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This paper is divided into three parts. In the first part, we review the historical background of a system of 
logic devised by Henry S. Leonard to allow for reasoning using existence as a predicate. In the second 
part, we consider various directions in which his logic could be further developed, syntactically, semanti-
cally, and as an adjunct to quantifier elimination and set theory. In the third and final part, we develop 
proofs of some underlying results of his logic, using modern notation but retaining his axioms and rules of 
inference. 
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Introduction 
Mathematicians frequently use names without knowing whe- 

ther a corresponding ostensible object exists. In (Jones, 2013: 
pp. 3-4) we discussed the example of the term Monster Group. 
In this paper, we extend historical work of Henry S. Leonard 
(Leonard, 1969), and its results, with methodologies that were 
unavailable when those results were first written. In (Jones, 
2013: pp. 3-4) we outlined, in summary form, several lines of 
development that now are open to investigation using currently 
available advances in logic. We confine ourselves here to those 
further developments that can be described within first-order 
model theory. 

Historical Background 
Leonard (Leonard, 1969) proposed an influential definition 

of singular existence as a predicate: 

( ) ( )( )~x xx f f f≡ ∃ ⋅ ◊E  

His definition was embedded in a system of logic that pro-
vided for deductive reasoning using existence as a predicate. 
His definition and his system of logic were proposed to use 
methods of logic, such as quantified modal logic, that were 
underdeveloped at the time he wrote. At that time, the leading 
conjecture in quantified modal logic was the Barcan Formula: 
( ) ( ) ( ) ( )x x x x∀ ⇒ ∀   . This formula had been proposed 
by Ruth C. Barcan in her papers Barc1, (Barcan, 1946b), and 
(Barcan, 1947). Almost no further contributions to the devel-
opment of quantified modal logic were then available, either as 
commentary, speculation, or conjecture. Leonard was thus re-
markably aggressive in using quantified modal logic in his 
definition of singular existence as a predicate. He presumed the 
availability of a tool of logic that only later was given an ade-
quate semantics and syntax. 

Although little of the methodology that Leonard presupposed 

was available then, his publication led to our (Jones, 1964) and 
to the beginning of Free Logic in (Lambert, 1967). After his 
publication of his system of logic for singular existence as a 
predicate in Leonard (Leonard, 1969), there was an explosion 
of results concerning quantified modal logic. The author’s re-
view (Jones, 2013) of the recent book by Goldblatt (Goldblatt, 
2011) mentions Leonard’s work and the bibliography of the 
book offers a set of 119 references to modern work that is per-
tinent, directly or indirectly, to quantified modal logic. 

Goals of This Contribution 
We describe a first-order model theory for a logic of exis-

tence. Why, one might ask, should one choose first-order logic 
as an environment in which to develop a model theory for Leo-
nard’s existence logic? Indeed, his definition of existence as a 
predicate in Section 1.1 seems to directly demand, with its 
quantified predicate variable, a second-order theory. A first- 
order model theory of Leonard’s existence logic is not only 
possible, but confers significant mathematical advantages. We 
adopt the notation: E  for our proposed logic. In contrast, 
results in second-order arithmetic, like (Buchi, 1962), require 
extraordinary reasoning methods such as those discussed in 
(Baldwin, 1985) and (Gurevich, 1985). 

Syntax of First-Order Logic for an Existence 
Predicate 

We introduce the predicate constant E . The assertion 
( )aE  is to be interpreted as: a exists. Leonard’s syntactical 

specification of first-order logic requires the following change 
to one of the standard axioms of quantification. 

( ) ( ) ( )( ) ( )x x t t∀ ⋅ ⇒E                (1) 

This axiom is sometimes called ∀ -elimination, (Kleene, 
1950: 23). 
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Where t is free for x in ( )x . We follow notational con-
ventions for the predicate calculus from Kleene (Kleene, 1950: 
Chapter VII). 

