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ABSTRACT 
A thorough study of regular and quasi-regular 
polyhedra shows that the symmetries of these 
polyhedra identically describe the quantization 
of orbital angular momentum, of spin, and of to- 
tal angular momentum, a fact which permits one 
to assign quantum states at the vertices of these 
polyhedra assumed as the average particle po- 
sitions. Furthermore, if the particles are fermions, 
their wave function is anti-symmetric and its ma- 
xima are identically the same as those of repul- 
sive particles, e.g., on a sphere like the spherical 
shape of closed shells, which implies equilibrium 
of these particles having average positions at 
the aforementioned maxima. Such equilibria on 
a sphere are solely satisfied at the vertices of re- 
gular and quasi-regular polyhedra which can be 
associated with the most probable forms of 
shells both in Nuclear Physics and in Atomic 
Cluster Physics when the constituent atoms 
possess half integer spins. If the average sizes 
of the constituent particles are known, then the 
average sizes of the resulting shells become 
known as well. This association of Symmetry 
with Quantum Mechanics leads to many applica- 
tions and excellent results. 
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1. INTRODUCTION 
Geometry in the form of symmetry has been exten- 

sively applied in many areas of physics and chemistry. 
Specifically, in nuclear physics, the employment of poly- 

hedral symmetry has been employed in the form of seve- 
ral models, particularly in the effort to explain the struc- 
ture of magic numbers [1-7], that is, to explain the ex- 
ceptional stability of nuclei with the number of neutrons 
or protons or both equal to 2, 8, 20, 28, 50, 82, and 126. 
However, in all of these models, the employment of po- 
lyhedra, even though successful for several times, was 
based mainly on intuition and not in rigorous ways, par- 
ticularly in relation to Quantum Mechanics, which is the 
physics of the micro-world. Quantum Mechanics was em- 
ployed later in these models, and their applicability and 
accuracy of results were limited as well. 

In the present work, the relationship between the sym- 
metry of the polyhedra employed and Quantum Mecha- 
nics is the starting point before any effort to explain nu- 
clear phenomena. First, it is proved that the quantization 
of angular momenta ℓ, s, and j expected for central forces 
is inherent in the structure of the regular and semi-regu- 
lar polyhedra employed by the model. No approximation 
whatsoever is involved in this proof. In other words, the 
relationship of Polyhedral Symmetry to Quantum Me- 
chanics here is on the level of identity. 

Another important feature of the present work which 
is absent from any other model employing polyhedra [1- 
7] is that here the nucleons are not considered point par- 
ticle, but as particles having finite size as predicted from 
particle physics for neutrons and protons 

In addition, we will refer to some significant applica- 
tions of the model to strengthen our arguments even 
more. 

Overall, the motivation of the present work is to make 
clear that when one deals with regular and semi-regular 
polyhedra, Quantum Mechanics is inherently involved. 
This fact permits us to have a pure quantum mechanical 
treatment of a problem and at the same time to have a 
geometrical representation. In particular in nuclear phys-
ics, the present work provides a way to unite the two 
milestone models of the field, the Independent Particle 
Shell Model and the Collective Model, under one com-
mon assumption. 

http://dx.doi.org/10.4236/ns.2014.64024
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2. RELATION OF POLYHEDRAL  
SYMMETRIES TO QUANTUM  
MECHANICS 

2.1. Orbital Angular Momentum 
For central forces we have the quantization of direc-

tion of the angular momentum as a result of quantization 
of both the angular momentum itself and its projection 
on the z-axis. This quantization of direction for the one- 
body problem leaves the angle φ unspecified, while it 
specifies the azimuthal angle θ according to the relation-
ship 

( )1s 1com mθ −  + =


              (1) 

In the case of the many-body problem, however, it 
seems that both the angles θ and φ are specified as a re-  

sult of the restrictions imposed on each particle from the 
neighbouring particles. When all ( )2 2 1+  particles for 
a certain ℓ value are considered simultaneously, it seems 
that only one value of φ is permissible for each m value. 
These angles, as we rigorously show shortly, are related 
to the regular and semi-regular polyhedra [8]. 

In Figure 1 the quantization of directions for 1 6= ÷  
and all associated m values ( ), ,m = − +    is shown in 
relation to the cubic-octahedral symmetry in two rows. 
The first row refers to 1+  values of m, while the sec-
ond row refers to ℓ values of m with respect to an octa-
hedron, a cube (hexahedron), or a cube-octahedron. The 
choice of polyhedron each time is made for reasons of 
clarity, while the z-axis has the same direction. The vec-
tors ℓ forming the appropriate angles pass through char 
acteristic points of the polyhedra employed marked with 
a solid circle •. Specifically, these points for 1=  are  

 

