. In-
tuitively speaking, simultaneous activation of a variety of successful agents may reduce the risk and outperform
the best agent. Therefore, we tested the performance of a collection of successful agents that are selected from
the agent pool which is generated as a result of many evolutionary runs.

In Section 2, the Foreign Exchange Market and the methods used in prediction algorithms are briefly dis-
cussed. In Section 3, a detailed description of Echo State Networks is given. The evolutionary approach for op-
timizing neural networks is discussed in Section 4. A detailed description of the algorithm implemented is pro-
vided in Section 5 and the results are discussed in Section 6.

2. Overview of Foreign Exchange Market
Foreign Exchange Market (FOREX or FX) is a global and decentralized financial market where the traders ex-
change currency pairs in order to make profits. Trading is open 5 days a week, 24 hours a day. According to the
Bank for International Settlements, daily average turnover is 4 trillion US dollars.

There are two main approaches used in market analysis. The first one is Fundamental Analysis which deals
with the factors that affect supply and demand. The main goal in fundamental analysis is to gather and interpret
information in order to acquire intuition on the future performance of a business. In FOREX, traders interpret
the overall state of the economy as well as other factors such as: gross domestic product (GDP), interest rates,
employment, earnings, housing, production and manufacturing. All this information is released periodically.
When an event occurs, the traders look for trading opportunities and try to act before anyone else does. Technic-
al analysis on the other hand, is based on the hypothesis that the factors that affect a financial instrument are
embedded into the price. It is believed that these factors exhibit patterns. And these patterns may repeat. Thus,
the past price trends and patterns can be studied and used to make predictions.

3. Echo State Network Model
Echo State Networks area type of recurrent network consisting of three layers: the input, hidden and the output
layer. The connections between layers are represented as weight matrix notations: Win, Whidden, Wout and Wback.
The weight matrix Win represents the connections from the input layer to the hidden layer; the weight matrix
Whidden denotes the internal connections; the weight matrix Wout denotes the concatenation of the connections
from the input and the hidden layer to the output layer; and the weight matrix Wback represents the feedback
connections which are from the output layer to the hidden layer.

The activation of the hidden nodes hidden
tA at time t, can be computed by using the formula (3.1) [12]-[14].

() () ()()1 1
hidden hidden in in hidden hidden back out
t t t tf W W W+ += + +A A A A (3.1)

where fhidden is the activation function of the hidden nodes. The activation of output nodes can be computed
as:

()1 1
concat in hidden out, ,t t t+ +=A A A A (3.2)

()()1 1 1
out out out in hidden out, ,t t t tf W+ + +=A A A A (3.3)

A. Yaman et al.

47

where fout is the activation function of the output nodes and Aconcat is the concatenation of the activations of the
input and hidden nodes at time t + 1 and the output nodes at time t [13] [14].

One of the important properties of ESNs is that only the connections to the output layer (Wout) are trained. The
rest of the connections are fixed; and are initialized before the training process. The initialization is performed
by ensuring that the echo state property exists. This is achieved by sparsely connecting the hidden layer and as-
signing random weights to them; and then scaling the hidden connections to have spectral radius less than one
[13] [14].

hidden
hidden

max

W
W

α
λ
′

= (3.4)

where α is the spectral radius (0 < α < 1) and λmax is the maximum eigenvalue of the initial weight matrix [14].
The spectral radius can be chosen to be between 0 and 1. The closest the spectral ratio to one, the longer the
memory persists in the network.

The architecture of an ESN is shown in Figure 1. All the possible connections between layers are illustrated
(also recurrent connections of the output layer can be included), however all of the connections are not required.
The fixed connections are displayed using solid lines, and trained connections are shown as dotted lines. The
context layer is a representation of the activations of the units in the hidden layer at time t – 1. In each time step t,
the activations of the nodes in the hidden layer are copied to the context layer.