We assume in this paper that the logic E  is augmented 
with a theory of the form ,ω ω . We hope later to extend these 
results to theories of the form 

1,ω ω . We wish also to accom-
modate Quine’s view (Quine, 1948) that everything exists. To 
this end, we incorporate additional axioms for the existence 
predicate: 

( ) ( ) ( ) ( ) ( )( )x x x x x∃ ⇔ ∃ ⋅E          (2) 

( ) ( ) ( ) ( ) ( )( )x x x x x∀ ⇔ ∀ ⇒E         (3) 

( ) ( )x x∀ E                   (4) 

We do not attempt to formulate a minimal set of independent 
axioms. One of the above principles of Quine would suffice. 
We mention all three for the sake of clarity and completeness of 
exposition. 

Semantics of First-Order Model Theory for an 
Existence Predicate 

We describe model theory for first-order predicate logic with 
equality and an existence predicate. 

We adopt Lindström’s definition of first-order logic from 
(Lindstrom, 1969) and follow the discussion of it in Chang and 
Keisler (Chang, 1990: Section 2.5). Lindström showed that 
first-order logic can be characterized as the strongest predicate 
logic that is compact and in which the Downward Löwenheim 
Skolem Theorem holds.  

Compactness of E  
We prove the compactness of E  by adapting the proof of 

compactness in Chang and Keisler (Chang, 1990: Section 2.5).  
Theorem 1 (Compact) The first-order model theory of E  

is compact. 
Proof We note the changes to the proof of compactness 

(Chang, 1990: Theorem 1.3.22, p. 67). There are preliminary 
results concerning the model theory of sentential logic in Chang 
and Keisler (Chang, 1990: Chapter 1). The sentential logic that 
is assumed there is unchanged in E . Those preliminary re-
sults are therefore also available here. The key step in the proof 
shows the existence of witnesses for an existentially quantified 
statement (Chang, 1990: Lemma 2.1.1, p. 62). This result, 
which depends upon set theory, would be available in E  if 
appropriate axioms of a reduct of set theory, for example Zer-
melo-Fraenkel Set Theory with the Axiom of Choice, ZFC, are 
added to it. This step in the proof requires that a new set of 
constant symbols C  be added to the language. It is important 
to note that, in E , these constant symbols must be chosen to 
be among those that refer to an element of the model. 

The remainder of the proofs that lead up to the final result, 
Theorem 1.3.22 (Compactness Theorem), (Chang, 1990: p. 67) 
remain identically the same as those given there. They can 
therefore be taken over unchanged into E . 

We next prove that E  satisfies the Downward Löwenheim 
Skolem Theorem.  

Theorem 2 (Downward Lowenheim Skolem) The first- 
order model theory of E  satisfies the Downward Löwenheim 
Skolem Theorem. 

Proof We note again the changes to the proof of the corres-

ponding theorem in Chang and Keisler (Chang, 1990: Corollary 
2.1.4, p. 66). The selection of a set   of constants plays a 
central role in the proof. Again, as above, for E , these con-
stant symbols must be chosen to be among those that refer to an 
element of the model. As in the proof of Theorem 1, the re-
mainder of the proof remains identically the same as that given 
in (Chang, 1990: p. 66). It can therefore be taken over un-
changed into E . 

The Definition of Truth in the Formal Language 
of a Model 

A model of a language consists of domain of discourse in a 
structure, and an assignment function that assigns elements of 
the structure to elements of the language. We assume standard 
definitions of truth and satisfaction as these terms are used in 
model theory. We indicate how these definitions may be amen- 
ded to accommodate an existence predicate. The definition of 
truth in a model begins with a definition of truth for atomic as- 
sertions, and proceeds by truth tables to the definition of truth 
for compound assertions. 