 
Figure 1. Orbital angular momentum (ℓ) quantization of direction for 1 6= ÷  and , ,m = −    in relation to the cube-octa- 
hedral symmetry. The vectors ℓ form accurately with the z-axis the angle mθ



 of Eq.1. In row 3 the ℓ vectors for all m of each   
value are shown, while in rows 1 and 2 the same vectors are shown in two groups with 1+  and   values of m, respectively. 
In all parts of Figures 1(a)-(r) the z-axis has the same direction and all polyhedra shown are oriented with respect to the octahe-
dron of Figure 1(a). The vectors ℓ pass through characteristic points of the polyhedra which are marked with a solid circle •, as 
explained in the text. Figures 1(v), (w), and (x) show an equivalent representation of ℓ vectors shown in Figures 1(k), (n), and (q), 
respectively and, in addition, two more ℓ vectors (shown with broken lines) already present in Figures l(j), (m), and (p). Figures 
1(s)-(u) show the relationships among the polyhedra of the (o) group. 
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the vertices of an octahedron for both sets of m values 
(Figures 1(a) and (b)); for 2=  the vertices and the 
shown golden section point of a cube (Figures 1(d) and 
(e)), respectively); for 3=  the middles of the edges of 
a cube-octahedron for both sets of m (Figures 1(g), (h)); 
for 4=  the vertices of an octahedron (Figure 1(j)) 
and the vertices of a cub-octahedron (Figure 1(k)); for 

5=  the middle points of the shown line segments of 
an octahedron (Figure 1(m)) and of a cube-octahedron 
(Figure 1(n)); and for ℓ = 6 the third of the shown line 
segments of a cube (Figure 1(p)) and the middle points 
of the shown line segments of a cub-octahedron (Figure 
1(q)) [8]. 

There is an important feature of ℓ vectors. When 
1 3= ÷ , the ℓ vectors of both rows of m (i.e., row 1 and 

row 2 in Figure 1) transform into each other by using a 
single transformation of the cube-octahedron symmetry 
group. But as one can see in Figure 1 when 4 6= ÷ , 
the ℓ vectors transform into each other again by a single 
operation of the cubeoctahedral symmetrygroup but by a 
different operation for each row of m. 

We have demonstrated above that the degenerate 
states of the same   value for the cases 4 6= ÷  have 
a rotational invariance of Orbital Angular Momentum 
Quantization of Direction which splits into two sets of m, 
i.e., one referring to row 1 with 1+  values of m and 
another referring to row 2 with ℓ values of m.  

In general, we may argue that the Orbital Angular 
Momentum Quantization of Direction implies the exis-
tence of a fundamental symmetry in nature which could 
be used as a basis of a physical theory of the structure of 
matter. 

For more details see [8]. 

2.2. Spin and Total Angular Momentum 
In this section the quantization of spin (s) and total (j) 

angular momenta, in relation to the geometry of regular 
and semi-regular polyhedra, is presented. That is, in rela-
tion to the same polyhedra employed earlier to demon-
strate the quantization of the orbital angular momentum 
(ℓ). These polyhedra are shown in Figure 2 and are con-
sidered superimposed on each other in such a way that 
they have a common center, a common z-axis, and the 
most symmetric relative orientation to each other. 

In Figure 3 the quantization of direction of the orbital 
(ℓ), spin (s), and total (j) angular momenta is shown in 
parts a), b), and c), respectively, where their relative mag- 
nitudes are also shown for 1= , 1 2s = , and 3 2j = . 
Apparently, the direction of each is unspecified in the 
polar angle φ, but it is specified in the azimuthal angle θ 
according to the relationship of Eq.2 

( )1co 1sm
a amαθ α α−  +=            (2) 

where α stands for ℓ, or s, or j and mα ιs the correspond-
ing z-component. 

In Figure 2 the geometry of quantization of the orbital 
angular momentum is shown for the cases 1, 2,3, 4=  
for all m, and 5=  for 5m =



. 
The quantization of direction of the spin, according to 

Eq.2, is given by the angles 
1 2 1 2

1 2 1 254 44 08   and  125 15 52ms ms
s sθ θ= =−
= =′ ′′ ′ ′′= =     (3) 

These two angles are identical to characteristic angles 
of the cube-octahedron (Figure 2(c)). The points A, B, C 
are the middles of the edges of the cube-octahedron. These 
spin angles are also characteristic angles of the hexa-he- 
dron, dodeca-hedron, octa-hedron and all other polyhe- 
dra of Figure 2 because of their interrelationships shown 
in Figures 2(e) and (f). 

The geometry of the quantization of the total angular 
momentum is demonstrated in Figures 2(a)-(d). For 
example consider ( )3 1m= =



 , ( )1 2 1 2ss m= = , 
( )7 2 3 2jj m= =  illustrated in Figure 2(c). Eq.2 now 

gives 
1 1 2 3 2

3 1 2 7 273 13 17 , 54 44 08 , 67 47 32m ms mj
s jθ θ θ= = =

= = =′ ′′ ′ ′′ ′ ′′= = =



 

(4) 

Both vectors ℓ and s go through the middle of edges of 
the cube-octa-hedron (the number 1 in 16-8 stands for the 
middle of the edge). Applying the parallelogram rule to 
these vectors, we find that the resultant vector has a mag- 
nitude 7 2 9 2∗  and a projection on the z-axis 3 2 , 
and forms an angle 67 47 32θ ′ ′′=   with the z-axis. That 
is, this resultant vector is identical to. J = ℓ + s with 

7 2j =  and 3 2jm = . 
Other cases examined are apparent in Figures 2(a)-(d). 

