
Advances in Linear Algebra & Matrix Theory, 2014, 4, 1-8
Published Online March 2014 in SciRes. http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2014.41001

How to cite this paper: Yang, B., Gu, S., Gu, T.-X., Zheng, C. and Liu, X.-P. (2014) Parallel Multicore CSB Format and Its
Sparse Matrix Vector Multiplication. Advances in Linear Algebra & Matrix Theory, 4, 1-8.
http://dx.doi.org/10.4236/alamt.2014.41001

Parallel Multicore CSB Format and Its Sparse
Matrix Vector Multiplication*
Bing Yang1, Shuo Gu2, Tong-Xiang Gu3#, Cong Zheng1, Xing-Ping Liu3
1Graduate School of Chinese Academy of Engineering Physics, Beijing, China
2School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China
3Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing,
China
Email: #txgu@iapcm.ac.cn

Received 6 January 2014; revised 7 February 2014; accepted 14 February 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Sparse Matrix Vector Multiplication (SpMV) is one of the most basic problems in scientific and en-
gineering computations. It is the basic operation in many realms, such as solving linear systems or
eigenvalue problems. Nowadays, more than 90 percent of the world’s highest performance paral-
lel computers in the top 500 use multicore architecture. So it is important practically to design the
efficient methods of computing SpMV on multicore parallel computers. Usually, algorithms based
on compressed sparse row (CSR) format suffer from a number of nonzero elements on each row so
hardly as to use the multicore structure efficiently. Compressed Sparse Block (CSB) format is an
effective storage format which can compute SpMV efficiently in a multicore computer. This paper
presents a parallel multicore CSB format and SpMV based on it. We carried out numerical experi-
ments on a parallel multicore computer. The results show that our parallel multicore CSB format
and SpMV algorithm can reach high speedup, and they are highly scalable for banded matrices.

Keywords
SpMV; Multicore Parallel Computers; Parallel Multicore CSB Format

1. Introduction
With the development of science and technology, people need to deal with the increasing scale of the problems,
which leads to the increasing computational overhead. As an essential operation in computational science,

*The project is partly supported by the NSF of China (No. 91130024, No. 61170309) and Major Project of Development Foundation of
science and Technology of CAEP (No. 2012A0202008, No. 2011A0202012).
#Corresponding author.

http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2014.41001
http://dx.doi.org/10.4236/alamt.2014.41001
http://www.scirp.org
mailto:txgu@iapcm.ac.cn
http://creativecommons.org/licenses/by/4.0/

B. Yang, et al.

2

sparse matrix-vector multiplication (SpMV) is the most costly step in solving linear systems and eigenvalue
problems. So improving the performance of the SpMV is often able to enhance the overall performance.

In order to solve practical problems efficiently, we not only need to design efficient algorithms, but also need
to improve calculation tools. So there are more and more applications of massively parallel computers in engi-
neering calculations. Statistics released twice a year to become the world’s TOP 500 becomes the valid measure
of the top computing power. Nowadays, all of TOP 500 supercomputers have been cluster structures, more than
90 percent of which have a multicore structure with at least 4 cores in 1 CPU [1]. This means that how to im-
prove the SpMV kernel in multicore parallel computers is crucial to raise the parallel performance and parallel
efficiency.

There are some methods to improve the efficiency of SpMV. Autotuning used in pOSKI [2] and other solvers
can optimize for different supercomputers and different problems. Cache partition [3] and reordering [4] can re-
duce the communication bandwidth. And we will focus on the matrix storage format and the SpMV algorithm.
CSB format, which is proposed in 2009, can store a sparse matrix with a similar storage usage as CSR format
[5]. This format, designed for the multicore computer, can maintain load balance dynamically. We extend CSB
format to the parallel multicore computer in this paper.

The remainder of the paper is organized as follows: Section 2 introduces the basic CSB format and its SpMV
method. Section 3 describes multicore CSB format and some methods we use to enhance the parallel perfor-
mance. Section 4 introduces our experiments and results. Section 5 states the conclusion.

2. Introduction to CSB Format
We provides an overview of the CSB sparse-matrix storage format and describe the multicore SpMV algorithm
and its extension to parallel computer in this section.