The assignment function assigns elements of the domain of 
discourse of the model to argument constants of the language. 
The assignment function also assigns subsets of the domain of 
discourse of the model to unary predicate constants of the lan-
guage. If F is a unary predicate constant and a is an argument 
constant, then 

( )aF  

asserts that the element a of the universe of discourse of the 
model satisfies the predicate F. This assertion is true if the as-
signment function assigns to a an element of the subset of the 
universe of discourse of the model that it assigns to F. This 
assertion is false if it is not true. 

In conventional model theory, this assignment function is 
complete. Each constant of the language is assigned an element 
of the domain of discourse. Perhaps the most fundamental way 
in which model theory for first-order logic with an existence 
predicate differs from conventional model theory is that this 
assignment function is partial for argument constants. 

Because the assignment function is a partial function for ar-
gument constants, it is possible that the assignment function 
does not assign an element of the domain of discourse of the 
model to a in the above example. In the latter case the truth 
condition for that assertion is not met, and the assertion is ac-
cordingly false. The following assertion is then, by the truth 
table for the negation truth-function, true: 

( )a¬F , 

and indeed the assertion that the ostensible element of the un-
iverse of discourse of the model does not exist is also true: 

( )a¬E . 

The possibility of a true assertion of the falsity of the as-
serted existence of an ostensible element of the model is an 
objective of first-order model theory with an existence predi-
cate. Such an assertion, it should be noted, is compatible with 
Quine’s three conditions for the universality of the existence 
predicate listed in Section 2. 

Elimination of Quantifiers 
The proofs of results concerning compactness and the Down- 
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ward Löwenheim Skolem Theorem require the method of proof 
by elimination of quantifiers. The history of the method of 
proof by elimination of quantifiers, and its development in the 
writings of Cegielski, Herbrand, Presburger, and Skolem, are 
discussed in (Smoryńki, 1991: p. 402).  

Presburger Arithmetic 
We wish to discuss one of these authors in detail as an ex-

ample of the adaptation of their proofs, using quantifier elimi-
nation, in a way compatible with our first-order logic of exis-
tence. We have chosen Presburger (Presburger, 1929) for this 
example. Presburger Arithmetic is well suited to such an ex-
amination, for several reasons. Presburger’s paper was a clas-
sical discovery in metamathematics that is complementary to 
Gödel’s First Theorem (Godel, 1931). Gödel’s and Presburger’s 
arithmetics differ simply in that the former includes multiplica-
tion by a variable, while the latter allows only multiplication by 
a constant. Yet, they are drastically different. Gödel’s arithmet-
ic is incomplete, while Presburger’s arithmetic is complete and 
has a decision procedure. 

For the sake of accuracy of reference, we prefer to use the 
page numbers of the German language original text of Presbur- 
ger’s conference publication and of the addendum to it that ap- 
peared on a later page in the same volume of conference pro- 
ceedings. 

Pages 92-94 
Here Presburger decides upon his choice of sentential con-

nectives, using the system of Łukasiewicz. This approach 
would allow all formulas to be written without parentheses, but 
he allows parentheses as well. He introduces here the two con-
stants 0 and 1. This first-order logic of existence would require 
no change to the sentential connectives because the sentential 
part of conventional logic is retained unchanged. The constants 
0 and 1 would, however, require the additional axioms: 

( )0E  

and 

( )1E . 

He also introduces here the existential quantifier. He explains 
how multiplication by a constant, but not by a variable, is pos- 
sible in his arithmetic. This is so because multiplication by a 
constant is equivalent to a finite series of additions.  

Pages 95-97 
Here Presburger defines the forms of ground statements, 

discusses disjunctive normal for compound statements, and the 
method of elimination of quantifiers, with a footnote attributing 
this method to Skolem and Langford. On page 97 he formulates 
his main lemma, which claims that assertions of his language 
can be brought into disjunctive normal form with elimination of 
quantifiers.  

Page 98 
Here, Presburger defines six classes of assertions which he 

will subsequently use to prove his main lemma. His proof is by 
cases in which each of the six classes of assertions is separately 
treated.  

