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Abstract 

This study analyses the dynamics of nonlinear monopoly. To this end, the conventional assump-
tions in the text-book monopoly are modified; first, the complete information on the market is re-
placed with the partial information; second, the instantaneous information is substituted by the 
delay information. As a result, since such a monopoly is unable to jump, with one shot, to the op-
timal point for which the profit is maximized, the monopoly has to search for it. In a continuous- 
time framework, the delay destabilizes the otherwise stable monopoly model and generates cyclic 
oscillations via a Hopf bifurcation. In a discrete-time framework, the steady state bifurcates to a 
bounded oscillation via a Neimark-Sacker bifurcation. Although this has been only an introduction 
of delay into the traditional monopoly model, it is clear that the delay can be a source of essential-
ly different behavior from those of the nondelay model. 
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1. Introduction 
Implicit in the text-book monopoly is an assumption of complete and instantaneous information or knowledge 
available to economic agents at free of charge. Under such circumstances, knowing the certain price and cost 
functions, the monopolist can make an optimal decision of price and output to maximize its profit and realize it. 
As a result, the text-book monopoly model becomes static in nature. There are, however, many empirical works 
to indicate that such an assumption of rational economic agents goes too far. In reality the monopolist is boun-
dedly rational and adjusts its price and output as a function of its limited knowledge and past experiences. To fill 
this gap, we propose, in this study, to relax this assumption and develop a dynamic monopoly model. In particu-
lar, we assume first that the monopolist has only partial information about the market condition and second that 
the monopolist obtains it with time delay. In natural consequence of these alternations, the monopolist cannot 
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jump to the optimal point but searches for it with using the actual data obtained through the market. The mod-
ified model becomes dynamic in nature. This is the issue far outside the scope of the text book monopoly and it 
is what we will consider in this study. 

In the recent literature, various learning processes of the boundedly rational monopolist have been extensively 
studied. Puu [1] constructs a discrete-time monopoly model in which price function is cubic and cost function is 
linear. It is shown that the gradient learning or search process based on locally obtained information might be-
have in an erratic way under the condition that the price function has an inflection point. Assuming that the mo-
nopolist uses a rule of thumb to determine quantity to produce, Naimzada and Ricchiuti [2] reconsider Puu’s 
model with a linear cost function and a cubic price function without the inflection point. Their model is then ge-
neralized by Asker [3] who replaces the cubic function with higher-order polynomials. Matsumoto and Szida-
rovszky [4] further generalize Asker’s model by introducing the more general type of the cost function. Since 
those models are described by one dimensional difference equation, chaotic dynamics can arise via pe-
riod-doubling bifurcation. 

In this study we reconsider a dynamic monopoly model from two different points of view. First, to detect the 
effect caused by non-instantaneous information, the dynamic process is constructed in continuous-time scales 
and a fixed time delay is introduced. Second, we discretize the continuous process to obtain a “delay” discrete 
process and analyze the delay effect on discrete dynamics. In both models, local stability of a stationary state is 
analytically considered and global dynamics is numerically examined. 

The paper is organized as follows. In Section 2, the delay differential model is presented and stability switch 
is considered. In Section 3, the delay difference model is constructed to give rise to the emergence of Neimark- 
Sacker bifurcation. And finally, Section 4 concludes the paper. 

2. Delay Differential Dynamics 

Consider a single product monopoly that sells its product to a homogeneous market. Let q  denote the output of 
the firm, ( )p q a bq= −  the price function and ( )C q cq=  the cost function1. Since ( )0p a=  and 

( )p q q b∂ ∂ = , we call a  the maximum price and b  the marginal price. There are many ways to introduce 
uncertainty into this framework by considering a , b  or c  uncertain. In this study, it is assumed that the firm 
knows the marginal price and the marginal cost but does not know the maximum price. In consequence it has 
only an estimate ( )ea t  of it at each time period. So the firm believes that its profit is 

( )πe ea bq q cq= − − , 

its best response is  

2

e
e a cq

b
−

=
 

and the firm expects the market price to be  

2

e
e e e a cp a bq +
= − = .                                 (1) 

However, the actual market price is determined by the real price function 

2
2

e
a e a a cp a bq − +
= − = .                              (2) 

Using these price data, the firm updates its estimate. The simplest way for adjusting the estimate is the following. 
If the actual price is higher than the expected price, then the firm shifts its believed price function by increasing 
the value of ea , and if the actual price is the smaller, then the firm decreases the value of ea . If the two prices 
are the same, then the firm wants to keep its correct estimate of the maximum price. This adjustment or learning 
process can be modeled by the following differential equation: 

