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Abstract 
 
In this paper, we define the generalized linear models (GLM) based on the observed data with incomplete 
information and random censorship under the case that the regressors are stochastic. Under the given condi-
tions, we obtain a law of iterated logarithm and a Chung type law of iterated logarithm for the maximum li-
kelihood estimator (MLE) ˆ

n  in the present model. 
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1. Introduction 
 
The generalized linear model(GLM) was put forward by 
Nelder and Wedderburn [1] in 1970s and has been stu-
died widely since then. The maximum likelihood esti-
mator (MLE) ˆ

n of the parameter vector   in GLM 
was given and its strong consistency and asymptotic 
normality were discussed by Fahrmeir and Kaufmann [2] 
in 1985.The randomly censored model with the incom-
plete information was presented by Elperin and Gertsba-
kin [3] in 1988.The analysis of the randomly censored 
data with incomplete information has become a new 
branch of the Mathematical Statistics. Xiao and Liu [4] 
in 2008 discussed the strong consistency and the asymp-
totic normality of MLE ˆ

n of GLM based on the data 
with random censorship and incomplete information. 
Xiao and Liu [5] discussed laws of iterated logarithm for 
quasi-maximum likelihood estimator of GLM in 2008, 
meanwhile, Xiao and Liu [6] in 2009 discussed laws of 
iterated logarithm for maximum likelihood estimator of 
generalized linear model randomly censored with in-
complete information under the regressors given. How-
ever, Lai and Wei [8], Zeger and Karim [9] have studied 
the linear regression model under the case that the re- 
gressors are stochastic. In the practical application, espe-

cially in the biomedical social sciences, the regressors in 
GLM are often stochastic, Fahrmeir [10] investigated 
GLM with the regressors 1, , nX X which are indepen-
dent and identically distributed and gave MLE of matrix 
parameter without proof under the given conditions. 
Ding and Chen [11] in 2006 gave asymptotic properties 
of MLE in GLM with stochastic regressors. So, in the 
present paper, we will investigate the law of iterated lo-
garithm and the Chung type law of iterated logarithm for 
maximum likelihood estimator of generalized linear mo- 
del randomly censored with incomplete information un-
der the case that regressive variables , 1iX i  are inde-
pendent but not necessarily identically distributed. 

From a statistical perspective, the importance of those 
laws stem from the fact that the first one gives in an asy- 
mptotic sense the smallest 100% confidence interval for 
the parameter, while the second one gives an almost sure 
lower bound on the accuracy that the estimator can achi- 
eve.  
 
2. Model with the Random Regressor 

Suppose that the respondence variables , 1, 2, ,iY i n   
are one dimension random variables, and regressor vari-
able , 1, 2, ,iX i n   are q-dimension random variables 
which have the distribution functions , 1,2, ,iK i   res- 
pectively. Here, ix is the observation value of iX , iX   

i . Write 1i i

   . Suppose that the observations  

 , , 1, 2, ,i iY X i   are mutually independent and satisfy. 
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1) The regression equation: 

   | , 1T
i i i iE Y X x m x i          (2.1) 

where the unknown parameter .qB     
2) The conditional distribution of iY  under i iX x is 

the exponent distribution, i.e.  

        exp , 1i i i i iP Y dy X x C y y b dy i         

(2.2) 

where  is a  -finite measure, parameter i  , 

 1,2, ,i n  ,       : 0 expC y y dy        

is the natural parameter space and 0 is the interior of 

 . Since this conditional density integrates to 1, we see 

that        expi ib C y dy     , from which the 
standard expressions for the conditional mean 
   |i i i iE Y X x b    , and the variance,  |i i iVar Y X x  

 ib   ， where   ,b   b   denote the first and second 

derivatives of  b  , respectively. 
Suppose that the censor random variables ,iU  i   

1, 2, , n  are mutually independent but not necessarily 
identically distributed, with the distribution function 

 iG u  and      i idG u g u du . Denote  iK dx   

    ,i x dx  1, 2, ,i n  . Suppose that iU  is indepen- 

dent of  ,i iY X  

For 1, 2, ,i n  , let  i ii Y UI  ,  

0, if , but the real va  isn't observed ,lue of  

1, else, 
i

i
i iUY Y




 


, if 1, 1

, otherwise
i i i

i
i

Y
Z

U

  
 


 

Obviously,   , , , , 1,2,i i i iZ X i     is a mutually 
independent and observable sample. The conditional 
density and distribution function of iY  under i iX x  
are respectively denoted as  

      ; expT T T
i i if y x C y x y b x     

        
 

; exp

|

zT T T
i i i

i i i

F z x C y x y b x d y

P Y z X x

   


 

  

  

Let    1 ,i iG z G z   

   ; 1 ;T T
i iF z x F z x   , 1, 2, ,i n  .  

