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Abstract 
In this paper, several approaches for calculation of the effective tensor coefficient for domains 
with inclusions have been proposed. The limits of the approaches using are found. The series of 
numerical experiments are made on the different frequencies, for different inclusions location and 
boundary conditions for the contrast properties of the matrix and inclusion materials. 
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1. Introduction 
The composite materials with microinclusions can be made from dielectric or conductive elements and have the 
periodical or arbitrary structure. The form of the microinclusions can vary from simple sphere to complex geo-
metry [1]-[3]. 

The research of the composite materials by analytical methods is quite difficult because of complex geometry 
and structure of the objects, wide frequency bandwidth and different physical properties of the materials. The 
classical averaging doesn’t lead to physically well-founded results in most cases. Sometimes we can’t use these 
methods at all. We propose to use the numerical modeling methods in this work. 

The most effective method for the 3D modeling of the electromagnetic fields is the vector finite element me-
thod [4] [5]. In recent years, the special modifications of the finite element method have been done. These mod-
ifications are adopted for the modeling electromagnetic field in the media with multiscale and small inclusions. 
The examples of such methods are the multiscale methods, discontinuous Galerkin method [6] [7]. 
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It should be said that the electrophysical properties of the material with microinclusions can be greatly distin-
guished from the properties of the source materials. The properties of the composite material are mostly defined 
by interactions between inclusions. The effective characteristic of the media with the microinclusions can be 
used when the size of the inclusions is much smaller than the wavelength of the generating field [2] [8] [9]. The 
popular models of the composite materials in frequency domain are Drude and Lorentz models [2] [3] [8]. 

Hashin and Shtrikman [10] proposed the variational procedure for the calculation of the effective tensor of 
conductivity at heterogeneous media with microstructure in 1962. The equivalent parameter of the homogeneous 
medium lies in the base of this procedure. The electric potential of the medium surface is kept on by using 
equivalent parameter. Such approach is widely used in the conduction and elasticity problems [9] [11]. 

We propose to present the composite material with microinclusions as some anisotropic medium. There are 
some reasons of the anisotropic properties. The material can be isotropic, uniaxial or fully anisotropic, i.e. has 
different properties along different directions. It depends on the type of the relations between molecules of the 
material. The anisotropy of the dielectric properties of the medium determines by the structure of the lattice [12]. 
In geophysics the term macroanisotropy is used for the media consists of many small objects [13]-[15]. It can be 
thin-layered structures, rocks with cracks and pores filled by liquid. Such media can be considered as macroani-
sotropic without concentrating on the interior media structure [16] [17]. 

The new approach to the calculation of the effective tensor (anisotropic) characteristic of the medium with 
microinclusions is proposed in this work. We investigate electromagnetic field in the media with small inclu-
sions. The calculations were made for different frequencies, electrophysical properties of the materials, geome-
try structure of the researched objects. The effective characteristic of the medium as a complex valued second 
rank tensor is computed using the results of the 3D modeling of the electromagnetic fields in the medium with 
microinclusions. The modeling of the electromagnetic field with effective characteristic was done. We compare 
these results with the results of the modeling in isotropic medium with inclusions. 

In Section 2, the variational formulations for modeling of electromagnetic field in the isotropic medium with 
inclusions and anisotropic medium with effective tensor coefficient are done. The new approach to the calcula-
tion of the effective tensor coefficient from the modeling results is described in the Section 3. In Section 4, we 
compare the results of the computation of the electromagnetic field in the media with inclusions and tensor coef-
ficient. The computations were done on low and high frequencies for different type of field source. 