For more details see [9]. 

3. APPLICATIONS OF SYMMETRIES TO 
QUANTUM MECHANICS 

3.1. Symmetry Description of the  
Independent Particle Model (IPM) 

In Figure 4(a) in relation of an octahedron, the quan-
tization of the direction of the orbital angular momentum 
for 1=  is given. All expected directions are axes of 
symmetry passing through pairs of two opposite vertices 
of the octahedron, while in Figure 4(b) the quantization 
of direction for the spin 1 2  are given in relation to the 
same polyhedron. The two directions of spin shown pass 
through the middles of two opposite edges of a cub-oc- 
tahedron. In Figures 4(c) and (d) the total angular mo- 
mentum j for 1 2,  1 2jj m= = ±  and 3 2j = , jm =

3 2± , respectively, are derived by applying the paral-
lelogram rule to the orbital angular momentum of Figure 
4(a) and to the spin of Figure 4(b). In Figure 4(e),   
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Figure 2. Equilibrium (Leech) polyhedra for the demonstration of the quantization of orbital, intrinsic, and total angular momenta. 
The numbers 0, 1, 2, 3 stand for the vertex, the middle of an edge, the center of a face, and the center of a polyhedron, respectively. 
The prefixes 6, 8, 6-8, 12, and r-30 refer to a hexa-hedron (cube) (part a), an octa-hedron (part d), a cube-octahedron (part c), a do-
deca-hedron (part b) (where an inscribed cube marked with dotted lines is shown as well), and a rhombic triaconta-hedron, respec-
tively. The symbol mθ



 stands for an orbital-angular-momentum vector ℓ having a projection mℓ on the z-axis, which is common for 
all polyhedra. All the θ vectors shown correspond to the quantization of direction when ℓ is a constant of the motion. The symbol 

ms
sθ  stands for a spin vector s having a projection ms on the z-axis. When the parallelogram rule is applied to add a mθ 



 vector and 

another ms
sθ  vector, for the cases shown, the correct total-angular momentum vector j results (having the correct projection mj on 

the z-axis) marked as mj
jθ . Part e): Interconnections among a tetra-hedron (only vertices are shown marked with o), a hexa-hedron, 

an octa-hedron, a cube-octahedron (dot-dashed lines) and a rhombic dodecahedron. Part f): Interconnection among a dodeca-hedron, 
an icosa-hodron, an icosi-dodeca-hedron and a rhombic triaconta-hedron (dot-dashed line). 
 

 
Figure 3. Relationship between the magnitudes of orbital angular momentum a), spin b), and total angular mo-
mentum c), and their z-components. 

 
however, the case 3 2j = , 1 2jm = ±  is presented, 
where neither ℓ nor s come from Figures 4(a) and (b). In 
Figures 4(c)-(e) j, and not ℓ or s, is the constant of the 

motion, thus the ℓ and s do not necessarily maintain the 
same directions in space as in Figures 4(a) and (b). The 
j in Figure 4(e) is determined in relation to the j of Fig-
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ures 4(c) and (d) according to the law of addition of an-
gular momenta, as will become apparent in a short time. 
As shown, this is the only case in which j does not pass 
through the middle of the relevant line segment. For sim- 
plicity in Figures 4(c)-(e) the cases of j with negative mj 
are omitted. However, j (with +mj) equals –j (with –mj). 

So far, in Figures 4(c)-(e), we have determined in re-
lation to an octahedron, the total angular momenta for in- 
dividual particles which have pairs of j and mj values 
appropriate for an assignment to p states. This, of course, 
guarantees only that the angles of j with the z-axis, i.e. 
the angles ,mj

jθ  are correct and does not guarantee that 
the vectors j themselves are those expected by the IPM 
for p states, which is the purpose of this section. The 
vectors j of Figures 4(c)-(e) must have, in addition, the 
appropriate relative orientation in such a way that, when 
the j of two individual particles (e.g. j1 and j2) are cou-
pled together, the correct total J of the system results. 
That is the vectors j1 and j2 must form the appropriate 
angle. 

Figures 4(f)-(n) shows that the j vectors of Figures 
4(c)-(e), in the framework of the symmetry of an octahe-
dron, possess the appropriate relative orientations which 
lead to the correct coupling of the total angular momenta 
of two particles for all cases with ℓ = 1. Specifically, 
Figures 4(f) and (g) demonstrate that the j of Figures 
4(c)-(e) result in the correct total J for the system of two 
particles with 1 2 1 2j j= = . Figures 1(h)-(l) demon-
strate that these j also result in the correct J, where 

1 2 3 2j j= = . Figures 4(m)-(n) demonstrate the same 
when 1 1 2j =  and 2 3 2j =  as registered on each 
relevant part of the figure. Thus it has been found that 
the j vectors of Figures 1(c)-(e) are indeed the IPM j. 

For more details see [10]. 