( ) ( )( ) ( ) ( )e e a ea t a t p t p tκ  = −  , 

where ( ) 0eaκ >  is the speed of adjustment. Substituting relations (1) and (2) gives the adjustment equation as 

 

 

1Linear functions are assumed only for the sake of simplicity. We can obtain a similar learning process to be defined even if both functions 
are nonlinear. It is also assumed for the sake of simplicity that the firm has perfect knowledge of production technology (i.e., cost function). 
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a differential equation with respect to ea : 

( ) ( ) ( )e e ea t a a a tκ  = −  .                           (3) 

For analytical simplicity, we assume that  
( ) , 0,e ea ka kκ = >

 
so Equation (3) is reduced to the logistic equation, 

( ) ( ) ( )e e ea t ka t a a t = −                                 (4) 

which is a nonlinear differential equation. Notice that Equation (4) has two steady states, 0ea =  and ea a= . 
Small perturbation from 0ea =  satisfies the linear equation ( ) ( )e ea t aka t= , which shows that 0ea =  is 
unstable with exponential growth. We thus only need to consider the stability of the positive steady state ea a= . 
The steady state corresponds to the true value of the maximum price. 

If there is a time delay τ  in the estimated price, then Equation (4) has to be modified as 

( ) ( ) ( )e e ea t ka t a a t τ = − −  .                           (5) 

By introducing the new variable ( ) ( )ez t a t a= − , the linearized version of Equation (5) becomes  

( ) ( ) 0z t z tα τ+ − =                                 (6) 
where akα = . As a benchmark for stability analysis, we start with the no-delay case. If there is no delay, 

0τ = , then Equation (6) becomes an ordinary differential equation with characteristic polynomial λ α+ . So 
the only eigenvalue is negative implying the local asymptotic stability. If 0τ > , then the exponential form 
( ) e tz t uλ=  of the solution reduces the characteristic equation to the following form:  

e 0λτλ α −+ = .                                    (7) 

This is a transcendental equation. Notice that the only eigenvalue is negative when 0τ = . Notice also that 
0λ =  is not a solution of Equation (7). For sufficiently small deviation of τ  from zero, the real parts of the 

eigenvalues are still negative by continuity. We seek conditions of τ  such that the real parts change from neg-
ative to positive. Since stability is changed to instability under this condition, it is often called stability switch. 
At this critical value of τ , the characteristic equation must have a pair of purely imaginary eigenvalues, iλ ν= . 
If λ  is an eigenvalue, then its complex conjugate is also an eigenvalue. So, without loss of generality, we can 
assume that 0ν > . So Equation (7) can be written as  

e 0ii ντν α −+ = . 
Separating the real and imaginary parts, we obtain  

cos 0α ντ =  
and  

sin 0ν α ντ− = . 
Therefore 

cos 0 and sin νντ ντ
α

= =  

implying that ν α=  leading to infinitely many solutions, 

1 π 2 π for 0,1,2,
2

n nτ
α
 = + = 
 

                         (8) 

The solution τ  with 0n =  forms a downward-sloping curve with respect to α , 
π with

2
akτ α

α
∗ = =  

Applying the main theorem in Hayes [5] or the same result obtained differently in Matsumoto and Szidarovszky 
[6], we can find that this curve divides the non-negative ( ),α τ  plane into two subregions; the real parts of the 
roots of the characteristic equation are all negative in the region below the curve and for some roots are positive 
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in the region above. This curve is often called the partition curve separating the stability region from the insta-
bility region. Notice that the critical value of τ  decreases with α  so a larger value of α  caused by the high 
speed of adjustment and/or the larger maximum price makes the steady state less stable. 

We can easily prove that all pure complex roots of Equation (7) are single. If λ  is a multiple eigenvalue, 
then it must solve equations  

e 0λτλ α −+ =  
and  

( )1 e 0λτα τ−+ − = . 

Based on the first equation, the second equation becomes  
1 0λτ+ =  

or 
1λ
τ

= −
 

implying that λ  becomes a real negative value which contradicts the assumption that it is purely imaginary. 
In order to detect stability switches and the emergence of Hopf bifurcation, we select τ  as the bifurcation 

parameter and consider λ  as function of τ , ( )λ λ τ= . By implicitly differentiating Equation (7) with respect 
to τ , we have  

d de 0
d d

λτλ λα τ λ
τ τ

−  + − − = 
 

 

implying that  
2d

d 1
λ λ
τ τλ
= −

+
. 