Suppose 

  ,1 | , ,

if , ,

i i i i

i

P Y y U u X x p

y u x

     

  
   (2.3) 

 0 | , , 1 ,

if , ,

i i i i

i

Y y U u X x

y u x

P p      

  
   (2.4) 

where 0 1p  . This assumption came from T. Elperin 
and I. Gertsbak, [3]. In the reliability study, the instant of 
an item's failure is observed if it occurs before a ran-
domly chosen inspection time and the failure is signaled. 
Otherwise, the experiment is terminated at the instant of 
inspection during which the true state of the item is dis-
covered. T. Elperin and I. Gertsbak, assumed that the fai- 
lure time of every item was signaled randomly with pro- 
bability p  before the randomly chosen inspection time. 
Then, we have 

 
   

,

, , ,

i i i

i i i

P Y y U u X x

P Y y X x P U u y u x

  

    
 

Without loss of generality, assuming that iX  is dis-
crete, we have 

     i i i i i iP Y y,U u X x P Y y X x P U u         

(2.5) 

We first give the following propositions. 
Proposition 2.1. Under the regular assumptions above, 

we have 

 

     

, 1, 1 |

,

i i i i

z

i i

P Z z X x

p G y f y dy

 




   

 
        (2.6) 

 

     

, 1, 0 |

1 ; ,

i i i i

z T
i i i

P Z z X x

p F y x dG y

 




   

  
        (2.7) 

 

   

, 0 |

; .

i i i

z T
i i i

P Z z X x

F y x dG y






  

 
          (2.8) 

Proof. We only show (2.6) for the discrete case, the 
continuous case can be shown in the way similar to that 
of the discrete case. 

       

   
         

, 1, 1 , ,
1

1 , , ,

i i i i i i i i i i
i i i i

z

i i i i i i i i iy

z z

i i i i

P Z z X x E I I E I Y U X x X x
Y z Y U

P Y y U u X x P Y dy U du X x

p G y dF y p G y f y dy

 










 

  
            

       

 

 

 

       (2.9) 
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where (2.9) follows from (2.3) and (2.5). Similarly, we 
can demonstrate (2.7) and (2.8). 

Suppose that iz is the observation of iZ , i  is the 
observation of i , i  is the observation of i , (2.6), 
(2.7) and (2.8) imply that for all 1i  , the conditional 
distribution of  , ,i i iZ    under i iX x is the follow-
ing 


   

 
 

(1 )

1

( ) ( ; )] [(1 ) ( ; ) ( )

;

i i
i i

i

T T
i i i i i i i i

T
i i i i i

pG z f z x p F z x g z

F z x g z dz

  



 

 





  

 
 


 

 (2.10) 

Let  

   1, , ,nnZ Z Z     1, , ,nnz z z     1, , ,nn     

   1, , ,nn       1, , ,nn       1, , ,nn     

   1 2, , ,X X X      1, , ,nnX X X     1, , ,nnx x x   

   1 2, , .x x x    

We easily get the following proposition. 

Proposition 2.2. For all 1n  , we have 

            
                

 

, ,

, ,

, ,1

n n n n n n

n n n n n n n n

i i i i i i i i

P Z z X x

P Z z X x

n P Z z X xi

   

   

   

    

    

     

 

(2.11) 
and 

 
    
   

, ,

, ,

( , , ), 1,

i i i i i i

i i i i i i n n

i i i i i i i i

P Z z X x

P Z z X x

P Z z X x i

   

   

   

    

    

      

 (2.12) 

where ( ) ( )n nZ z  means i iZ z  for 1 i n  . 
Remark 2.1. Proposition 2.2 implies that under 
 | , , 1iP X x U i    are mutually independent and so 

are , 1iY i  , and  , , , 1.i i iZ i    
(2.10) and (2.11) imply that the conditional distribu-

tion of     1 1 1, , , , , ,n n nZ Z     under    n nX x  
is  

         
       
1

1

1
; , 1; 1 ;

i i i in T T T
i i i i i i i i i i i ii

iF x g d n
i

pG z f z x p F z x g z z z z
    

  







            
      (2.13) 