Pages 99-101 
He examines the proof by cases with quantifier elimination 

and concludes the proof of the main lemma.  

Addendum, Page 395 
In this section we consider the system of arithmetic that 

Presburger defines in an addendum in the same volume of the 
conference proceedings in which his paper appeared. It is a 
system that is also complete, but is more difficult to prove 
complete than the famous system, with integers and (,+,0,1), 
which he considers in the main body of the article. It includes 
the natural numbers and (,+,−,0,1,<). 

A modern treatment of the latter arithmetic, with a proof of 
completeness, is in (Monk, 1976, page 237). Monk calls this 
system of arithmetic 2Γ . 

In Section 4.3, Presburger chooses sentential connectives that 
are notationally different from those we adopt, but which re-
quire no change to his proof. He also specifies constants that 
must be chosen to refer to elements of the model. In section 4.4 
Presburger introduces disjunctive normal form for ground state- 
ments. This step in his proof is the source of the notoriously 
severe computational intractability of his decision procedure, 
having a doubly exponential time bound, for arithmetic with 
(,+,0,1). Fischer and Rabin (Fischer, 1974) showed that Pres-
burger’s decision procedure is at least doubly exponential. This 
result precludes the practical usefulness of this decision proce-
dure, but it has no effect upon the matter we consider, the va-
lidity of his proof of completeness. 

Requirements of the Logic of the Proof 
In this Section we examine the adaptations of Presburger’s 

proof that are required by the logic of the existence predicate, 
due to Leonard, that we are here proposing. We now can make 
use of the modifications to Presburger’s paper noted above to 
adapt his proof to our logic, E . 

Proof 
In this central step of the proof, Section 4.5, Presburger de-

fines six cases for each of which he intends to perform quan-
tifier elimination. There is a common thread that runs through 
the cases of quantifier elimination in the pages of this Section, 
4.6. It is the use of constants to replace existential quantifiers. 
These constants must, in the present system E , be chosen 
from among those constants that refer to elements in the do-
main of the model. It may also be necessary to adopt, for each 
such constant c, an axiom that asserts the existence of the cor-
responding element in the domain of the model: cE . As a last 
step to using the constant, the latter axiom may be used with the 
modified axiom of ∀-elimination of Section 2. These steps 
complete quantifier elimination and complete Presburger’s 
proof in E . 

The proofs of Theorem 1 and Theorem 2 called for quite 
modest changes to the original proofs; the latter do not impinge 
upon those aspects of E  that we have modified from tradi-
tional predicate logic. Presburger’s proof requires somewhat 
more extensive modification to adapt it to E . We summariz- 
ed the needed changes above in Section 4.8. We do not discuss 
Presburger’s conjecture in the addendum, 4.7. Although it is 
true, it does not include a proof and therefore we desist from 
analyzing it.  
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Set Theory in the Model Theory of Predicate 
Logic 

In the previous sections, we have established that this model 
theory with its modified predicate logic has the standard cha-
racteristics that one would expect of a predicate logic for axiom 
systems of mathematics. In this section 5, we apply this system 
of predicate logic to a weak version of ZF set theory. We refer 
to the axioms for ZF given in Jech (Jech, 2006).  

Conclusion 
We are quite far from having fully exploited the potential of 

Leonard’s definition of an existence predicate. The present pa- 
per gives a limited account of that potential within first-order 
logic. The system that we have presented here does not suffice 
for the derivations that we made in our (Jones, 1964). There we 
assumed the full type theory of Principia Mathematica (White- 
head, 1910). Many, if not most, of the results proved there 
could have been obtained with a simple version of type theory. 
We hope to explore this possibility in a future publication. We 
mentioned several directions which a further development of 
the consequences of Leonard’s definition of an existence pre-
dicate might take in (Jones, 2013: pp. 3-4). 
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Appendices 
A. Full Proofs 

We here provide details of some proofs that we sketched pre- 
viously. Some readers have requested further elaboration and 
explicitness in the proofs. Leonard’s definition of singular ex- 
istence is quoted in Section 1.1. It appears there in a notation 
that is close to that which he used to write it. In the proofs that 
follow we modernize his notation, used in Leonard (Leonard, 
1969) and in our (Jones, 1964). Leonard’s definition of singular 
existence as a predicate, written in modern notation, is D1 in 
Appendix B. 