Firstly, CSB format partitions a n n× matrix A into 2 2n β blocks which are of size β β× each. Let
ijA denote the β β× submatrix that has the nonzero elements in the rows (), , 1 1i iβ β+ − and columns

(), , 1 1j jβ β+ − . Within each block ijA , the Z-morton layout [6] is used to perform the matrix recursively.
In practice, the matrix is stored in three arrays. The blk_ptr array tells the first element of each block, the
low_ind array holds the lower bit of the row and column index in the block, and the val array stores the numeri-
cal values. Noticed that the low_ind array and the val array is of size nonzero numbers (nnz), and if matrix A
if full, then the blk_ptr array is of size 2β .

So there exist three levels of parallelism in the parallel SpMV algorithm. The first level is to compute the
blockrow 1 1, ,i inA A β − in parallel. If the nonzeros distribute in each blockrow is unevenly, then there exists
the second parallel level named “chunk”, which includes of several blocks to balance the load. And if the non-
zeros are too many for a single block, then we should deal with the third parallel level in this block, which we
partition into four subblocks. And diagonal subblocks and back-diagonal subblocks can be computed without
any data races.

It can be noticed that OpenMP programming technique is generally used for the data structure 2 to be deter-
mined in the compilation. The SpMV of CSB format is based on the recursive calculations at runtime. Therefore,
the programming techniques used in this paper is Cilk++ [7], which can spawn multiple threads by a single-
threaded branch.

3. Parallel Multicore CSB Algorithm
This section introduces multicore CSB storage format, sparse matrix-vector multiplication algorithm and some
optimizations for special structures.

3.1. Parallel Multicore CSB Algorithm
Usually, sparse matrix vector multiplication is just a part of a complete algorithm, such as solving linear equa-
tions of a step. Therefore, there is no need to reduce the result to the same processor in each step and distributed
storage of the result vectors on each processor can meet most of the computational requirements. Meanwhile,
the practical application will generate a whole sparse matrix processor and then distribute it to other processors.
The normal situation is to generate a local sparse matrix in respective processor. Therefore, the content stored on
a processor should be locally sparse matrix, part of the vector, part of the result vector. So the general multicore
CSB format and its SpMV algorithm are as followed:

B. Yang, et al.

3

a) Generate a local sparse matrix in common storage format as CSR format
b) Convert the common storage format to the CSB format
c) Send the appropriate part of the vector to the right processor
d) Compute the result using SpMV in CSB format
Sometimes, we need to partition a whole sparse matrix and send it to other processors. Assuming that the ma-

trix is stored in columns, the following algorithm can be used:
a) Partition the matrix by columns with load balance, send the sub-matrix to the appropriate processor
b) On the respective processor, sub-matrix need be converted into a matrix in CSB format
c) Get the right part of the vector which will be multiplied
d) Use SpMV in CSB format to compute the result
Notice that the result of the second algorithm is still stored in each processor in distribution.

3.2. Banded Matrices Stored in Column
For the banded matrix, we can optimize the algorithm more efficiently.
• Compress the Row Index

As shown in Figure 1, what we need deal with is the area bounded by solid lines in the middle of the figure.
But if send the column-order submatrix to some CPU without decrease the index of the first nonzero row to 0, it
is equal to deal with a taller and thinner matrix, which is costly for more partitions could happen so that more
threads will be generated in some CPU. So we can simply decrease the index of the first nonzero row to 0, and
change the other nonzero rows at the same way.
• Reduce the Communication Unnecessary

As mentioned above, we can find that the global communication to get the result can be transferred to the lo-
cal communication when we distribute the result vector. Also, we can decrease the communication a bit further.
Shown in Figure 2, we can just send what the neighbor processor needs as rounded by the thick dash lines. So
we can save some calculations and spaces that are unnecessary originally.

3.3. Non-blocking Communication
Considering that there will be some imbalance in the computation procedure in practice so that some processors
compute faster than others. So, when computing the result vector, we use the non-blocking communication so as
to improve the communication efficiency.

4. Experiment Design and Results
We design three kinds of experiments to detect the parallel degree and scalability of our algorithm and one ex-
periment to explain the difference between the local communication and the global communication. The first

Figure 1. Example for compressing the row index.

B. Yang, et al.

4

Figure 2. Example for reduce communication unnecessary.

kind of experiments gives the results about applying the plain algorithm to some random matrices, which can
explain how the algorithm works. Among these experiments, we used the global or the local communication
according to the matrix. The next section will tell how the difference between the local and global communica-
tion is by testing a large sparse matrix. Then, we tested the scalability by generate a series of extendible 9-di-
agonal matrices, which can only use the local communication, in the next kind of experiments.