2. The Problem Formulation 
The electromagnetic field in frequency domain is described by the vector Helmholtz equation with complex va-
lued E: 

1 2curl curl 0 inkµ− = ΩE E+                               (1) 

where E is the electric field (V/m), 2 2k iωσ ω ε= −  is the wave number; 2 fω = π  is the cyclic frequency 
[Hz]; r 0ε ε ε=  is the dielectric permittivity [F/m], rε  is the relative dielectric permittivity, 0  8.85 10Eε = ×  

12 F m− ; r 0 µµ µ=  is the magnetic permeability [H/m], rµ  is the relative magnetic permeability, 
0 4 10 7 H mµ E= π× − ; σ is the electric conductivity [S/m] (Figure 1). 
The boundary conditions are the following: 

0 ,
eΓ

× =n E E                                           (2) 

1 curl 0,
m

µ−

Γ
× =E n                                      (3) 

where 3Ω⊂   is a bounded Lipchitz domain with boundary m e∂Ω = Γ Γ . 

2.1. Variational Formulation for the Helmholtz Equation for Isotropic Medium with 
Microinclusions 

We define Ω  as 3D heterogeneous domain with Lipschitz-continuous boundary Γ . Let’s introduce the fol-
lowing spaces [4] 

( ) ( ) ( ){ }2 2H curl, curl ,Ω = ∈ Ω ∈ Ωu L u L                         (4) 
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Figure 1. The types of computational domains.                           

 

( ) ( ){ }0H curl, H curl, 0 .
∂Ω

Ω = ∈ Ω × =u u n                         (5) 

The norm in the space ( )H curl,Ω  is the following: 

( )
2

H curl, d curl curl d .
Ω

Ω Ω

= ⋅ Ω + ⋅ Ω∫ ∫u u u u u  

The special relations called the De Rham complex are fulfilled for the spaces ( )1H Ω , ( )H curl,Ω , 

( )H div,Ω  [18] [19]: 

( ) ( ) ( ) ( )grad curl div1 2H H curl, H div, LΩ → Ω → Ω → Ω  
where 

( ) ( ) ( ){ }32 2H div, L div L Ω = ∈ Ω ∈ Ω u u . 

The finite-dimensional discrete analogues of the functional spaces also fulfilled the De Rham complex. 
The variational formulation for the Equation (1) with boundary conditions (2) and (3) is the following [20]: 

find ( )0H curl,∈ ΩE  such, that ( )0H curl,∀ ∈ Ωv  the following equation is fulfilled: 
1 2curl curl d d 0kµ−

Ω Ω

⋅ Ω + ⋅ Ω =∫ ∫E v E v .                             (6) 

The computational domain breaks to n non-overlapping tetrahedrons (the adaptive triangulation) to obtain the 
discrete variational formulation. Let us introduce the finite-dimension subspace for the space ( )0H curl,Ω  

( ) ( )0 0H curl, H curl,h Ω ⊂ Ω .                                     (7) 

The basic functions ( )0H curl,k h
i ∈ Ωw  are vector functions of the first order. The using of these functions is 

guaranteed the tangential continuous of E on the boundaries between different media [4]. 
The discrete variational formulation is follow: find ( )0H curl,h h∈ ΩE  such, that ( )0H curl,h h∀ ∈ Ωv  the 

following equation is fulfilled: 

( )2 11curl cu currl d ld d 0h h h h h hk µµ−

ΩΩ Ω

−

∂

⋅ ⋅ + × ⋅ Ω =Ω+ Ω∫ ∫∫E v E n vE v .               (8) 
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The finite element solution of E is the following expansion by basic functions: 

( ) ( )h h
i i

i
q=∑E x w x                                         (9) 

where iq —the weights of the expansion hE  by basic functions of the space ( )0H curl,h Ω . 
For test functions ( ) , 1, ,h h

j j N= =v w x  , the discrete variational formulation in matrix form is the follow-
ing: 

( )1 2kµ− + =G B q F                                         (10) 

The elements of the matrixes G and B are defined as: 

[ ] ,
curl curl d

k

k k
i j ki jG

Ω

= ⋅ Ω∫ w w                                (11) 

[ ] ,
d

k

k k
i j ki jB

Ω

= ⋅ Ω∫ w w                                       (12) 

The boundary conditions (2) and (3) are fulfilled in the vector F. The system of linear algebraic Equations (10) 
is solved by the special two-level solver [21]. 