4. Evolving Neural Network Model
The design of ANN based autonomous agents is a complex task that involves much time and effort. Different
network structures and neuron wiring diagrams may exhibit completely different responses. Therefore, trial and
error becomes an important part of the process of finding the correct settings of the network that is used in the
design of an agent. Evolutionary algorithms [15]-[20] are computational models of Darwinian evolution [21].
They have often been used to find optimum solutions to the problems that have these kinds of design difficulties
[22]-[24].Therefore, a number of researchers suggested that it might be advantageous to use them in the design
process of neural networks [5] [25]-[37].

Evolutionary algorithms can be used to evolve both the topology and connection weights of a network. The
representation of the topology and/or connection weights is called a genotype of an individual. The neural net-
works are decoded by mapping the genotypes to their phenotypes. There are a number of methods in the litera-
ture which can be classified into two groups: direct encoding and indirect encoding [30] [38].

Figure 1. The architecture of an ESN with all connections. The connec-
tions that are trained are shown as dotted lines; connections that are fixed
are depicted as solid lines. (Redrawn from Tong et al., 2007 [14]).

A. Yaman et al.

48

In direct encoding there is a one-to-one correspondence between the genotype and the parameters of the phe-
notype. Usually, this method is used to evolve only the parameters of the network [27] [34] [37] [39]. Whereas
in indirect encoding, the mapping between the genotype and the weights (and the topology) of the networks is
described as a function, rules or a growth model [35] [40]. Selection of the evolution method depends on the
problem type. Using direct encoding on large neural networks might yield bad convergence performance since
there is a large amount of connection weights to be optimized.

In echo state networks, the inputs, the recurrent and the feedback connections are independent of the problem
since they are initialized randomly before the training process begins. Therefore, the number of weights to be
optimized is minimal. It is thereby possible to explore large network structures on complex problems without
worrying about the convergence problem of evolutionary algorithms.

The structure of the echo state network used in this work consists of 25 input nodes, 50 hidden nodes and 1
output node. In this case, the connection weights to be optimized can be represented as a 1 by 75 real-valued
vector (concatenation of the connections from the input layer to the output layer and from the hidden layer to the
output layer 25 + 50). We used evolutionary programming to evolve these 75 real-valued connection weights by
directly mapping to the representation of the individuals (objective vectors) in the population.

Evolutionary Programming (EP) was first developed by Fogel, Owens and Walsh [41], and used to evolve fi-
nite state machines as predictors. The state transition tables of these finite state machines were modified by ran-
dom mutations. Later, this model was extended by Fogel [42] to operate on real-valued vectors.

In EP, the individuals in the population consist of two components: an objective vector and a variance (self-
adaptation) vector. Only the objective vectors are evaluated, however, both components are subject to evolution.
The evolution of the variance vector allows the variance parameters to adapt during the search process. This is
called self-adaptation.

Only the mutation operator is used in EP. The mutation operator is applied by first mutating the objective
vector using a Gaussian distribution which has an independent variance for each component of the objective
vector [43]. The variance vector is then updated.

() var 0,1i i i ix x N′ = + ⋅ (4.1)

() 0,1i i i ivar var var Nα′= + ⋅ ⋅ (4.2)

where { }1 2, , , nX x x x=  is the objective vector, { }1 2, , , nV var var var=  is the variance vector. The para-
meter α ensures that vari remains positive [43] [44].

We use the plus selection (μ + μ) method. In plus selection, μ number of offspring is generated from μ indi-
viduals. Then, the individuals in the whole population (μ + μ) are ordered according to their fitness values, and
the best μ individuals are selected. In this selection mechanism, parents can survive until offspring become more
adapted [45].

5. The Algorithm to Create a Collection of Autonomously Trading Agents
The evolutionary programming approach is a basis to create autonomously trading agents. Its fitness function is
designed to optimally select agents. In this section we describe this process in detail.

