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Abstract 
The method of images is used to study the charge distribution for cases where Coulomb’s law de-
viates from the inverse square law. This method shows that in these cases some of the charge goes 
to the surface, while the remainder charge distributed over the volume of the conductor. In accord 
with the experimental work, we show that the charge distribution will depend on the photon rest 
mass and is very sensitive to it; a very small value of the rest of mass of the photon will create 
deviation from Coulomb’s law. 
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1. Introduction 
One of the foundations of electrostatics is Coulomb’s law. Major electromagnetic laws are built upon this law. 
As a direct consequence of this law (or its equivalent, Gauss’s law), any excess charge placed on a conductor 
must lie entirely on its surface. According to Coulomb’s law, excess charges given to a conductor will move 
away from each other and distribute themselves about the conductor in such a manner as to reduce the total 
amount of repulsive forces within the conductor and that both the charge and the field inside the conductor will 
vanish [1]-[6]. 

Testing this law has been a subject for many experiments over the past two and a half centuries [1] [2]. Any 
deviation from inverse square law would suggest a finite range for electromagnetic force, implying a nonzero 
photon rest mass. Rest mass of the photon provides indirect test of the deviations from exactness of Coulomb’s 
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law. If the photon mass is zero, Coulomb’s inverse-square law is the foundational law in electrostatics. Experi-
ments measure deviations in the exponent of inverse-square law and photon rest mass are increasingly exact. 
The most recent ion interferometry experiment measures the value of the exponent to be a few times 10−22 and 
detect a photon rest mass at the level of 9 × 10−50 grams [1]. Detection of any deviation from Coulomb’s law 
would have far-reaching implications. Maxwell’s equations and much of the standard model would have to be 
modified. The notion that absolute electrostatic potential is arbitrary would have to be abandoned, along with 
many other tenets of classical electromagnetism [1].  

In an interesting papers, Spencer [3] and Griffiths  and Uvanovic [4] studied distribution of excess charge 
within a conductor for laws rather than inverse square law such as Yukawa’s law or power law. In these two 
cases they found that some of the charge goes to the surface, and the remainder distributes itself uniformly over 
the volume of the conductor. 

In this paper we introduce the method of images to study the distribution of charges in cases where the poten-
tial is depending on the photon rest of mass. And give a theoretical extension work to the experimental results 
that detect a photon rest mass at the level of 9 × 10−50 grams and as a result a deviating from Coulomb’s Law. 
This paper is also important to understand physics of molecules and electron transport through a single molecule 
which offers a highly promising new technology for the production of electronic chip.  

2. Method and Results 
2.1. Method of Images for Yukawa Potential and Grounded Spherical Conductor 
The reaction field of a point charge due to surrounding medium can be represented by the method of image 
charge. The method of images allows us to solve certain differential form of electric potential problem without 
specifically solving a differential equation of this problem. 

The potential ( )Φ x  everywhere outside a conducting sphere can be calculated by using method of images. 
As illustrated Figure 1 we consider conducting sphere with radius R a= . For convenience, place the sphere at 
the origin. We assume a point charge q  outside the sphere and defined by position vector y . By symmetry, 
the image charge lie on the line connecting the charge and the origin of the sphere and will be located inside the 
sphere at position vector y . If the sphere is grounded then the potential everywhere on the sphere equal zero. 
Now we are able to calculate the magnitude and the position vector ′y  of an image charge q′  that is required 
to make the potential equal zero on the surface of the grounded sphere. Total Yukawa potential [4] ( )Φ x  due 
to the assumed charge q and its image charge q′  at any point P is given by Equation (1). 

( ) ( ) ( )exp expq k q k′ ′− − − −
Φ = +

′− −

x y x y
x

x y x y
                         (1) 

If the sphere is grounded, then the potential at the surface of the sphere vanishes ( ) 0aΦ = =x , thus: 
 

 
Figure 1. Two-dimensional schematic il- 
lustration of a conducting sphere of radius 
a  with a point charge q  outside and 
image charge q′  inside.                
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where n̂  and n̂′  are unit vectors in the direction of x  and y  respectively. To satisfy the boundary condi-
tion ( ) 0aΦ = =x  at R a= , we must have: 

( )

2

,

exp

ay
y
aq q k k
y

′ =

′ ′= − − − + −x y x y
                          (3) 

More generally, the potential in the neighborhood of an uncharged grounded conducting sphere is given by 
Equation (4): 