3.2. Applications to Nuclear Structure 
3.2.1. Semi-Classical Isomorphic Shell Model 

Here, we present the semiclassical part of the model, 
which has been used many times [11-13] in place of the 
quantum mechanical part of the model [14], in the spirit 
of the Ehrenfest theorem [15,16] (that for the average va- 
lues, the laws of Classical Mechanics are valid). The ver- 
tices of the polyhedra of Figure 5 stand for the distribu-
tion of the maxima of the wave function for nucleons due 
to the anti-symmetric requirement of this function. The 
Ehrenfest theorem for the observables of position ( )R  
and momentum ( )P  takes the form (see all details in 
[16]). 

( ) d d 1t m=R P            (5) 

and 

( )d dt V= − ∇P R           (6) 

For simplicity here, the case of a spinless particle in a 
scalar stationary potential ( )V r  is considered. 

The quantity R  represents a set of three time-de- 
pendent numbers { }, ,X Y Z  and the point ( )tR  
is the center of the wave function at the instant t. The set 
of those points which correspond to the various values of 
t constitutes the trajectory followed by the center of the 
wave packet. 

From Eqs.5 and 6 we get 

( )2 2d dm t V= −R R           (7) 

Furthermore, it is known [16] that for special cases of 
force, e.g., for the harmonic oscillator potential assumed 
by the model, the following relationship is valid: 

( ) ( )V V
=

=   r R
R r ,           (8) 

where 

( )  V
=

− =  r R
r F .             (9) 

That is, for this potential the average of the force over 
the whole wave function is rigorously equal to the clas-
sical force F at the point where the center of the wave 
function is considered. Thus, for the special case of po-
tential considered here, the motion of the center of the 
wave function precisely obeys the laws of classical me-
chanics [16]. Any difference between the quantum and 
the classical description of the nucleon motion exclu-
sively depends on the degree that the wave function may 
be approximated by its center. Any such difference would 
contribute to deviations between the experimental data 
and the predictions of the semiclassical part of the model 
employed. 

Thus, in the present semiclassical treatment the nu-
clear problem is reduced to that of studying the centers 
of the wave functions of the constituent nucleons or, in 
other words, of studying the average positions of these 
nucleons [17].  

We further proceed with the help of Figure 5 which is 
identical to that figure employed in [11-13], where the 
most probable forms and average sizes of the first three 
proton and the first three neutron shells are presented. It 
is essential to mention that these average sizes solely de- 
pend on the average size of a proton, rp = 0.860 fm, and 
that of a neutron, rn = 0.974 fm. Each occupied vertex 
configuration of this figure corresponds to a quantum 
state configuration with definite angular momentum and 
energy. More details of the figure are given in its cap-
tion. 

The expressions of the two-body (two Yukava) poten-
tial V employed [18], for the present semi-classical treat- 
ment, of the kinetic energy T [19], of the spin-orbit en-
ergy VLS [20], and of the binding energy EB are given in 
Eqs.10-14, respectively. Isospin term in Eq.14 is not  



G. S. Anagnostatos / Natural Science 6 (2014) 198-210 

Copyright © 2014 SciRes.                                                                    OPEN ACCESS 

203 

  

 
Figure 4. Octa-hedral symmetry description of the Independent Particle Model (IPM) for the 1p-shell. Each mark • stands for the 
middle point of the corresponding straight-line segment, while large • stands for the center of the octa-hedron. Dark arrows stand for 
protons and open ones for neutrons, or the opposite, but no mixed [10]. Orbital angular-momentum vectors stand for both protons 
and neutrons and are presented by dark-open arrows [10]. All j shown are in a relative scale; a) and b) quantisation of direction, when 
the orbital angular momentum ℓ or spin s are constants of the motion, respectively; c)-e) considered together: quantization of direc-
tion when the total angular momentum j is a constant of the motion; f)-n) total angular momentum J of two particles with j1 and j2 as 
registered on each related part; o) assignment of a set of five quantum numbers (n, ℓ, j, mj and τ) to each j vector of an IPM descrip-
tion of p-shells. 
 
needed since the isospin is here taken care of by the dif-
ferent shell structure (forms and sizes) between proton 
and neutron shells, as apparent from Figure 5. 

31.2334 1.4534170.993 10 e 241.193 eij ijr r
ij ij ijV r r− −= ∗ ∗ − ∗   

(10) 

( ) ( )2 2 2
max2 1 1 n mn mT ћ M R ρ = + + 



      (11) 

( ) ( )2 2 0.03,  

the third parameter of the mode

 (

l)
i LiSi i i i iV ћ h m sλ ω λΣ = Σ ∗ =∗

   (12) 

( )( )2 23 2i iћ ћ M n rω = +          (13) 

B ij ij i LiSinE V T m V= Σ −Σ −Σ ,         (14) 

where 
• Vij is the potential energy between a pair of nucleons i, 

j at a distance rij,  
• n, ℓ, m are the quantum numbers characterizing a 

polyhedral vertex standing for the average position of 

a nucleon at the quantum state n, ℓ, m. 
• ℓi and si stand for the orbital angular momentum 

quantum number ℓ and the intrinsic spin quantum 
number s of any nucleon i. 