2.2. Variational Formulation for the Helmholtz Equation for Anisotropic Medium with 
Effective Coefficient 

The electric field in frequency domain with effective coefficient is described by the Helmholtz equation: 

1curl curl 0,i Zµ ω− + =E E                                   (13) 

where Z—effective coefficient (tensor of the second rank). The boundary conditions (2) and (3) are used. 
The functional spaces where we’ll find the solution are the same as for isotropic problem (4) and (5). 
The variational formulation for anisotropic problem has the following form [17]: find ( )0H curl,∈ ΩE  such 

that ( )0H curl,∀ ∈ ΩW  the following equation is true 

( )1 1curl curl d d curl d 0i Zµ ω µ− −

Ω Ω ∂Ω

⋅ Ω + ⋅ Ω+ × ⋅ Ω =∫ ∫ ∫E W E W E n W             (14) 

By using the functional spaces (4) and (5) and expansion (9) the variational formulation (14) became the sys-
tem of linear algebraic equations: 

,n ne iw e+ =A S F                                       (15) 

where A, S—finite-element matrices defined by the following expressions 

[ ] 1
,

curl curl d
k

i j ki j µ−

Ω

= ⋅ Ω∫A W W  

[ ] ,
d

k

i k j ki j Z
Ω

= ⋅ ⋅ Ω∫S W W  

In common case the arbitrary anisotropic medium is described by the following bilinear form: 

1 1 1 2 1 3 2 1 2 2

2 3 3 1 3 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

xx xy xz yx yy

yz zx zy zz

Z Z e e Z e e Z e e Z e e Z e e

Z e e Z e e Z e e Z e e

= + + + +

+ + + +
                  (16) 

For such media the matrix S is the following: 
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( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( )

1 1 1 2

1 3 2 1

2 2 2 3

3 1 3 2

3 3

ˆ ˆ ˆ ˆd d

ˆ ˆ ˆ ˆd d

ˆ ˆ ˆ ˆd d

ˆ ˆ ˆ ˆd d

ˆ ˆ d

k k

k k

k k

k k

k

ij xx i j k xy i j k

xz i j k yx i j k

yy i j k yz i j k

zx i j k zy i j k

zz i j k

S Z e e Z e e

Z e e Z e e

Z e e Z e e

Z e e Z e e

Z e e

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω

= ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

Ω + Ω

+ Ω + Ω

+ Ω + Ω

+ Ω

⋅ ⋅

+ Ω

+ Ω

∫ ∫

∫ ∫

∫ ∫

∫ ∫

W W W W

W W W W

W W W W

W W W W

W W .∫

                (17) 

3. The Calculation of the Effective Coefficient of the Medium 
Let’s consider the system of Maxwell equations in frequency domain: 

curl ,iωµ= −E H                                       (18) 

( )curl .iωε σ= +H E                                   (19) 

The media considered in this work has homogeneous magnetic properties. The coefficient iωε σ+  which 
includes the information about the microinclusions can be replaced by effective tensor. Let’s denote the effec-
tive tensor by Z. So we have the following problem in terms of the second order equation: 

1curl curl 0,i Zµ ω− + =E E                              (20) 

where Z—complex-valued tensor of the second rank. 
The dense tensor of the second rank Z has the following form 

11 12 13

21 22 23

31 32 33

.
z z z

Z z z z
z z z

 
 =  
  

                                      (21) 

We use the Equation (19) for the calculation of the Z components. E and curl H are vector variables. That’s 
why we define the following procedure of the computation of the tensor Z. 