The conditional probability measure corresponding to 
(2.13) is written as  | .P X x   Meanwhile, let 

 xE
   and  xVar

   denote the conditional expecta-
tion and conditional variance under the conditional pro- 
bability measure  | ,P X x   respectively. Set 0 do- 

note the real value of  . For notational simplicity, let 

   x xE E
    and    x xVar Var

   . (2.13) im-

plies that the joint distribution of is 
    1 1 1 1, , , , , , , ,n n n nZ X Z X     

         
           
1 1

1
; 1 ; ;

i i i iin T T T
i i i i i i i i i i i i i i i ii

pG z f z x p F z x g z F z x g z dz x dx
    

     
 



             
   (2.14) 

The probability measure (unconditional) correspond-
ing to (2.14) is denoted as  P  . Meanwhile, let 

 E   and  Var   denote the expectation and vari- 
ance under the probability measure  P  , respectively. 
For notational simplicity, let  

       ,P P E E       and    Var Var   

It is that the parameters in (2.14) are studied by us. 
 

3. Main Results 
 

Furthermore, from (2.14) we get the likelihood function 
of 

    1 1 1 1, , , , , , , ,n n n nZ X Z X     

as follows 

 1 1 1 1, , , , , , , , ,n n n nL Z X Z X      

   
       

     
1

;1

1
1 ;

; , 1
i

i iT
i i i i

T i i
i i i i

T
i i i i i i

n pG Z f Z Xi

p F Z X g Z

F Z X g Z X n


 


 

 


     
   

   

    (3.1) 

Taking the logarithm to (3.1) and dropping the terms 
which are free of   yield the logarithm likelihood fun- 
ction: 

     

     
 

*
1

1 1 1 1

log ; 1

log ; 1 log ;

; , , , , , , , , ,

n T
n i i i i i ii

T T
i i i i i

n n n n n

l f Z X

F Z X F Z X

l Z X Z X

     

  

    


  

  


 



 (3.2) 

where  1 1 1 1; , , , , , , , ,n n n n nl Z x Z x      is the loga-
rithm likelihood function defined in Xiao and Liu [8]. 
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We have the score function 

       
     

 
       

* *
1

1 1 1 1

1
;

;

1
; ; , , , , , , , , ,

;

i

i

Zn i iT T
n n i i i i i i ii T

i i i

i T
i i n n n n nT Z

i i

T l X Z b X yf y X dy
F Z X

yf y X dy T Z X Z X
F Z X

 
       




      



 



     

  

 






          (3.3) 

where  1 1 1 1; , , , , , , , ,n n n n nT Z X Z X     is defined as in Xiao and Liu [8]. And 

                

              

     

2 * 2
*

1 2

2
2

2

2

1 1 1

1
= 1 ;

;

1 1
; 1 ;

; ;

1
;

;

; , ,

i

i

i

i

Znn T T T
i i i i i i in T i T

i i i

Z T T
i i i i iT T Z

i i i i i i

T
i iT Z

i i i

n

l
H X X b X yf y X dy

F Z X

y f y X dy yf y X dy
F Z X F Z X

y f y X dy
F Z X

H Z


     

  

    
 

 


  

 







      
   

 
   
  
 




 

 





 1, , , , , ,n n n nx Z x 

 

 
where  1 1 1 1; , , , , , , , ,n n n n nH Z x Z x      is defined 
as in Xiao and Liu [8]. Write 

        * * * *
1; , ,

Tx
n n n n nx x E T T           

  

   *
1; , , ,x

n n nE H x x        

where  1; , ,n nx x   is defined as in Xiao and Liu 
[8]. 

The solution of the logarithm likelihood equation 

 * 0nT                  (3.4) 

is written as 

 1 1 1 1, , , , , , , , .n n n n n nZ X Z X            (3.5) 

(3.3) and (3.4) imply that 

 1 1 1 1
ˆ , , , , , , , , ,n n n n n nZ X Z X          (3.6) 

where  1 1 1 1
ˆ , , , , , , , ,n n n n nZ X Z X      is defined as 

in Xiao and Liu [8]. The norm of matrix  ij p q
A a


  is  

defined as 2 .1 1
p qA aiji j     We write ,     as the  

usual inner product and se  as the sth canonical basis 
in q . Let 

       1
1 , , ;

z
z F z yf y dy   


    

       1 2
2 , , ;

z
z F z y f y dy   


    

       1
3 , , ;

z
z F z yf y dy   

    

       1 2
4 , , ;

z
z F z y f y dy   

    

and          | .T
n n n n nE T T X x        

We state the following assumptions: 
( 1C ) For all 1i  , for all B  ， 0 ,T

iX   a.s., 
where iX  . Here  is compact. 