• M is the mass of a proton Mp or of a neutron Mn, 
• Rmax is the outermost proton or neutron polyhedral 

radius (R) plus the relevant average nucleon radius rp 
for a proton and rn for a neutron, (i.e., Rmax is the ra-
dius of the nuclear volume in which protons or neu-
trons are confined), 

• ρnℓm is the distance of a nucleon average position at a 
quantum state (n, ℓ, m) from its orbital angular mo-
mentum at the direction nθ m

 . 
The parameters of the model are the following five: 

the two-size parameters rp and rn, the two parameters 
from the second term of Eq.10 (since the first term is 
applicable only for scattering problems), and the one 
parameter, λ, from Eq.12. With the help of these parame- 
ters all quantities Rmax, ρnℓm, and ћωi in Eqs.10-14 are 
obtainable by employing the coordinates of the nucleon  
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Figure 5. The space of the Isomorphic Shell Model for nuclei up to N = 20 and Z = 20. The equilibrium poly-
hedra in row 1 (2) stand for the most probable forms and average sizes of the first three neutron (proton) shells. 
The vertices of polyhedra (numbered as shown) stand for average positions of nucleons in definite quantum 
states (τ, n, ℓ, mℓ, s). Central axes standing for the quantization of directions of the orbital angular momentum are 
labelled as mθ



 and pass through the points marked by small solid circles •. At the bottom-left of each block the 
numbering of this polyhedron proceeded by the letter Z (N) for protons (neutrons) is given. Over this the number 
of polyhedral vertices and the number of possible unoccupied vertices (holes, h) are also given. At the bot-
tom-right of each block the radius of polyhedron is listed. Over this the cumulative number of vertices of all pre-
vious polyhedra and of this polyhedron is also given. Finally, at the bottom-center of each block the distance ρnℓm 
of the nucleon average position nℓm from the relevant axis mθ



 is given. 
 
average positions derived by the information given in Fi- 
gure 5.  

In Table 1 the results of applying the present version 
of the model for 4He, 12C, 16O, and 40Ca, together with 
corresponding experimental energies are given. The good 
comparisons between model predictions and experimen-
tal energies are apparent. Here, calculations of radii are 
not presented. Such predictions for more nuclei are given 
in the next section with a full quantum mechanical de-
scription of the Isomorphic Shell Model. In the frame-
work of predictions of radii, results are identical for both 
versions of the model.  

Further interesting applications of this version of the 
model on nuclear structure and reactions are included in 
Refs. [11-13] and [21,22], respectively. 

3.2.2. Quantum Mechanical Isomorphic Shell 
Model 

As is well known the constituent of a nucleus are pro-
tons and neutrons which all are fermions, thus their total 
wave function is anti-symmetric. The locations of maxi- 

ma of such a wave function on a sphere (like the spheri-
cal shape of a complete nuclear shell) are identical to 
those expected if a repulsive force (of unknown nature) 
is acting among the constituent fermions (protons and 
neutrons) [23]. For stability these maxima, under the 
aforementioned repulsive force, should be in equilib-
rium.  

This problem of equilibria of repulsive particles on a 
sphere was solved by John Leech in1957 [24]. Such 
equilibria are obtained only for specific number of parti-
cles and are related either to the number of vertices, or to 
the number of middles of edges, or to the number of mid- 
dles of faces, or to combinations of numbers of these ca- 
tegories of a regular or semi-regular polyhedron [14]. 

Such equilibria lead to polyhedral most probable 
forms which, taken in specific sequence, are presented in 
Figure 6 and are related to specific nuclear shells and 
sub-shells. If further, nucleons of finite sizes are consid-
ered (specifically, rp = 0.860 fm and rn = 0.974 fm, 
which constitute the only size parameters of the model) 
the average size R of the aforementioned polyhedral  
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Figure 6. Most probable forms and average sizes of nuclear shells and sub-shells for nuclei 
up to Z = 82 and N = 126. Other notations are as in the caption of Figure 5. 

 
shells and subshells are obtained. They are those written 
at the bottom of each block of the figure. 

Apparently, the polyhedra of Figure 6 present the 
most probable forms and average sizes of nuclear shells 
and sub-shells and at the same time are the same polyhe- 
dra as the ones of Figures 1-4, i.e., they are again the 
regular and semi-regular polyhedra. That is, these poly- 
hedra inherently possess quantum mechanics and at the 
same time they are those polyhedra possessing equilib-
rium of forces when repulsive particles (or equivalently 
fermion average positions) fill up their vertices, or mid-

dles of edges, or middles of faces.  
Some more comments should be made concerning the 

polyhedra of Figure 6 and the major models of nuclear 
structure, i.e., the Shell Model and the Collective Model. 

The first model assumes independent particle motion 
of the constituent particles of a nucleus, which is equiva-
lent to assuming zero forces among these particles in a 
strong field of strong interactions like a nucleus. In addi-
tion, this model it does not give the range of applicability 
of the assumption and how one can understand the dif-
ference of stability (if any) between the magic numbers   
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Table 1. Binding energies in MeV according to semi-classical isomorphic shell model. 