( ) ( )2 2curl ,Z
Ω Ω
=H EL L

 

( ) ( ) ( )2 2 2curl .Z
Ω Ω Ω
< ⋅H EL L L

 

where ( )2 Ω
⋅ L

 is the Euclidean norm of the space ( )2 ΩL . 
The vectors H and E have three components ( ), ,x y zE E E=E , ( )curl , ,x y zH H H=H    . So the components 

of Z can be computed as 

( ) ( )2 2 ,ij i jZ H E
Ω Ω

= 

L L
                                 (22) 

where i, j are defined as x, y, z. 
Taking into account that E and H are the complex-valued vectors, the real and the imaginary components of Z 

can be computed separately as  

( ) ( )
( )

( )
( )2 2

Re Re Reij i jZ H E
Ω Ω

= 

L L
, 

( ) ( )
( )

( )
( )2 2

Im Im Imij i jZ H E
Ω Ω

= 

L L
. 

Another approach to the computation of the effective coefficient as a dense tensor can be proposed. We obtain 

http://www.multitran.ru/c/m.exe?t=3257233_1_2&ifp=1&s1=Euclidean%20norm
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the value of the vectors curl H and E at the n points of the domain from the solution of the problem in isotropic 
media with inclusions. Denote the value of the field at the point ix  by ( )ixE . Then we need to solve the fol-
lowing system to obtain the coefficients of the tensor Z: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

1

2

3

,
x i y i z i l il

x j y j z j l l j

lx k y k z k l k

E x E x E x H xz
E x E x E x z H x

zE x E x E x H x

         =               







                      (23) 

where ix , jx , kx  are different points in the domain, l is the number of the tensor’s row, ( )l iH x —the first, 
the second or the third component of the vector curl H in the point ix . The effective tensor of the medium can 
be obtained by the averaging of the system’s solutions by all the points. 

4. Numerical Experiments 
We choose domain with small spherical inclusions as a computation domain. The inclusions can be located 
nonregularly (Figure 1(а)), regularly (Figure 1(b)) and we have the domain with large number of inclusions 
(Figure 1(c)). The size of the computational domain is 15 mm × 40 mm × 15 mm. The diameter of the inclusion 
is 2 mm. The number of inclusions is 40. The medium is nonmagnetic and 0µ µ=  for all cases. 

The field source is given electric boundary condition (2) on the faces of the computational domain (Figure 2). 
The one-side boundary condition is assigned on the left face of the object ( )0x =  and it looks like 

( )0 0,0,1=E  (Figure 2(а)). 
The boundary conditions (2) assigned on the left ( )0x = , right ( )0.015 mmx = , top ( )0z =  and bottom 

( 0.015z = mm) faces of the object make a closed path (Figure 2(b)). 
The all tests were done on two frequencies: the low frequency (10 kHz) and high frequency (7 GHz). The 

wavelength on the low frequency is much more than the inclusion and domain sizes. The wavelength on the high 
frequency is comparable with the domain size, but much more than the inclusion size. 

In the Section 4.1 we estimate the results of the calculation of the coefficient Z by the formulas (22), (23) in 
homogeneous medium and in the medium with microinclusions. In the Section 4.2 we try to find the possible 
values of the medium properties for computing coefficient Z correctly. The modeling results in the domains with 
regularly located and nonregularly located inclusions are given in the Section 4.3. The numerical experiments 
were done on the low (10 kHz) and high (7 GHz) frequencies. Two types of boundary conditions were used. It 
was one-side boundary condition and conditions assigned on the closed path. 

4.1. How to Calculate Z Physically Correctly? 
To obtain which approach to find tensor coefficient is correct we define the follow criterion. The components of 
the electromagnetic field computed for the medium with microinclusions and for the medium with effective 
 

 

0.015 0.015 
x x 

0.04 0.04 y y 
  

0.015 0.015 

z z 

 
(a)                                           (b) 

Figure 2. The boundary conditions assigned: (a) on the face; (b) on closed path. 
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anisotropic coefficient should be in close agreement for correctly computed Z. We compare the field compo-
nents extracted by the line passing though the centers of the regularly located inclusions. 

The problems in the homogeneous domain without inclusions have been solved. The effective anisotropic 
coefficients for these cases have been computed. Correctly computed tensor of effective characteristic have to be 
diagonal with the equal values on the diagonal line. The value of the diagonal coefficients is defined by electro-
physical properties of the medium and the source frequency. 