Inference 1 (P1).  
1. ( ) ( )c c¬ ⋅ ◊E E  

2. ( ) ( )c c′ ′⋅ ◊¬E E   

3. ( ) ( ) ( ) ( )( )c c′ ′ ′ ′⇒ ⋅ ⋅ ◊¬E E E E E E   

4. ( ) ( )c′ ⇒E E E   

5. ( )′¬E E 
  

(Line 1 is a premise of the proof. It is Nc of Appendix B. 
Line 2 follows from line 1, using Ob1 outside of, and Ob2 
within, a modal context. The remaining lines follow from pre-
vious lines by propositional logic.) 

Inference 2 (P2).  
1. ( ) ( )′≡ ¬E E E E   

2. ( )E E 
  

(Line 1 follows by substitution from L5 of Appendix B. Line 
2 follows from line 1 and P1 above.) 

Inference 3 (P3).  
1. ( ) ( )( ) ( ) ( )x x x x∃ ⋅ ◊¬ ∃E E   

2. ( ) ( ) ( ) ( )( ) ( ) ( )( )x x x x′ ′ ′ ′⇒ ⋅ ∃ ¬ ⋅ ◊¬ ∃ ¬E A E A E E   

3. ( ) ( ) ( ) ( )( )′ ′ ′ ′ ′ ′⇒ ⋅ ⋅ ◊¬E A E A A E A E   

4. ( ) ( ) ( )( ) ( ) ( ) ( )( )′ ′ ′ ′ ′ ′ ′⋅ ⋅ ◊¬ ⇒ ∃ ⋅ ◊¬E A A E A E E E     

5. ( ) ( ) ( ) ( )( )′ ′ ′≡ ∃ ⋅ ◊¬E E E E     

6. ( ) ( )′ ′⇒E A E E   

7. ( ) ( ) ( )( )′ ′ ′⇒ ⋅¬E A E E E E   

8. ( )′¬E A   

9. ( ) ( )′≡ ¬E A E A   

10. ( )E A 
  

(Line 1 follows from Leonard’s L9 and CnX. Line 7 follows 
from P1 and Line 6. Line 9 follows from Leonard’s formula L5. 
Other lines follow by propositional logic from previous lines.)  

B. Formula References 

In order to make this paper self-contained, we list here for-
mulas from other sources that are referenced in the annotations 
of proofs. 

Formulas from (Leonard, 1969). 
L5. ( ) ( )′≡ ¬E E    

L6. ( ) ( )( ) ( ) ( )y y x x⋅ ⇒ ∃E    

L9. ( ) ( )( )x x∃ E   

D1. ( ) ( ) ( ) ( )( )x f f x f x≡ ∃ ⋅ ◊¬E   

Leonard claimed in (Leonard, 1969, page 58) that it was fif-
teen years before he accidentally hit upon L5 as a requisite for 
his logic. 

Formulas for forms of Obversion. 
Obversion in Leonard’s logic was discussed in (Jones, 1962). 

Here, as in Section 2 above, we do not attempt to formulate a 
minimal set of independent formulas. These formulas are cho-
sen for convenience. 

Ob1. ( ) ( )x x′¬ ≡    

Ob2. ( ) ( )x x′≡ ¬    

Formulas from Jones (Jones, 1964). 
Def 2. ( ) ( ) ( )x x≡ ∀A     

CnX. ( ) ( )x x◊¬ ∃ E   

Nc. ( ) ( )c c¬ ⋅ ◊E E  

The lower-case letter c is used as a non-designating constant 
term for illustrative purposes. 
 

 