With iλ ν= , 

( )

2 2

2

dRe Re 0
d 1 1i
λ ν ν
τ τν τν

   = = >   +  + 
. 

So the sign of the real part of an eigenvalue changes from negative to positive and it is a Hopf bifurcation point 
of the nonlinear learning process (5) with one delay. Thus we have the following result. 

Theorem 1: For the logistic adjustment process (5), the steady state is locally asymptotically stable if τ τ ∗<  
and locally unstable if τ τ ∗>  Hopf bifurcation occurs if τ τ ∗=  and a stable limit cycle exist for τ τ ∗>  
where 

π and
2

akτ α
α

∗ = = . 

The delay logistic adjustment process can have periodic solutions for a large range of value of α , the prod-
uct of the maximum price a  and the adjustment coefficient k . The period of the solution at the critical delay 
value is 0 2πτ α= , which is 04τ . 

An intuitive reason why stability switch occurs only at the critical value of τ  with 0n =  is the following. 
Notice first that the delay differential equation has infinitely many eigenvalues and second that their real parts 
are all negative for τ τ ∗< . When increasing τ  arrives at the partition curve, then the real part of one eigenva-
lue becomes zero and its derivative with respect to τ  is positive implying that the real part changes its sign to 
positive from negative. Hence the steady state loses stability at this critical value. Further increasing τ  crosses 
the ( ),α τ  curve defined by Equation (8) with 1n =  where the real part of another eigenvalue changes its sign 
to positive from negative. Repeating the same arguments, we see that at each intersection one more eigenvalue 
changes its real part from negative to positive, so stability cannot be regained and therefore no stability switch 
occurs for any 1n ≥ . Hence stability is changed only when τ  crosses the partition curve. 

Theorem 1 is numerically confirmed. Given 2a = , a bifurcation diagram with respect to τ  is depicted in 
Figure 1(a). It is seen that the steady state loses stability at τ τ ∗=  and bifurcates to a cyclic oscillation for 
τ τ ∗> . In addition, given aτ τ= , Figure 1(a) indicates the maximum and the minimum values of the trajectory 
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are denoted by My  and my . Figure 1(b) illustrates a limit cycle having the same extremum in the phase 
plane. 

We can discuss another delay adjustment process that is a hybrid of Equations (4) and (5), 

( ) ( ) ( ) ( ) ( )( )1e e e ea t ka t a a t a tω ω τ = − + − −                         (9) 

where ω  is a positive constant less than unity. It can be seen that Equation (9) is reduced to Equation (4) when 
ω  goes to unity and to Equation (5) when ω  goes to zero. The steady state of Equation (9) is equal to the 
maximum price and thus the same as the one of Equation (4) as well as Equation (5). The linearized equtaion 
becomes 

( ) ( ) ( ) ( )1 0z t z t z tαω α ω τ+ + − − =  

and its characteristic equation is  

( )1 e 0λτλ αω α ω −+ + − = . 

Using the similar arguments, we can obtain the results including that the delay becomes harmless if the instan-
teneous term ( )ea t  is dominant in Equation (9): 

Theorem 2: 1) If 1 2ω ≥ , then the steady state of the hybrid logistic adjustment process (9) is locally 
asymptotically stable for all delay 0τ ≥ ; 2) if 1 2ω < , then the steady state is locally asymptotically stable if 
τ τ ∗< , loses stability for τ τ ∗=  and bifurcates to a limit cycle via a Hopf bifurcation if >τ τ ∗  where  

11 1 2sin
11 2ak

ωτ
ωω

∗ −  −
=   −−  

. 

3. Delay Discrete Dynamics 

Our concern in this section is on how the different choice of the time scale affects dynamics examined in the 
previous section. Toward this end, we discretize the delay differential Equation (4) by replacing ( )ea t  with 

( ) ( )1e ea t a t+ −  to obtain  

( ) ( ) ( ) ( )( )1e e e ea t a t ka t a a t τ+ = + − −                         (10) 

and then reconsider local and global dynamics in discrete time. The positive steady state of Equation (5) remains 
as a steady state of this difference equation. We mention that this discrete-time equation has a τ -step delay  
 

     
(a)                                              (b) 

Figure 1. Cyclic oscillations for >τ τ ∗ . (a) Bifurcation diagram; (b) Limit cycle with = aτ τ .                       
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when 1τ ≥ 2. The remaining of this section starts with the case of 0τ =  and then, proceed the cases of 1τ ≥  
in detail to concentrate on delay effects in the discrete-time framework. 