The effective coefficients Z were calculated for homogeneous medium with the conductivity 0.001S mσ =  
and the permeability 04.5ε ε= . 

The formula (22) on the frequency 10 kHz gives: 

1

0.001 5.352 8 0.001 9.293 2 9.328 4 9.294 2
1.868 1 0.001 1.869 1 9.963 2 0.001 9.963 2 .
9.999 4 5.352 8 0.001 9.385 2 9.42 4 9.386 2

E E E E
Z E E i E E

E E E E E

− − − −   
   + + + − −   
   − − − − −   

=       (24) 

And on the frequency 7 GHz: 

2

2.103 3 1.880 6 2.112 3 2.701 3 1.425 2.710 3
3.987 3.563 3 4.004 2.130 6 1.124 3 2.137 6 .

2.096 3 1.873 6 2.105 3 2.690 3 1.419 2.699 3

E E E E E E
Z E i E E E

E E E E E E

− − − + +   
   = − + + + +   
   − − − + +   

     (25) 

The tensors obtained by (22) are dense tensors without predominant of the diagonal elements. The non-diago- 
nal elements of the second row of the tensor are bigger than the all other elements of the tensor. We have a good 
coincidence between problem with isotropic coefficients and problem with anisotropic coefficient Z on the fre-
quency 10 kHz (Figure 3(a)). But we couldn’t obtain results on the frequency 7 GHz. The discrepancy of the 
problem in the iterative solver has exponentially growth. The solution can’t be obtained. 

The formula (23) on the frequency 10 kHz gives: 

3

1 3 9.023 21 2.297 26 2.502 6 1.457 21 1.196 26
1.91 21 1 3 3.404 27 6.404 21 2.502 6 2.8 26 .
3.007 16 1.62 15 1 3 1.25 16 5.38 16 2.502 6

e e e e e e
Z e e e i e e e

e e e e e e

− − − − − − − −   
   − − − + − − − −   
   − − − − − − − − −  

=



     (26) 

 

 

10 kHz 7 GHz 
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-0.2 

-0.4 

-0.6 

-0.8 

Ez
R 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 
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0.6 

0.8 

Ez
R 
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EzR tensor 
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EzR tensor 1 
EzR 2 
EzR tensor 2 

 
(a)                                                      (b) 

Figure 3. The results of the electromagnetic field modeling for homogeneous media on the (a) 10 kHz; (b) 7 GHz. EzR, 
EzR1 is the real component of the field E for σ = 0.001 S/m, EzR2 is the real component of the field for σ = 0.1 S/m, EzR 
tensor is the real component of the field for the problem with anisotropic coefficient. 
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And on the frequency 7 GHz: 

4

1 3 1.405 16 2.322 20 1.7516 1.7957 16 2.843 20
5.211 18 1 3 1.001 20 9.857 18 1.7516 2.353 21 .
1.824 14 1.567 13 1 3 4.418 14 4.998 13 1.7516

e e e e e
Z e e e i e e

e e e e e

− − − − − −   
   − − − + − − −   
   − − − − − − −   

=    (27) 

The tensors 3Z , 4Z  have diagonal predomination. The values of the diagonal elements are equal to the 
values of the isotropic coefficients σ and ωε. The results of the modeling with these tensors have a good coinci-
dence with the results of the problem with microinclusions for the all frequencies (Figure 3(b)). The same pic-
ture is observed for the medium with higher conductivity 0.1S mσ =  (Figure 3(b)). 

