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ABSTRACT 
A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These va-
riables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on 
a distance matrix. For a particular distance, these dimensions are principal components. Then some properties 
are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling 
point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined 
and illustrated with copulas. It is shown that the dimension can have the power of continuum. 
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1. Introduction 
Let X  be a random variable on a probability space ( ), , PΩ   with range [ ],I a b= ⊂  , absolutely conti-
nuous cdf F  and density f  w.r.t. the Lebesgue measure. Our main purpose is to expand (a function of) X  
as  

1
,n n

n
X b Xµ

≥

= +∑                                       (1) 

where ( )nX  is a sequence of uncorrelated random variables, which can be seen as a decomposition of the 
so-called geometric variability ( ) ,V Xδ  defined below, a dispersion measure of X  in relation with a suitable 
distance function ( ), , , .x x x x Iδ ′ ′∈  Here orthogonality is synonymous with a lack of correlation. 

Some goodness-of-fit statistics, which can be expressed as integrals of the empirical processes of a sample, 
have expansions of this kind [1-3]. Expansion (1) is obtained following a similar procedure, except that we have 
a sequence of uncorrelated rather than independent random variables. Finite orthogonal expansions appear in 
analysis of variance and in factor analysis. Orthogonal expansions and series also appear in the theory of sto-
chastic processes, in martingales in the wide sense ([4], Chap. 4; [5], Chap. 10), in non-parametric statistics [6], 
in goodness-of-fit tests [7,8], in testing independence [9] and in characterizing distributions [10]. 

The existence of an orthogonal expansion and some classical expansions is presented in Section 2. A conti-
nuous extension of matrix formulations in multidimensional scaling (MDS), which provides a wide class of ex-
pansions, is presented in Section 3. Some interesting expansions are obtained in Section 4 for a particular dis-
tance as well as additional results, such as an optimal property of the first dimension. Section 5 contains an in-
equality concerning the variance of a function. Section 6 is devoted to diagonal expansions from the continuous 
scaling point of view. Sections 7 and 8 are devoted to canonical correlation analysis, including a continuous ge-
neralization. This paper extends the previous results on continuous scaling [11-14], and other related topics 
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[15,16]. 

2. Existence and Classical Expansions 
There are many ways of obtaining expansion (1). Our aim is to obtain some explicit expansions with good prop-
erties from a multivariate analysis point of view. However, before doing this, let us prove that a such expansion 
exists and present some classical expansions. 

Theorem 1. Let X  be an absolutely continuous r.v. with density f  and support I  and h  a measurable 
function such that ( ) 0E h X =    and ( )var .h X < ∞    Then there exists a sequence ( )nV  of uncorrelated 
r.v.’s such that  

( )
1

,n
n

h X V
≥

= ∑                                       (2) 

with ( ) ( )1var var ,nnh X V
≥

=   ∑  where the series 1 nn V
≥∑  converges in the mean square as well as almost 

surely.  
Proof. Consider the Lebesgue spaces ( )2L I  and ( )2L f  of measurable functions u  on I  such that 

2 2 d ,
I

u x x= < ∞∫  and ( )2 2 d ,f I
u x f x x= < ∞∫  respectively. Obviously, ( )2L I  and ( )2L f  are separa- 

ble Hilbert spaces with quadratic-norms ⋅  and 
f⋅ , respectively. Moreover fT  given by 

1
2 ,fT u f u

−
=  

( )( )2 ,u L I∈  is a linear isometry of ( )2L I  onto ( )2L f  i.e., .f f
T u u=  

Let ( )nu  be an orthonormal basis for ( )2L I . Accordingly, ( ) ,nu∗  given by  
1
2 1,n f n nu T u f u n

−∗ = = ≥  

is an orthonormal basis for ( )2L f . The assumption ( )var h X < ∞   , together with ( ) 0E h X =   , is equiva-  
lent to ( )2h L f∈ . In fact, ( ) ( ) ( )2 2 d var .f I

h h x f x x h X= = < ∞  ∫  Hence 1 ,n nnh b u∗
≥

= ∑  where nb  are the 

Fourier coefficients and 22
1 .nn fb h
≥

=∑  Letting ,n n nv b u∗=  we deduce that 
1 nnh v
≥

= ∑ , where the series  

converges in ( )2L f  and 2, ,m n n mnfv v b δ=  , 1,m n ≥  where mnδ  is Kronecker’s delta. Replacing x  by X , 

and defining ( )n nV v X= , we obtain ( ) 1 .nnh X V
≥

= ∑  
This series converges almost surely, since the series 

1 nn v
≥∑  converges in ( )2 .L f  We may suppose 

( ) 0.nE V =  Next, for , 1m n ≥ , we have cov ( ) ( ) 2, , ,m n m n m n n nmfV V E V V v v b δ= = =  as asserted. Finally, note  
that ( ) ( )2

1var var .nnfh X h V
≥

= =   ∑  In particular, the series in (2) converges also in the mean square.  