The platform is Deepcomp 7000 Series, whose blade node has two quad-core Xeon processors E5450,
clocked at 3.00 GHz, 32 GB RAM, and the compilation environment is Intel C++ Composer with Intel MPI
which supports Cilk++ multi-threads programming.

Meanwhile, there are two main targets to measure our algorithm: speedup and CPU-speedup. They are com-
puted by these equations:

optimal sequantial running timeSpeedup
parallel running time

= (1)

speedupCPU-speedup
speedup of single processor

= (2)

As we all know, the running time in a multicore system is very hard to get, so we use the wall time to replace
the running time. And optimal sequential algorithm is too hard to get, either. So we run the parallel program in 1
core of 1 processor to get the sequential running wall time. So the actual speedup formula is:

wall time of running parallel program on 1 core of 1 processorSpeedup=
parallel wall time

 (3)

Speedup can make it more clear how the algorithm works as a whole while CPU-speedup can tell us how the
algorithm works on the multicore architecture supercomputer. For convenience, we fixed to use 4 cores per CPU
so as to consider how speedup and CPU speedup change when increasing the number of CPU.

4.1. For random Matrices
We test five square real unsymmetrical matrices downloaded from the Matrix Market [8] and the University of
Florida Sparse matrix collection [9]. Table 1 lists some features of these matrices: the size (n), the number of
non-zeros (nnz), the average number of non-zeros per row (average), communication style (comm. style).

Actually we use the local communication for the banded matrices but the global communication for the nor-
mal matrices. So we illustrated these two situations respectively. As shown in Figure 3, the performance is bas-
ically linear with the increasing processor numbers. For example, speedup of matrix atmosmodl increases from
2.5 by one CPU to 18 by twelve CPUs. For the global communication ones, we get the performance peak in the

B. Yang, et al.

5

less number, which is shown in Figure 4. According to matrix cage13, speedup increased from 3 by one CPU to
8 by five CPUs, and then decreased to 3 by 12 CPUs.

Mentioned above, we can find that our algorithm can solve all the SpMV multiplication and all the problems
could be speeded up more or less. And problems with local communication can get better speedup than those
with global communication.

Table 1. The characteristics of random matrices.

Matrix n nnz Average comm.

ESOC 327,062 6,019,939 18.41 global

cage13 445,315 7,479,343 16.80 global

Atmosmodd 1,270,432 8,814,880 6.94 local

Atmosmodl 1,489,752 10,319,760 6.93 local

ML_laplace 377,002 27,689,972 73.45 local

Figure 3. The performance of local communication.

Figure 4. The performance of global communication.

B. Yang, et al.

6

4.2. Communication: Local and Global
In order to illustrate the effect of local communications and global communication to the performance of the al-
gorithm with the increasing number of processors more clearly, we test the nine point format matrix from dis-
cretion of a convection-diffusion equation. The convection-diffusion equation is as follows:

t x xx y yy x x y yQu c u c u b u b u eu g= + + + + + (4)

where
3

0
uQ cv a
r

= + ,
3

1x
uc a
r

= ,
3

2y
uc a
r

= , 1 2sin(2)xb c x cπ= + , ()1 2sin 2yb d y dπ= + , and

0 1 2 1 2 1 2, , , , , , , , ,cv a a a c c d d e g const= .
Testing how the performance changes when the processor number increases for a fixed matrices can reflect

some aspect of the algorithm’s scalability. Considering that there may be some great differences when using the
local communication or not, we tested the two situations separately. The matrix we dealt with is called yh9p_
2880, which has 8,294,400 dimensions and 74,615,044 nonzeros with 9-diagonal format. We tested the perfor-
mance when the processor number is 1, 2, 4, 8, 16, 32, 64 with fixed 4 threads in each processor. And the nu-
merical result is shown in Figure 5.

Notice that there are some superlinear speedup in the graph when the processor number used is 2, 4. The first
reason is that we use the MPI even if the processor number used is 1, which causes some extra spending. Mean-
while, analyzing the result, we find that our program choose 16,384 as the maximum element number of one
block, which means each block can be of size 256KB (16384 * (8 + 4 + 4) Bytes). When using 2 or 4 processor,
it choose 8192 as the maximum element number of one block, which means each block can be of size 128 K
(8192 * (8 + 4 + 4) Bytes). We use the parallel computer consisted of xeon X7350, whose L1 cache is 256 KB.
So using 1 processor only has more cache miss, which cause the superlinear speedup.