( ) ( ) 1 1exp aq k
y

 
Φ = − − − ′− −  

x x y
x y x y

                      (4) 

Let  

( )

( )

1
2 2 2

1
2 2 2

2 cos

2 cos

x y xy

x y xy

ρ θ

ρ θ

= − = + −

′ ′ ′ ′= − = + −

x y

x y
                           (5) 

Substitute Equation (5) in Equation (4) and then differentiate to get the actual induced charge density on the 
surface of the grounded uncharged conducting sphere: 

( )1
4π

x a
x

σ
=

∂Φ
=
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Then we get: 
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  (6) 

The total charge on the sphere may be found by integrating Equation (6) over all angles. The total surface in-
duced charge is equal to the magnitude of the image charge for Coulomb potential. But in case of Yukawa po-
tential the total surface induced charge is less than the value of the image charge. This result implies that small 
portion of the induced charge distributed itself inside the volume of the conducting sphere. The rest of the in-
duced charge is distributed itself on the surface of the conducting sphere. Some values of the total induced sur-
face charge on grounded conducting sphere are given in Table 1 for both Coulomb and Yuakawa potentials.  
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Table 1. Total induced surface charge normalized to q−  on grounded conducting sphere and 1.0a = .                   

Potential 
  Parameters  

k  a y  q′  Total surface charge Total volume charge 

Coulomb 0 2.0 0.50000q 0.5 0.0 

Yukawa 0.008 2.0 0.49697q 0.4932 0.0037 

Yukawa 0.5 2.0 0.34592q 0.2267 0.1192 

Yukawa 1.0 2.0 0.23931q 0.1087 0.1306 

2.2. Method of Images for Yukawa Potential and Insulated Charged Spherical Conductor 
We can generalize Equation (4) for an insulated conducting sphere. Consider insulated charged sphere with total 
charge Q  in the presence of a point charge q . The potential ( )Φ x  everywhere outside the sphere is super-
position of Equation (4) Yukawa potential of a point charge ( )Q q′−  at the center of the conducting sphere, 
charge q  and image charge q′  is given Equation (7): 

( ) ( ) ( ) ( )( ) ( )exp exp
exp exp

aQ q k kx
q k q k ya

y x

ρ ρ
ρ ρ

ρ ρ

 ′+ − − − − −  Φ = − +
′

x            (7) 

The surface charge density:  
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The charge density given by Equation (8) in units of 24πq a−  is plotted in Figures 2 and 3 as a function of 
the angle θ  for different values of k , a y  and Q q . The total surface charge, for insulated charged sphere 
with total charge Q , is calculated by integrating Equations (8) with respect to all angles. For 0k = , we find 
that the total surface charge is equal to the magnitude of the total charge of ( )Q . This means that all the charge 
is distributed on the surface of the conducting sphere and no charge is distributed inside the sphere. For values 
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of k different from zero ( )0k > , we found that portion of the total charge is distributed inside the volume of the 
sphere. In Figure 4, the magnitude of the total surface charge normalized to q  and the total volume charge 
normalized to q  for insulated charged sphere with total charge Q , are displayed for ( )1, 2Q q y a= − =  as 
a function of k. Note that the charged conducting sphere is insulated in this case and has a unit radius a.  

3. Conclusion  
In accord with the experimental work we show that the charge distribution greatly depends on the photon rest  
 

 
Figure 2. The surface charge density normalized to 24πq a−  
for conducting insulated charged sphere has unit radius and 

2a y =  is plotted as a function of angle θ .                  
 

 
Figure 3. The surface charge density normalized to 2/ 4q aπ−  for 
conducting insulated charged sphere has unit radius and 4a y =  
is plotted as a function of angle θ .                            
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Figure 4. The magnitude of the total surface charge normalized to q  and the 
total volume charge normalized to q , are displayed for ( )1, 2Q q y a= − =  

as a function of k . Note that the charged conducting sphere has a unit radius.    
 
mass and is very sensitive to it; a very small value of the rest of mass will create deviation from Coulomb’s law. 
We have studied the distribution of charges on grounded spherical conductor and insulated charged spherical 
conductor by using the method of images. It is proven that using the image charge to study the distribution of 
charges on conductors is effective. Our results show that the charge distribution is depending greatly on k . 
When 0k = , all the charges reside on the surface of the conducting sphere. But if k  has values different from 
zero part of the charges will reside on the surface of the conducting sphere while the rest of the charges will be 
distributed inside the volume of the sphere. These results are consistent with the previous calculation [3] [4]. 
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