If 0τ = , then Equation (10) becomes a nonlinear first-order difference equation 

( ) ( ) ( ) ( )( )1x t x t kx t a x t+ = + −                            (11) 

where we introduce the new variable ex a= . Changing the variable again by  

1
xz
ak

k

=
+

 

reveals that Equation (11) can be reduced to the familiar form, 

( ) ( ) ( ) ( )( )1 1 1z t ak z t z t+ = + − . 

It is now well known that the logistic equation can generate wide variety of dynamics ranging from a periodic 
cycle to chaos according to the specification of the coefficient 1 ak+  if the steady state is locally unstable. 

If 1τ = , then Equation (10) has one-step delay and then becomes a nonlinear second-order difference equa-
tion 

( ) ( ) ( ) ( )( )1 1x t x t kx t a x t+ = + − −                           (12) 

which can be converted to an equivalent 2D system of first-order difference equations, 

( ) ( )
( ) ( ) ( ) ( ) ( )

1 ,

1 1 .

y t x t

x t ak x t kx t y t

+ =

+ = + −
                          (13) 

The linearized system around the steady state x y a= =  is 

( )
( )

( )
( )

1 1
1 1 0

x t x tak
y t y t
δ δ

δ δ

 +   − 
=    +     

 

where the subscript δ  implies that the variable with this subscript is the difference between its value and the 
steady state. The characteristic equation is transformed into a quadratic equation,  

2 0akλ λ− + = .                                   (14) 
The following three conditions imply that the quadratic polynomial 2

1 2a aλ λ+ +  has roots inside the unit 
cycle, 

1 2

1 2

2

1 0,
1 0,
1 0

a a
a a
a

+ + >
− + >
− >

                                   (15) 

where  
1 21 anda a ak= − = . 

The first and second conditions of Equation (15) are always satisfied and so is the third condition if and only if 
1.ak <  

Taking 2a =  and selecting k  as the bifurcation parameter, we illustrate the bifurcation diagram in Figure 
2(a) in which stability of the steady state is changed to instability at ( )1 0.5sk a= =  and cyclic behavior 
emerges for sk k>  When k  arrives at 0.635k  , the non-negativity condition is violated resulting in the 
birth of economically uninteresting behavior. 

We further extend our analysis to a two-step delay (i.e., 2τ = ) where the marginal revenue includes the de-
layed information obtained at period 2t − . The dynamic Equation (10) is now a third-order difference equation, 

( ) ( ) ( ) ( )( )1 2x t x t kx t a x t+ = + − − .                        (16) 

 

 

2A sailent feature of a discrete-time equation is that the equation involves at least one difference or time-delay of the dependent variable. So 
we refere to the τ -step delay when τ  is greater than unity. 



A. Matsumoto, F. Szidarovszky 
 

 
152 

This can be written as a 3D system of first-order difference equations 

( ) ( )
( )
( ) ( ) ( ) ( ) ( )

1

1

1 1

y t x t

z t yt

x t ak x t kx t z t

+ =

+ =

+ = + −

                         (17) 

where the steady state is ( ), ,x y z  with x y z a= = = . Linear approximation of Equations (17) yields the li-
nearized system having the form 

( )
( )
( )

( )
( )
( )

1 1 0
1 1 0 0
1 0 1 0

x t ak x t
y t y t
z t z t

δ δ

δ δ

δ δ

+ −    
    + =    

    +     

                           (18) 

and the corresponding characteristic equation is cubic, 
3 2 0akλ λ− + = .                                   (19) 

The steady state is locally asymptotically stable if all eigenvalues of Equation (19) are less than unity in absolute 
value. Farebrother [7] has proved that the most simplified form of the sufficient and necessary conditions for the 
cubic equation 3 2

1 2 3a a aλ λ λ+ + +  to have roots only inside the unit cycle are 
1 2 3

1 2 3
2

2 1 3 3

2

1 0,
1 0,

1 0,
3

a a a
a a a

a a a a
a

+ + + >

− + − >

− + − >

<

                               (20) 

where  
1 2 31, 0 anda a a ak= − = =  

It can be verified that the first and fourth conditions are always satisfied while the second and third condition 
holds if 

5 1 0.618
2

ak −
<  . 