The agents’ actions are based on the output of the echo state network as described in section 4. The connec-
tion weights from the input layer to the output layer and from the hidden layer to the output layer (Wout) were
optimized. The feedback connections (Wback) are not used. The rest of the connections (Whidden and Win) are fixed.
The weights of the connections from the input layer to the hidden layer (Win) were sampled from a uniform dis-
tribution [−1, 1] with a probability of 0.2. The internal weights (Whidden) were randomly set to the values of 0, −1
and +1 with probabilities of 0.95, 0.025 and 0.025 respectively. They were scaled to have a 0.98 spectral radius
according to the formula 3.4. The spectral radius is close to one; this means that the long term memory decay
rate is small [13].

The ESN used in this work consists of 25 input neurons. The inputs to these neurons are currency pairs, tech-
nical indicators [46], an agent’s status flag, an agent’s return and a bias. These inputs are: EUR/USD, USD/JPY,
GBP/USD, USD/CHF, AUD/USD, USD/CAD, NZD/USD, EUR/GBP, EUR/JPY, EUR/AUD, EUR/CAD,
EUR/NZD. Inputs from 13 to 22 are 5 technical indicators (Stochastic Slow (%K, %D), RSI, MACD (MACD,
Signal, Histogram), ATR, ADX (ADX, DI+, DI-)).

In order for an agent to sense its current status, two additional inputs are included. The first one is an agent’s

A. Yaman et al.

49

status flag which indicates if an agent is currently trading. It becomes 1 if the agent is currently in a long (buy)
trade, −1 if the agent is currently in a short (sell) trade, and 0 if the agent is not trading. The second one is the
agent’s return which indicates the price change since the beginning of a trade. It was calculated using the for-
mula below.

()now open openprice price price price∆ = − (5.1)

where ∆price is the price percentage change and priceopen is the opening price of a position. The last input is the
bias and it is fixed to be 1.

The output of the networks is a single sigmoidal (tanh) neuron. If the output becomes greater than 0.5, the
agent goes long (buy). If the output becomes smaller than −0.5, the agent goes short (sell), and finally when it is
between −0.5 and 0.5, the agent closes the position, if it has one, no action is performed.

The network contains 50 hidden units. The activation function of all the hidden units is the tanh activation
function. As discussed earlier, all the connections except Wout are fixed. It means that the connections between
the input layer and the output layer, and the connections between the hidden layer and the output layer should be
optimized. The total count of connections to be optimized is 1x(25 + 50) where 25 is the number of input units,
50 is the number of hidden units and 1 is the number of output units.

The agents were trained and tested on EUR/USD hourly data. A sliding window approach, illustrated in
Figure 2, was used. The agents were first trained on the window Train1 which consists of 900 samples, and then
tested on the following 100 samples which is Test1. Then, the window was moved 100 samples and the new
agents were trained on the windowTrain2 and tested on Test2. Figure 2 depicts only the target vector which is 1
× 1000 (together with the training and the test data) samples per window. The input data on the other hand, is a
matrix 25 × 1000 for each window. Each row in the input data was normalized to have 0 mean and 1 standard
deviation; and normalized input sequences then scaled in the range between −1 and 1.

The beginning date of the training data is 01/01/2013 11:00 pm. The testing starts from the date 02/22/2013
01:00 am and continues until the date 12/31/2013 00:00 am by moving 100 samples in each step.

The population size was set to 5. The mutation operator produces 5 offspring from the 5 selected parents. This
is called (μ + μ) selection and more information can be found in section 4.

The agents = {(x1, v1), (x2, v2), … (xn, vn)} consist of the objective vectors x1, x2, … xn, and the variance vec-
tors v1, v2, … vn where n is the population size. The objective vectors and the variance vectors of an individual in
the population are 75 dimensional real-valued vectors and, they are direct representations of the output connec-
tion weights to be optimized (Wout). In this case, Wout the objective vectors are constructed by concatenating the

Figure 2. Sliding window approach. First, the agents are trained on 900 samples; tested
on the following 100 samples and then the window is moved by 100 samples.