The tensor obtained by the (22) for the problem with microinclusions on the low frequency gives the same good 
result as in homogeneous medium. The values of the field components have a good coincidence outside of the 
inclusions for the problem with inclusions and the problem with anisotropic coefficient (Figures 4(а) and 5(a)). 
The solution of the problem with anisotropic coefficient on the high frequency was not obtained for such tensor. 
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Figure 4. The real component of the field Ez in isotropic medium (EzR1) and anisotropic medium (EzR2) for the 
frequency 10 kHz ((a), (c)) and frequency 7 GHz ((b), (d)). The boundary condition is on one face. The inclusions 
location is regular ((a), (b)) and nonregular ((c), (d)). EzR3, EzR4 are the results in homogeneous medium with σ 
= 0.1 S/m and σ = 0.001 S/m respectively. 
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Figure 5. The real component of the field Ez in isotropic medium(EzR1) and anisotropic medium (EzR2) for the 
frequency 10 kHz ((a), (c)) and frequency 7 GHz ((b), (d)). The boundary conditions are done by closed path. The 
inclusion location is regular ((a), (b)) and non regular ((c), (d)). EzR3, EzR4 are the results in homogeneous medium 
with σ = 0.1 S/m and σ = 0.001 S/m respectively. 

 
The tensors obtained by (23) allow getting solution of the problem with anisotropic coefficient for the me-

dium with inclusions on the all frequencies. We have a good coincidence between the results of these problems 
outside of the inclusions. (Figures 4 and 5). The results given later are obtained using the formula (23). 

4.2. The Admitted Region for the Parameters of the Inclusions 
Effective coefficient is some average of the medium consisted from the materials with different properties. In 
this Section we define for what kind of media proposed approach can be used. 

The series of the numerical experiments have been done to obtain the possible contrast between properties of 
the matrix of the object and inclusions. The conductivity of the matrix is equal 0.001S mσ =  for the all expe-
riments (Figure 1(b)). The conductivity of the inclusions changes from 0.1S mσ =  till 1000 S mσ = . The 
results of the modeling for the problem with microinclusions are presented in the Figure 6(a). You can see that 
the behavior of the field inside the inclusion is changed by increasing the conductivity since 10 S mσ = . We 
can solve the problem with isotropic coefficients in the medium with microinclusions even for the contrast be-
tween the matrix and the inclusion equal to 610 . 
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Figure 6. The real field component Ez for the different conductivity of the inclusions. The matrix conductivity σ = 
0.001 S/m, the inclusion conductivity 1 – σ = 0.1 S/m, 2 – σ = 1 S/m, 3 – σ = 10 S/m , 4 – σ = 100 S/m, 5 – σ = 1000 
S/m. 

 
This is not true for the problem with anisotropic coefficient. The solutions of the problem with anisotropic 

coefficient have been obtained only for the first three cases. The contrast for these problems is 100, 1000 and 
10000 (Figure 6(b)). The modeling results have low difference between each other. We have smooth picture 
which is close to the results in the homogeneous medium with the conductivity of the object’s matrix. The graph 
for the contrast equal to 10000 has a little bit lower amplitude inside the inclusion than other. The tensors for the 
higher values of the contrast don’t allow getting the solution because of non-stable work of the iterative solver. 

The inclusions occupies about 2% from the all object’s volume for the domain with regularly located inclu-
sions (Figure 1(b)). We suppose that the properties of the object’s matrix are dominant in the averaging proce-
dure when we compute tensor coefficient because of little volume of the inclusions. We increase the number of 
the inclusion to prove it. Next problem have 176 spherical inclusions. The diameter of the sphere is 3 mm. The 
volume of the all inclusions is equal to 27% from the all object volume (Figure 1(c)). The tensor Z for this 
problem on the frequency 10 kHz is the following: 

3

2.75 2 1.05 5 5.53 7 1.98 6 7.92 10 1.24 10
3.49 8 2.75 2 1.25 8 1.05 11 1.98 6 1.56 11 .
1.19 7 2.57 6 2.75 2 2.3 10 1.33 9 1.98 6

e e e e e e
Z e e e i e e e

e e e e e e

− − − − − − − − −   
   = − − − + − − −   
   − − − − − − − −   

          (28) 

And on the frequency 7 GHz: 

4

2.75 2 3.09 5 3.64 6 1.39 7.68 5 2.24 5
6.35 8 2.75 2 1.86 7 3.82 7 1.39 6.71 7 .
3.97 7 1.5 5 2.75 2 6.56 6 2.13 4 1.39

e e e e e
Z e e e i e e

e e e e e

− − − − − − −   
   − − − − − + − −   
   − − − − − − −   

=             (29) 