Nuclei 4He 12C 16O (0p-0h) 16O (4p-4h) 40Ca 
n 1-2 1-2 1-2 1-2 1-2 
  5-8 5-10 5-8 5-10 

Occupation   25-27  17-28 
p 3-4 3-4 3-4 3-4 3-4 
  11-14 11-16 11-14 11-16 
   29-31  29-40 

ΣιjVij 44.61 185.43 262.52 259.93 771.70 
Σ<T>nlm −14.23 −85.32 −124.57 −115.44 −362.97 

ΣiVlisi 0.00 +0.76 1.02  0.00 
VCoul −0.46 −6.75 −12.35 −11.39 −64.81 
ErotHe −1.70 −1.70 −1.70 −1.70. −1.70 

EBmod. 28.24 92.46 123.90*0.55 +132.42*0.45 = 127.73 342.22 
EBexp. 28.30 92.16 127.62 342.06 

 
and the other (about 300) stable nuclei spread in the chart 
of the nuclides. Moreover, the shell model tries to ex-
plain the magic numbers by arbitrarily assuming a strong 
spin orbit interaction valid only for magic numbers, 
which is not a necessary assumption for other models 
(like the present one) to explain these numbers. 

The second model assumes strong interaction among 
the constituent particles of a nucleus leading to an aver-
age form of the nucleus which can possess collective 
motion. This assumption apparently contradicts the shell 
model assumption of zero forces among the constituent 
particles of a nucleus. The model has many successes 
through out the periodic table of the elements. However, 
it cannot predict the moment of inertia of the resulting 
rotational spectra at the same time. This moment of iner-
tia is empirically derived each time from the rotational 
spectrum offered by relevant experiments. 

Apparently, these two models were milestones at the 
time when they appeared. Without these two basic mod-
els we could not have reached the present level of under-
standing about the nucleus. After so many years since 
their appearance, there is an effort to try to go beyond 
them. 

The Isomorphic Shell Model takes advantage of the 
equilibrium polyhedra to explain the magic numbers 
without assuming strong spin orbit interaction and at the 
same time provides the average structure of a nucleus via 
the average nucleon positions of the constituent nucleons. 
Thus, it provides the necessary moment of inertia as the 
moment of inertia of a specific part of the nucleus which 
rotates around an axis perpendicular to a symmetry axis 
of this rotating part. Also, the equilibrium of forces ob-
tained when an equilibrium polyhedron is filled is 
equivalent to the zero forces assumed by the shell model. 
However, this equilibrium of forces happens not only for 
magic numbers, but at any time an equilibrium polyhe-
dron is filled up, a fact which explains stable nuclei 

throughout the periodic chart of nuclides.  
In applying the quantum isomorphic shell model a 

central potential of the following form is applied for the 
nucleons of each proton or neutron shell (and not for all 
nucleons in a nucleus): 

( ) 2 21 2oV r v m rω= +             (15) 

where v0 and ω are different parameters for each proton 
or neutron shell. Due to the two assumptions below, 
however, the final number of parameters is substantially 
reduced. 

1) The ћω , for each shell, is determined [20] accord-
ing to Eq.16, 

( )( )2 23 2ћ ћ m n rω = +           (16) 

where 
1 22r  is the average size of a specific proton or 

neutron shell which remains constant for all nuclei. All 
these sizes of polyhedra are given in Figure 6. The only 
parameters necessary in determining these sizes are the 
two size parameters rp and rn, as explained earlier.  

2) The parameter of the depth of the potential for each 
proton or neutron shell is determined according to Eq.17 

( ) ( )3 2 3 2j j j j i i iE v ћ n v ћ n Eιω ω= − + = − + = , 

or 

( ) ( ) ( )03 2 3 2 3 2j i i i j j j jv v ћ n ћ n V ћ nω ω ω= − + + + = + +

(17) 
This assumption implies that all nucleons in a nucleus 

are equally bound in their own potentials (excluding 
Coulomb and spin-orbit interactions). 

It is apparent from Eq.17 that, since according to the 
previous assumption a) all ћω are already determined as 
above by applying Eq.16 with respect only to the two 
size parameters rp and rn, the depth vi of the potential for 
each shell i can be defined with the knowledge of only 
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one additional parameter V0 (This is the third universal 
parameter of the present model equal to 40.268 MeV.) 

Solving Schroedinger’s equation for the potential of 
Eq.15, the following general equation for the wave func-
tion is obtained [20]: 

( ) ( ) ( ){ }
( )

21 2

1

1

1 2 1 2 1 ! 3 2

                  ; 3 2;

kL z N k

F k z

+ = Γ + + Γ +  

⋅ − +



 



, (18) 

where ( ) ( ) ( ) ( )2
1 1 ; ; 1 1 1 2!F c z c z z c cα α α α= + + + +  

( )( ) ( )( )31 2 1 2 3!z c c cα α α+ + + + + + , with  
2, 2 ,k z rα α= − =  and 2m ћα ω= . The series termi-

nates with the term ( ) ( ) ( )1 k kc c k z− Γ Γ +    and the 
various quantum numbers involved are 0,1, 2, ;n =   

0,1, 2, ; 2k k n= ≤ , 0,1, 2, , ,  n= ≤   and  
2n k= −  [20]. 

The explicit forms of equations of the wave functions 
for a harmonic oscillator potential derived from the re-
cursion formula Eq.18 can be found in [14] for all wave 
functions of nuclei up to Z = 126 and N = 184. 