The bifurcation diagram with 1a =  is illustrated in Figure 2(b), where 0.618sk  . It can be seen that Hopf 
bifurcation emerges for sk k> . 

If 3τ = , then the characteristic equation is 4 3 0λ λ α− + =  with akα = . For the quartic equation  
4 3 2

1 2 3 4 0a a a aλ λ λ λ+ + + + =  
 

    
(a)                                             (b) 

Figure 2. Bifurcation diagrams with different steps, (a) = 1τ  and = 2a ; (b) = 2τ  and = 1a .        
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the sufficient and necessary condition that all roots are inside the unit circle are (see Farebrother, [7]) as follows: 

( ) ( )( ) ( ) ( )( )

4

4 2

1 2 3 4

1 2 3 4

2 2
4 4 2 4 1 3 3 1 4

1 0
3 3
1 0
1 0

1 1 1 0

a
a a

a a a a
a a a a

a a a a a a a a a

− >
+ >
+ + + + >

− + − + >

− − − − + − − >

 

To our case, 1 2 31, 0a a a= − = =  and 4a α= . The first four conditions are clearly satisfied if 1α <  and the 
last condition can be reduced to the following: 

( ) 3 2 2 1 0f α α α α= − − + > . 

Clearly  

( ) ( ) ( ) ( ) ( )1 1, 0 1, 1 1, andf f f f f− = = = − −∞ = −∞ ∞ = ∞ . 

Since ( ) 23 2 2f α α α′ = − −  having two roots 

1 2
1 7 1 70.548 and 1.215

3 3
α α− +

= − =  , 

( )f α  increases in intervals ( )1,α−∞  and ( )2 ,α ∞ , and decreases in ( )1 2,α α . Notice that ( )1 0f α >  and 
( )2 0f α < , so ( )f α  has three real roots: one is negative, two positive in intervals ( )0,1  and ( )2 ,α ∞ . Since 

1α <  and the smallest positive root is approximately 0.445 3, the stability condition is 0.445k< . It is numer-
ically confirmed that the steady state is violated via Neimark-Sacker bifurcation for 0.445k > . Although the 
critical values sk  seem to decrease as the value of τ  increases,  

1 if 1, 0.618 if 2 and 0.445 if 3s s sk k kτ τ τ= = = =  , 

this fact has not been analytically confirmed yet. 
Applying the same argument to the case of the general case, we have the adjustment process described by a 

( )1 thτ + -order difference equation, 

( ) ( ) ( ) ( )( )1x t x t kx t a x t τ+ = + − −
 

and a ( )1 thτ + -order characteristic equation, 
1 0akτ τλ λ+ − + =  

For a larger value of 4τ ≥ , we do not have the simplifed stability condition but the Samuelson or the Cohn- 
Schur conditions for the n -th order equation can be applied to determine the critical value of k  for the birth of 
Neimark-Sacker bifurcation4. We summarize the main result on the delay difference adjustment process: 

Theorem 3: Given the maximum price, the discrete-time adjustment process (10) has the critical value of the 
adjustment coefficient sk  and the steady state is locally asymptotically stable if sk k< , loses stability for 

sk k=  and bifurcates to a limit cycle via Neimark-Sacker bifurcation if sk k> .  

4. Concluding Remarks 

In this study, we analyzed the delay dynamics of a nonlinear monopoly. Two conventional assumptions in the 
traditional monopoly model are modified: the information obtained from the market is assumed to be limited 
and delayed. As a natural consequence, the monopoly is unable to jump, with one shot, to the optimal point but 

 

 

3With Mathematica, it can be found that the critical value has the following form, 

( )
( )

( ) ( )
1 3

2 3

1 3
2 3

71 3 1 3 37 1 31 2 0.445
3 63 2 1 3 3

s

i ii
k

i

 + − + +  = − −
× − +

 . 

4The forms of both conditions are found in Gandolfo [8]. In either from, the stability condition becomes complicated as the order of the 
equation increases. 
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revises its decision by taking transaction data experiences obtained from the market into account. In either the 
continuous-time framework or the discrite-time framwork, the steady state is locally asymptotically stable for 
the smaller values of delay and bifurcates to a limit cycle via a Hopf bifurcation in the continuous-time frame-
work and via a Neimark-Sacker bifurcation in the discrete-time framework for the larger values. Delay mono-
poly generates very different dynamics than those of the text-book monopoly.  
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