We can see in the Figure 7(a) that the electromagnetic field for the problem with effective coefficient is the 
same as in homogeneous medium for the frequency 10 kHz. More strong interaction between inclusions appears 
on the high frequency. The graph of the real field component zE  for the problem with tensor coefficient are si-
tuated between the graphs obtained for the homogeneous media with the conductivities equal to the conductivity 
of matrix and inclusions. The form of the graph line is close to the form of the graph for homogeneous medium. 
We assume that the behavior of the field propagation changes for the object with large number of close situated 
inclusions. In this case the effect of anisotropy is appeared. 
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Figure 7. The real component of the field Ez for the frequency 10 kHz (a) and frequency 7 GHz (b). EzR1 is the result for 
the problem with large number of inclusions, EzR tensor is the result for the problem with tensor Z. EzR2, EzR3 is the result 
for the problem in homogeneous medium with the conductivities σ = 0.001 S/m and σ = 0.1 S/m respectively. 

4.3. The Results of the Modeling of Objects with Microinclusions 
We investigate the influence of the boundary conditions and inclusions location on the electromagnetic field in 
this Section. Two cases of the inclusions location are considered. The first case is the regular location of the 40 
inclusions (Figure 1(b)). The second case is the nonregular location of 40 inclusions without overlapping 
(Figure 1(a)). The one-side boundary conditions and conditions on the closed path are used for each case. The 
used frequencies are 10 kHz and 7 GHz. You can see the graphs of the electromagnetic field component for the 
problem in the isotropic medium with microinclusions and for the problem with tensor coefficient in the Figures 
4 and 5. Also we add to the figures the graphs for homogeneous media with the conductivities equal to the con-
ductivity of the object’s matrix and inclusions. The graphs for the cases with the regularly located inclusions are 
made by the lines passing through the centers of inclusions. The line for the graph in case of nonregular inclu-
sions is chosen as a nearest to the maximum concentration of the inclusions. 

The microinclusions located near the face with boundary condition can be distinguished more clearly for the 
domain with regular located inclusions on the low frequency. We can’t choose the line passed though more than 
one inclusion for the domain with nonregular location of the inclusion. So the influence of inclusions on the 
field poorly expresses on the graphs. The maximum distortion is located near the face with boundary condition 
for low frequency. The distortion of the real component of the field zE  became less visible on the high fre-
quency for the all cases. 

The results for the problems in anisotropic medium have a minimal distortion for the all frequencies and in-
clusion locations in comparison with the problem in homogeneous medium with the matrix conductivity. 

We can distinguish the inclusions in the problem with the boundary conditions on the closed path for the all 
frequencies (Figure 5). The results for the problem in the anisotropic medium have a good coincidence to the 
results for the problem in isotropic medium with microinclusions outside the inclusions. The distortion of the 
graph for nonregular location of the inclusions is larger on the left side of the object because there are more in-
clusions located (Figure 5(c)). The influence of the inclusions on the high frequency is non-significant and the 
form of the field is close to the distribution in the homogeneous medium. 

5. Conclusions 
The new approach to the calculation of the effective anisotropic characteristic of the medium with microinclu-
sions is proposed in this work. The limits of using such approach are investigated. The modeling results for the 
problem with anisotropic coefficient are compared with the results of the problem in isotropic medium with mi-



E. P. Shurina et al. 
 

 
112 

croinclusions. We analyzed the influence from the inclusion location (regular/nonregular) to the computed tensor. 
Proposed procedure of calculating effective tensor characteristic of the medium is verified by the results of 

the modeling problem in the media with isotropic coefficients. We find the limits of possible contrast of the ob-
ject’s matrix and inclusion properties. The possible contrast can be no more than 104. The proposed approach 
doesn’t have limits on inclusion location, type of boundary condition or frequency. 
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