A. Yaman et al.

50

weights from the input nodes to the output node and the weights from the hidden nodes to the output node.
1) Randomly initialize a population of agents (the objective and variance vectors).
2) Repeat until no improvement is observed within a certain number of iterations.
a) Decode each objective vector in the current generation and construct a corresponding ESN.
b) Evaluate each agent in the population by letting them trade starting from the first sample of the training

data to the last sample of the training data.
c) Find the fitness of each agent at the end of the trading session. (The fitness value of an agent is calculated

as the total gain divided by the absolute value of the total loss).
d) Select the best μ agents according to their fitness values.
e) Apply the mutation operator to the selected agents and produce μ new individuals.
f) Self-adapt the variance vectors of the new individuals.
The evaluation starts from the first sample of the training data, and moves forward one step at a time. In each

time step, it presents the input data to an agent. The agent takes the input and calculates the output of the net-
work. The agent can only perform one action at a time according to the output (output > 0.5, buy; output < −0.5,
sell; −0.5 ≤ output ≤ 0.5, hold or close the trade). A flat spread fee ($3 per trade) is added to the price each time
an agent performs a buy or sell action [5].

At the end of the training data, the evaluation function returns the performance values P = [Total Return, To-
tal Gain, Total Loss, Total Trade, Success Trade] of an agent; and the ratio Total Gain/Total Loss is used for the
selection operator.

The variables: Total Return, Total Gain and Total Loss are calculated using the raw price. Later, they are
converted to the pip values. A pip (percentage in point) is a unit change in the price of a currency pair. Since, we
are working with EUR/USD currency pairs, the unit change is 0.0001; and we take the unit change as the worth
of a dollar.

When the training process is complete, all the variables are set to the default values, and the agents are tested
on the following 100 samples. The testing process is the same as the evaluation process, but this time the evalu-
ation function takes the test data as an argument and returns the performance values of the agents on the test data.
After an evolutionary run, we obtain the performance values of 5 agents. Since we are maximizing the function
Total Gain/Total Loss, these 5 agents may have become stuck at a local maximum. That is the reason that, the
algorithm is run 10 times, and each time, the resulting agents are added into the agent pool. After this process,
we obtained 50 agents in the agent pool. Among these 50 agents, we selected the best 5 agents according to their
Succes Trade/Total Trade ratio on the training data. The results provided here are the simultaneous activation
of this collection of the 5 agents selected for each time window. The steps of the algorithm are illustrated in
Figure 3.

Figure 3. The steps of the algorithm. For a given
time window, the evolutionary algorithm runs 10 times
and generates 50 agents. The best 5 agents are se-
lected among these agents.

A. Yaman et al.

51

The results were generated for the 54 time windows between the dates 02/22/2013 01:00 am and 12/23/2013
01:00 pm. The statistics of the all agents generated within the 54 time windows are summarized in Table 1, un-
der the column header TW54. The row headers: Successful Agent, Unsuccessful Agent and Neutral Agent
are the numbers of the agents whose returns were positive, negative and zero on the test data respectively.
MaxReturn and MinReturn are the maximum and the minimum returns observed among all the agents on the
test data. Ave.Profit and Ave.Loss are the average of all the profits gained and the average of all the losses in-
curred by all the agents on the test data. Ave.Return is the average of all the returns of the agents and TotalRe-
turn is the sum of all returns of the agents. The return, profit and loss are US dollar based.

If we ignore the neutral agents, the percentage of the successful agents in the population is 0.52. The average
profit is + 1.43 which is a good result. In the long run the system is not losing money. However, neither is it
gaining. The return over time is shown in Figure 4.

Intuitively speaking, after a long up or down trend the price may change its direction and move in the oppo-
site direction. In this case, agents may perform badly since they have been trained on trending prices in only one
direction. To avoid these situations, the input windows were filtered when the price change between the starting
and end points of the training data is large.

1) Start from the first sample t1 = 1 and check the change in the price between the starting point t1 and the end
point t2 = t1 + 899 (change in price measured using equation 5.1).

Table 1. The statistics of all the agents generated. TW54 is the
results of the standard algorithm, and TW47 is the results of
the modified algorithm.