Due to the fact that in the model ћω is different for the 
different shells, the wave functions with the same orbital 
angular momentum quantum number ℓ are not orthogon-
al. For these wave functions Gram-Smidth’s technique is 
applied [25]. In [14] some relevant guide equations to 
facilitate this orthogonalization are given. 

1) Binding Energies 
The binding energy for each quantum state in a har-

monic oscillator potential is given by Eq.19: 

( )3 2BE v ћ nω= − +              (19) 

In Eq.19 all ћω come from Eq.16 (with respect to the 
only two size parameters rp and rn) and all potential 
depths v come from Eq.17 (with respect to the only one 
additional potential parameter V0). Thus, EB from Eq.19 
is determined with respect to only 3 universal parame-
ters. 

Now, since the nuclear problem basically refers to 
two-body forces, in order to avoid the double counting, 
the potential portion of the second part of Eq.19 should 
be divided by two. Furthermore, since according to the 
Virial theorem half of the quantity ( )3 2ћ nω +  is po-
tential energy and half is kinetic energy, Eq.19 takes the 
form of Eq.20 

( )
( ) ( )

1 2 1 2 3 2

        1 2 3 2 1 2 3 4 3 2
BE v ћ n

ћ n v ћ n

ω

ω ω

= − +  
− + = − +

  (20) 

Given that the potential v, according to Eq.17, is 

( )0 3 2v V ћ nω= + + ,               (21) 

the final expression of binding energy for each proton or 
neutron state takes the form of Eq.22. 

( ) ( )
( ) ( )

01

0 1 1

1 2 3 2

             3 4 3 2 1 2 1 4 3 2
BE V ћ n

ћ n V ћ n

ω

ω ω

= + +  
− + = − +

. 

(22) 
The index 1 in Eq.22 refers to all states where the or-

bital angular momentum quantum number ℓ appears for 
the first time. 

However, for a second, a third and a fourth appearance 
of a state with the same ℓ, in the place of the quantity 

( )3 2ћ nω +  in Eq.22 we should take the corresponding 
quantity due to the necessary orthogonalization by using 
Eqs.9-11 of [14]  

Finally, the total binding energy of a nucleus in the 
model is given by Eq.23 

( ) ( )1 1total  A A z
B B LiSi Ciji i i jiE E V E

= = ≠
= + −∑ ∑ ∑ ,     (23) 

where the spin-orbit term is given [20] by Eq.24  

( )
( ) ( )

1 1

2 2
1

d d ?A A
LiSii i ii i

A
i i ii

V i r V r r s

ћ ћ m s

λ

λ ω
= =

=

= ∗ ∗  

= ∗

∑ ∑
∑





,     (24) 

with λ = 0.03 (This is the fourth and the last universal 
parameter of the present version) and the Coulomb term 
is given by Eq.25: 

2Z Z
Cij iji j i jE e d

≠ ≠
=∑ ∑ .           (25) 

The distance dij between any two proton average posi-
tions in Figure 6 is calculated from the coordinates of 
the proton polyhedral vertices (standing for the proton 
average positions) in this figure (see section 2.2 of [14]). 

As in the former section, an extra term in Eq.23 due to 
isospin is not needed since the isospin is here taken care 
of by the different average shell structure between pro-
tons and neutrons as apparent from Figure 6. 

2) Mean Radii 
Due to the way the wave functions have been corre-

lated with the size of nuclear shells via Eq.16, average 
radii can be calculated by using simple formulas, as seen 
below. 

Average charge radius: 
2 2 2 2

ch..proton ch.neutron1  Z
iich

r r Z r r N Z
=

= + − ∗∑ ,  (26) 

where rch.proton = rp = 0.86 fm and rch.neutron = 0.34 fm [7]. 
Average neutron radius: 

2 2 2
neutron1  N

iin
r r N r

=
= +∑ ,        (27) 

where   0.974 fmneutron nr r= = . 
Average mass radius: 

2 2 2 2
1  *A

i p nim
r r Z r N r A

=
 = + ∗ + ∑ .     (28) 

All values of ri needed are included in Figure 6 (see 
right corner at the bottom of each block).  
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In Table 2 the binding energies of 40Ca, 48Ca, 54Fe, 
90Zr, 108Sn, 114Te, 142Nd, and 208Pb. are listed from [14]. 
Also for the same nuclei the average charge, neutron, and 
mass radii are listed again from [14]. For both energies 
and radii available experimental values are given for 
comparison. The very good agreements between predic-
tions and experimental values are apparent. 

3.2.3. Other Applications 
Besides the above given applications of the Isomor-

phic Shell Model, it is interesting to mention its applica-
tion to super-heavy nuclei [26], to neutron nuclei [27], to 
exotic nuclei [28], and its extension to atomic clusters 
[29], when the constituents atoms have half integer spin 
and thus can be considered as atomic fermions. Again in 
these applications the dominant part is the relationship 
between Symmetry of regular and quasi-regular polyhe- 
dra and Quantum Mechanics. 

For valuable information concerning geometry, the 
books [30,31] are very instructive.  