And repeat the same kind experiments but using the global communication, we get the results like Figure 6 as
followed:

So we can conclude that if we can simplify the global communication to the local communication, the spee-
dup ratio of the SpMV may increase linearly with the size of problem increases linearly.

4.3. Scalability
We used a group of scalable banded matrices as the tested matrices in Table 2 which can be generated from the
equation 4 in last section. We maintain the same number of unknowns among each processor. So we obtain the
following properties shown in Figure 7: speedup increase nearly linearly from 2 by a single CPU to 20 by 12
CPUs.

Numerical results show that parallel multicore CSB algorithm is of good scalability.

Figure 5. The performance of local communication.

B. Yang, et al.

7

Figure 6. The performance of global communication.

Figure 7. The performance of scalable matrices.

Table 2. The size of scalable matrices.

Matrix n nnz Processors

yh9p_360 129,600 1,162,084 1

yh9p_509 259,081 2,325,625 2

yh9p_623 388,129 3,485,689 3

yh9p_720 518,400 4,656,964 4

yh9p_805 648,025 5,822,569 5

yh9p_882 777,924 6,990,736 6

yh9p_952 906,304 8,145,316 7

yh9p_1018 1,036,324 9,314,704 8

yh9p_1080 1,166,400 10,484,644 9

yh9p_1138 1,295,044 11,641,744 10

yh9p_1194 1,425,636 12,816,400 11

yh9p_1247 1,555,009 13,980,121 12

B. Yang, et al.

8

5. Conclusions
As mentioned above, we can reach such conclusions:

1) Multicore CSB format extends CSB format to suit for the multicore parallel machines.
2) For a specified scaled matrix, local communication can achieve higher performance than global communi-

cation.
3) For local communication, the new algorithm has good scalability with the number of processors increasing.

But for global communication, performance decreased with the increasing number of processors.

References
[1] http://www.top500.org/
[2] Im, E.J., Yelick, K. and Vuduc, R. (2004) Sparsity: Optimization Framework for Sparse Matrix Kernels. International

Journal of High Performance Computing Applications, 18, 135-158.
http://dx.doi.org/10.1177/1094342004041296

[3] Morton, G.M. (1966) A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing. IBM Ltd.,
Ottawa.

[4] Jain, A. (2008) pOSKI: An Extensible Autotuning Framework to Perform Optimized SpMVs on Multicore Architec-
tures. Master Thesis, Computer Science Department, University of California at Berkeley, Berkeley.

[5] Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. Society for Industrial Applied Mathematics.
http://dx.doi.org/10.1137/1.9780898718003

[6] Bulu, C.A., Fineman, J.T., Frigo, M., Gilbert, J.R. and Leiserson, E. (2009) Parallel Sparse Matrix-Vector and Matrix-
Transpose-Vector Multiplication Using Compressed Sparse Blocks. Symposium on Parallelism in Algorithms and Ar-
chitectures, 233-244.

[7] Rose, D.J. (1973) A Graph-Theoretic Study of the Numerical Solution of Sparse Positive Definite Systems of Linear
Equations. Graph Theory and Computing, 183-217.

[8] Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., and Zhou, Y. (1995) Cilk: An Efficient
Multithreaded Runtime System. Principles and Practice of Parallel Programming, Santa Barbara, 207-216.

[9] Boisvert, R., Pozo, R., Remington, K., Miller, B. and Lipman, R. (2000) The Matrix Market.
http://math.nist.gov/MatrixMarket/

[10] Davis, T. and Hu, Y. (2013) Sparse Matrix Collection. University of Florida, Gainesville.
http://www.cise.ufl.edu/research/sparse/matrices/

http://www.top500.org/
http://dx.doi.org/10.1177/1094342004041296
http://dx.doi.org/10.1137/1.9780898718003
http://math.nist.gov/MatrixMarket/
http://www.cise.ufl.edu/research/sparse/matrices/http:/www.top500.org/

	Parallel Multicore CSB Format and Its Sparse Matrix Vector Multiplication*
	Abstract
	Keywords
	1. Introduction
	2. Introduction to CSB Format
	3. Parallel Multicore CSB Algorithm
	3.1. Parallel Multicore CSB Algorithm
	3.2. Banded Matrices Stored in Column
	3.3. Non-blocking Communication

	4. Experiment Design and Results
	4.1. For random Matrices
	4.2. Communication: Local and Global
	4.3. Scalability

	5. Conclusions
	References