 TW54 TW47 TW47-1

Total Agent 270 235 47

Successful Agent 91 91 19

Unsuccessful Agent 83 74 14

Neutral Agent 96 70 14

MaxReturn 280 276 220

Ave.Profit 76 70 58

MinReturn −269 −242 −242

Ave.Loss −79 −67 −71

Ave.Return 1.43 5.95 2.35

TotalReturn 388 1399 111

Figure 4. The cumulative return of the agents that are gener-
ated using the standard algorithm.

0 10 20 30 40 50
-500

0

500

1000

1500

2000

2500

Time Window

R
et

ur
n

($
)

A. Yaman et al.

52

Figure 5. The cumulative return of the agents that are gen-
erated using the modified algorithm.

2) If the change is greater than 0.025, increment t1 by one and go o step 1.
a) Train the agents on the time window between t1 and t2.
b) Test the agents between the time window t2 and t2 + 100.
c) Add the agents into the agent pool.
d) Increment t1 by 100.
Go to step 1.
After this modification, 47 time windows that satisfy the percentage change rule have been found. The statis-

tics of the agents generated by the modified algorithm is provided in Table 1 under the header TW47. When the
results are compared with the results that generated by the standard algorithm, a significant improvement is seen.
Even though there is not much improvement in the percentage of the successful agents in the population, the av-
erage return and total return are improved by % 316 and % 260 (calculated according to equation 5.1) respec-
tively. As a result, the cumulative return over time is trending up as illustrated in Figure 5.

Finally, we compared the performance of the system when only the best agent is selected versus a collection
of agents at the same time. Using the modified algorithm, for each window only the best agent is selected, and
the statistics of these agents are given in Table 1 under the column header TW47-1. The results show that the
performance of the simultaneous activation of a collection of autonomous agents that are generated by the mod-
ified algorithm is superior.

6. Conclusions
In this work, we design a system that generates autonomously trading agents. Echo State Networks are used in
the decision mechanisms of these agents. The major 12 currency pairs and popular 5 technical indicators are
used for predicting the optimum actions for EUR/USD currency pairs within a given time window. The connec-
tion weights of the output layers of the networks are trained using evolutionary programming.

We test whether the performance of many agents will outperform the performance of a single agent. Our re-
sults show that the total return and the average trade are better when multiple agents are used. Furthermore, a
significant improvement is seen when input windows are filtered according to the price percentage.

In conclusion, the methodology described here is not limited to the financial arena, and has widespread appli-
cability.

References
[1] Fama, E.F. (1970) Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance, 25, 383-

417.
[2] Malkiel, B.G. (1973) A Random Walk Down Wall Street. Norton, New York,
[3] Dutta, S. and Shekhar, S. (1888) Bond Rating: A Non-Conservative Application of Neural Networks. IEEE Interna-

tional Conference on Neural Networks, San Diego, 24-27 July 1998, 443-450.
[4] Senol, D. (2008) Prediction of Stock Price Direction by Artificial Neural Network Approach. Bogazici University, Is-

5 10 15 20 25 30 35 40 45
-500

0

500

1000

1500

2000

2500

Time Window

R
et

ur
n

($
)

A. Yaman et al.

53

tanbul.
[5] Sher, G.I. (2011) Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents. arXiv1111.5892S.
[6] White, H. (1988) Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns. IEEE Interna-

tional Conference on Neural Networks, San Diago, 24-27 July 1998, 451-459.
[7] Rumelhart, D.E. and McClelland, J.L. (1986) Parallel Distributed Processing: Explorations in the Microstructure of

Cognition: Foundations (Volume I). MIT Press, Cambridge.
[8] Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Internal Representations by Error Propagation. In:

Rumelhart, D.E. and McClelland, J.L., Eds., Parallel Distributed Processing: Exploration in the Microstructures of
Cognition, Vol. I, MIT Press, Cambridge, 318-362.

[9] Chan, N.T., LeBaron, B., Lo, A.W. and Poggio, T. (1999) Agent-Based Models of Financial Markets: A Comparison
with Experimental Markets. MIT Artificial Markets Project, 124.