( 2C )      1
0 0; lim ;n nn

Q X n X 
 

   is a q-order 

positive define matrix. 
( 3C ) For all 1 2, B   ,  

     2 2
1 1 1 2 1 1 2; ; , ,T Tz x z x L z x          (3.7)  

     2 1 2 2 2 1 2; ; , ,T Tz x z x L z x          (3.8) 

     2 2
3 1 3 2 3 1 2; ; , ,T Tz x z x L z x          (3.9) 

     4 1 4 2 4 1 2; ; , ,T Tz x z x L z x         (3.10) 

where 

 1sup ; , . . 1, 2,3, 4, 1.b T
i j i jE L Z x X L a s j b 

         

( 4C )  2, 1, 0,X T
iB i E t X         a.s. 

It is also easy to see that the conditions in the present 
paper imply the conditions (C1), (C2), (C3) and (C4) 
given in Xiao and Liu[8]. So, there almost sure exists the 
maximum likelihood estimator of 0 . Hence, our first 
result states a law of the iterated logarithm for the max-
imum likelihood estimator of 0 . 

Theorem 3.1. Under conditions ( 1C ), ( 2C ), ( 3C ) 
and ( 4C ), if ˆ

n  is the MLE of 0 , then for 1 s q  , 
we have 
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0 0 0

ˆlimsup , 1, . .
2 log log

T
s n s s

n

n
P < e e Q e X a s

n    


     
  

 

and 

 
0 0 0

ˆliminf , 1, . .
2 log log

T
s n s s

n

n
P < e e Q e X a s

n    

       
  

 

 
Proof. For arbitrarily given  1, , ,nx x x    , we 

regard the conditional probability measure  |P X x    
as the probability measure  P   defined in Xiao and 
Liu [8], and note that as X x   is given, MLE n  is 
equivalent to MLE  

 1 1 1 1
ˆ ˆ , , ,, , , , ,n n n nx xn n Z Z       obtained in Xiao 

and Liu [6]. Thus, Remark 2.1 implies Theorem 2.1 in 
Xiao and Liu [8], and hence we have the desired results. 

Remark 3.1. Under the conditions of Theorem 3.1, 
we take expectations for the results above and imme-
diately get  

 
0 0 0

ˆlimsup , 1,
2 log log

T
s n s s

n

n
P < e e Q e

n   


      
  

 

and 

 
0 0 0

ˆliminf , 1
2 log log

T
s n s s

n

n
P < e e Q e

n   


       
  

 

 
Note that Theorem 3.1 establishes a law of iterated 

logarithm for each component of ˆ
n . Our next result is 

a Chung type law of iterated logarithm. To this aim, we 
add and additional condition. For notational simplicity,  

let      0 0
T T

i s i is e Q X t X   . 

Then  

       2 2
0 0 0

T T T T
i s i i i ss e Q X X t X Q e     

We make the following assumption: 

( 5C )  2inf 0k
k I

E s X 
    , a.s., where  

 2: ( ) 0iI i E s X     a.s.. 

Theorem 3.2. Under conditions ( 1C ), ( 2C ),( 3C ) , 
( 4C ) and ( 5C ), if ˆ

n  is the MLE of 0 , then for 
1 s q  , we have 

 0 0 0
1

log log
liminf max , ˆ ( ) 1, . .

8
T

s n s s
n i n

n
P i e e Q e X a s

n
     

       
  

 

 
Proof. In the way similar to that of Theorem 3.1, we 

immediately obtain the desired result. 
Remark 3.2. Under the conditions of Theorem 3.2, 

we take expectations for the results above and immedia- 
tely get 

 

 0 0 0
1

log log
liminf max , ( ) 1

8
ˆ T

s s s
n i n

n

n
P i e e Q e

n
 

  

       
  

 

 
4. Conclusions 
 
The results obtained in the present paper are based on the 
case that the link function is a natural link function. 
However, Ding and Chen [9] gave the consistency and 
asymptotic normality of MLE ˆ

n  of GLM under the 
case that the link function is of non-natural link, hence, 
the academicians who are interested in GLM may fur-
thermore investigate the iterated logarithm law and 
Chung type iterated logarithm law of MLE ˆ

n  of GLM 
under the case that the link function is of non-natural 

link. 
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