4. CONCLUSIONS 
In the present work, the regular and semi-regular po-

lyhedra were employed to derive the relationship be-
tween their symmetries and quantum mechanics. Partic-
ularly, we showed that the symmetries of these polyhedra 
inherently possess (on the level of identity) the quantiza-
tion of ℓ, s, and j expected from Quantum Mechanics for 
central forces. This is a unique property of the present 
model in comparison with the other models of the nu-
cleus involving polyhedra to explain the magic numbers 
and other nuclear properties. No relationship of their po- 
lyhedra with Quantum Mechanics has been reported. 
This unique property of the present work to identically 
connect the symmetry of the regular and semi-regular 
polyhedra with Quantum Mechanics permits one to as-
sign quantum states at the vertices of these polyhedra 
considered as the average positions of neutrons and pro-
tons in the way explained in the text. 

Furthermore, an important feature of the polyhedra  

employed in the present work (i.e., the regular and semi- 
regular polyhedra) is that they possess the equilibrium 
property. That is, when repulsive particles (as implied by 
the Pauli principle for fermions) are assigned at their ver- 
tices, standing as their average positions, these particles 
are at equilibrium whatever the law of force between 
them may be. In addition, if two sets of fermions are as- 
sumed on the same sphere (as neutrons and protons), not 
only the particles of each set, but also the particles of 
both sets should be at equilibrium. This equilibrium 
should be conserved when more polyhedral shells are 
considered, which implies that the polyhedra should be 
concentric and in the most symmetric arrangement among 
themselves. This property of equilibrium of forces is 
practically equivalent to the assumption of the Shell Mo- 
del of the nucleus that each nucleon acts as if it is under a 
zero force. 

This equilibrium property leads to the most probable 
forms of nuclear shells. As mentioned in the introduction, 
neutrons and protons are not considered as point particles, 
but as particles with finite size, which have been establi- 
shed from particle physics. The consideration of nucle-
ons with finite size leads to the average size of the nuc-
lear shells and thus of all nuclei. These average positions 
for the nucleons participating in a collective nuclear rota-
tion form an average shape whose symmetries permit the 
evaluation of moments of inertia and thus of the energies 
of the expected rotational bands for this nucleus. This is 
the way the present work is associated with the Collec-
tive Model of the nucleus. 

However, there is an important difference between the 
Collective Model and the present model. In the former, it 
is assumed that the rotating nucleons strongly interact 
with each other (like in solid state physics) and form the 
rotating shape necessary for the rotational band. Howev- 
er, the Collective Model still cannot predict the moment 
of inertia. The present model does not need this additio- 
nal assumption. It can predict the moment of inertia and 
the rotational band based on the average positions of ro- 
tating nucleons derived as above. 

 
Table 2. Total binding energies in MeV, average charge, neutron, point neutron-proton, and mass radii.in fm [14]. 

 40Ca 48Ca 54Fe 90Zr 108Sn 114Te 142Nd 208Pb 

EBmod. 342.3 416.5 471.3 783.0 915.2 961.1 1185.1 1636.4 

EBexp. 342.1 416.0 471.8 783.2 914.7 961.2 1185.2 1636.5 

ch<r2>1/2mod. 3.48 3.48 3.72 4.27 4.56 4.61 4.9 5.51 

ch<r2>1/2exp. 3.48 3.48 3.69 4.27 4.56  4.91 5.51 

n<r2>1/2mod. 3.25 3.65 3.73 4.4 4.7 4.86 5.43 6.18 

[n<r2>1/2 – ch< r2>1/2 ]mod −0.29 0.12 −0.03 0.09 0.1 0.22 0.5 0.64 

[n<r2>1/2 – ch< r2>1/2 ]exp. −0.3 0.12 −0.04 0.09 0.11 - - 0.55 

m<r2>1/2mod. 3.38 3.56 3.81 4.36 4.69 4.8 5.22 5.93  
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A further strong support of this work is provided by its 

application to specific nuclear properties. First, the ћω 
values are estimated in both the semi-classical and pure 
quantum mechanical treatment of nuclei. Specifically, in 
Table 1 the nuclei 4He 12C, 16O and 40Ca are treated 
semi-classically and their binding energies have been 
estimated with a maximum deviation between predicted 
and experimental values of 0.30 MeV. In Table 2 the 
nuclei 40Ca, 48Ca, 54Fe, 90Zr, 108Sn, 114Te, 142Nd, and 208Pb 
are treated purely quantum mechanically. Properties exa- 
mined there are the binding energies and radii. The ma- 
ximum deviation between predicted and experimental 
values of binding energies is 0.5 MeV. For the average 
values of charge radii, predicted and experimental values 
are identical, with the only exception for 54Fe where the 
difference is 0.03 fm. For the difference between neutron 
and proton average radii in the same table the deviation 
is 0.01 fm, except for 208Pb, where the deviation is 0.09 
fm and is considered significant. For the average neutron 
radii, there are no experimental values for comparison. 

Other applications of the present model are given else- 
where [14]. Hence, a very strong connection between Po- 
lyhedral Symmetry and Quantum Mechanics is provided 
throughout this work.  

Perhaps it is interesting to finish with Albert Einstein’s 
words: Geometry is always the solution. The question is 
which geometry each time. 
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