[10] Tesfatsion, L. (2002) Agent-Based Computational Economics: Growing Economies from the Bottom up. Artificial Life,
8, 55-82. http://dx.doi.org/10.1162/106454602753694765

[11] Fukumoto, R. and Kita, H. (2001) A Multi-Objective Genetic Algorithm Approach to Construction of Trading Agents
for Artificial Market Study. Springer, Berlin Heidelberg.

[12] Jaeger, H. (2002) A Tutorial on Training Recurrent Neural Networks. Covering BPTT, RTRL, EKF and the Echo State
Network Approach. German National Research Center for Information Technology.

[13] Jaeger, H. (2001) The Echo State Approach to Analysing and Training Recurrent Neural Networks. German National
Research Center for Information Technology.

[14] Tong, M.H., Bicket, A., Cristiansen, E. and Cottrell, G. (2007) Learning Grammatical Structure with Echo State Net-
work. Neural Networks, 20, 424-432. http://dx.doi.org/10.1016/j.neunet.2007.04.013

[15] Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
[16] Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston.
[17] Koza, J.R. (1992) Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press,

Cambridge.
[18] Schwefel, H. (1981) Numerical Optimization of Computer Models. John Wiley & Sons, Hoboken.
[19] Rechenberg, I. (1965) Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment, Transla-

tion 1122.
[20] Lucci, S. and Kopec, D. (2012) Artificial Intelligence in the 21st Century. Mercury Learning and Information.
[21] Darwin, C. (1859) On the Origin of Species. Kindle Edition (2012).
[22] Maslov, I. and Gertner, I. (2009) Evolutionary Algorithms in Digital Image Processing: A Hybrid Approach. LAP -

Lambert Academic Publishing, OmniScriptum GmbH & Co. KG, Saarbrücken.
[23] Maslov, I. and Gertner, I. (2006) Multi-Sensor Fusion: An Evolutionary Algorithm Approach. Information Fusion, 7,

304-330. http://dx.doi.org/10.1016/j.inffus.2005.01.001
[24] Maslov, I. and Gertner, I. (2007) Multi-Sensor Target Recognition in Image Response Space Using Evolutionary Al-

gorithms. In: Sadjadi, Firooz, Javidi and Bahram, Eds., Physics of Automatic Target Recognition, Chapter 8, Springer,
Berlin, 127-141.

[25] Angeline, P.J., Saunders, G.M. and Pollack, J.B. (1994) An Evolutionary Algorithm that Constructs Recurrent Neural
Networks. IEEE Transactions on Neural Networks, 5, 54-65. http://dx.doi.org/10.1109/72.265960

[26] Belew, R., McInerney, J. and Schraudolph, N.N. (1990) Evolving Networks: Using the Genetic Algorithm with Con-
nectionist Learning. CSE Technical Report CS90-174, University of California, Berkeley.

[27] Caudell, T.P. and Dolan, C.P. (1989) Parametric Connectivity: Training of Constrained Networks Using Genetic Algo-
rithms. Proceedings of the 3rd International Conference on Genetic Algorithms, Fairfax, June 1989, 370-374.

[28] Cliff, D., Harvey, I. and Husbands, P. (1993) Incremental Evolution of Neural Network Architectures for Adaptive
Behaviour. Proceedings of the 1st European Symposium on Artificial Neural Networks, Brussels, 7-9 April 1993, 39-
44.

[29] Floreano, D. and Mondada, F. (1994) Automatic Creation of an Autonomous Agent: Genetic Evolution of a Neural
Network Driven Robot. 3rd International Conference on Simulation of Adaptive Behavior (SAB’1994), Brighton, 8-12
August 1994, 421-430.

[30] Floreano, D., Dürr, P. and Mattiussi, C. (2008) Neuroevolution: From Architectures to Learning. Evolutionary Intelli-
gence, 1, 47-62. http://dx.doi.org/10.1007/s12065-007-0002-4

[31] Igel, C. (2003) Neuroevolution for Reinforcement Learning Using Evolutionary Strategies. Congress on Evolutionary

http://dx.doi.org/10.1162/106454602753694765
http://dx.doi.org/10.1016/j.neunet.2007.04.013
http://dx.doi.org/10.1016/j.inffus.2005.01.001
http://dx.doi.org/10.1109/72.265960
http://dx.doi.org/10.1007/s12065-007-0002-4

A. Yaman et al.

54

Strategies, 4, 2588-2595.
[32] Jung, J.-Y. (2007) Evolutionary Design of Artificial Neural Networks Using a Descriptive Encoding Language. Doc-

toral Dissertation, University of Maryland, College Park.
[33] Kenneth, O.S. and Miikkulainen, R. (2002) Efficient Evolution of Neural Network Topologies. Proceedings of the

2002 Congress on Evolutionary Computation (CEC’02). In: Langdon, W.B., Cantú-Paz, E., Mathias, K.E., Roy, R.,
Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A.C.,
Miller, J.F., Burke, E.K. and Jonoska, N., Eds., GECCO 2002: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, New York, 9-13 July 2002, 569-577.

[34] Montana, D. and Davis, L. (1989) Training Feedforward Neural Networks Using Genetic Algorithms. Proceedings of
the Eleventh Joint Conference on Artificial Intelligence, 1, 762-767.

[35] Nolfi, S., Miglino, O. and Parisi, D. (1994) Phenotypic Plasticity in Evolving Neural Networks. Proceedings of the In-
ternational Conference from Perception to Action, Lausanne, 5-9 September 1994, 146-157.
http://dx.doi.org/10.1109/FPA.1994.636092

[36] Saravanan, N. and Fogel, D.B. (1995) Evolving Neural Control Systems. IEEE Expert, 10, 23-27.
http://dx.doi.org/10.1109/64.393139

[37] Whitley, D., Starkweather, T. and Bogart, C. (1990) Genetic Algorithms and Neural Networks: Optimizaing Connec-
tions and Connectivity. Parallel Computing, 14, 347-361. http://dx.doi.org/10.1016/0167-8191(90)90086-O

[38] Yao, X. (1999) Evolving Artificial Neural Networks. Proceedings of the IEEE, 87, 1423-1447.
http://dx.doi.org/10.1109/5.784219

[39] Wieland, A.P. (1990) Evolving Neural Network Controllers for Unstable Systems. IEEE International Joint Confe-
rence on Neural Networks, II, 667-673.

[40] Kitano, H. (1990) Designing Neural Networks by Genetic Algorithms Using Graph Generation System. Complex Sys-
tems, 4, 461-476.

[41] Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966) Artificial Intelligence through Simulated Evolution. John Wiley &
Sons, Hoboken.

[42] Fogel, D.B. (1991) System Identification through Simulated Evolution: A Machine Learning Approach to Modeling.
Ginn, Needham Heights.

[43] Bäck, T. and Schwefel, H.-P. (1993) An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutio-
nary Computation, 1, 1-24. http://dx.doi.org/10.1162/evco.1993.1.1.1

[44] Fogel, D.B. (1992) Evolving Artificial Intelligence. Doctoral Dissertation, University of California, San Diego, La Jol-
la.

[45] de Castro, N.L. (2011) Fundamentals of Natural Computing. Chapman and Hall/CRC, Boca Raton.
[46] Pring, M.J. (1991) Technical Analysis Explained. McGraw-Hill, New York.

http://dx.doi.org/10.1109/FPA.1994.636092
http://dx.doi.org/10.1109/64.393139
http://dx.doi.org/10.1016/0167-8191(90)90086-O
http://dx.doi.org/10.1109/5.784219
http://dx.doi.org/10.1162/evco.1993.1.1.1

	Evolutionary Algorithm Based Approach for Modeling Autonomously Trading Agents
	Abstract
	Keywords
	1. Introduction
	2. Overview of Foreign Exchange Market
	3. Echo State Network Model
	4. Evolving Neural Network Model
	5. The Algorithm to Create a Collection of Autonomously Trading Agents
	6. Conclusions
	References