Some classical expansions for X  or a function of X  are next given. 

2.1. Legendre Expansions 
Let F  be the cdf of .X  An all-purpose expansion can be obtained from the shifted Legendre polynomials 
( )nL  on [ ]0,1 ,  where ( ) ( )2 1 2 1 .n nL x n P x= + −  The first three are  

( ) ( ) ( ) ( )2
1 23 2 1 ,  5 6 6 1 ,L x x L x x x= − = − + ( ) ( )3 2

3 7 20 30 12 1 .L x x x x= − + −  

Note that ( )( ) 0,nE L F X  =   ( )( ) ( )( )( )cov ,  .m n mnL F X L F X δ=  Thus we may consider the orthogonal 
expansion  

( )
1

,n n
n

X b L F Xµ
≥

= +   ∑  

where ( )E Xµ =  and ( )( )cov ,n nb X L X=  are the Fourier coefficients. This expansion is quite useful due to 
the simplicity of these polynomials, is optimal for the logistic distribution, but may be improved for other dis-
tributions, as it is shown below. 

2.2. Univariate Expansions 
A class of orthogonal expansions arises from  
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( ) ( ) ( )
1

1 ,n n
n

h x g x a A x
≥

 = +  
∑                              (3) 

where both ,h g  are probability density functions. Then ( )( )nA X  is a complete orthonormal set w.r.t. .g  

2.3. Diagonal Expansions 
Lancaster [17] studied the orthogonal expansions 

( ) ( ) ( ) ( ) ( )
1

, 1 ,n n n
n

h x y f x g y u x v yρ
≥

 = +  
∑                         (4) 

where h  is a bivariate probability density with marginal densities , .f g  Then ( ) ,nu  ( )nv  are complete or-
thonormal sets w.r.t f  and ,g  respectively. Moreover ( ) ( ) 0n nE u X E v Y= =        and ( ) ( )n mE u X v Y =    

,n mnρ δ  where nρ  is the n-th canonical correlation between X  and .Y  
Expansion (4) can be viewed as a particular extension of Theorem 3, proved below, when the distance is the 

so-called chi-square distance. This is proved in [18]. See Section 6. 

3. Continuous Scaling Expansions 
In this section we propose a distance-based approach for obtaining orthogonal expansions for a r.v. X , which 
contains the Karhunen-Loève expansion of a Bernoulli process related to X  as a particular case. We will prove 
that we can obtain suitable expansions using continuous multidimensional scaling on a Euclidean distance. 

Let : I Iδ +× →  be a dissimilarity function, i.e., ( ) ( ), , 0x y y xδ δ= ≥  and ( ), 0x xδ =  for all , .x y I∈  
Definition 1. We say that δ  is a Euclidean distance function if there exists an embedding ( ) ,x x Eφ→ ∈   

where E  is a real separable Hilbert space with quadratic norm ⋅ , such that ( ) ( ) ( ), .x x x xδ φ φ′ ′= −   

We may always view the Hilbert space E  as a closed linear subspace of 2.  In this case, we may identify 
( )xφ  with ( ) ,xQ  where for ,x I∈  ( ) ( ) ( )( )1 2, ,x Q x Q x=Q   is a vector in 2.  Accordingly, for 
,x x I′∈  

( ) ( ) ( ) ( ) ( )2 22

1
, .n n

n
x x Q x Q x x xδ

≥

′ ′ ′= − = −  ∑ Q Q                      (5) 

Definition 2. ( ) ( ) ( )( )1 2, ,x Q x Q x=Q   is called a Euclidean configuration to represent ( ), .I δ  The geo-
metric variability of X  w.r.t. δ  is defined by  

( ) ( ) ( ) ( )21 , d d .2 I
V X x x f x f x x xδ δ ′ ′ ′= ∫  

The proximity function of x  to X  is defined by  

( ) ( ) ( )2 2, , .D x X E x X V Xδ δδ = −                               (6) 

The double-centered inner product related to δ  is the symmetric function  

( ) ( ) ( ) ( )2 2 21, , , , .2G x x x x D x X D x Xδ δδ ′ ′ ′= − − −                          (7) 

These definitions can easily be extended to random vectors. For example, if X  is ( ), ,pN Σµ  x  is 
an observation of X  and δ  is the Euclidean distance in p , then ( ) ( )trVδ =X Σ  and ( )2 ,Dδ =x X  

( ) ( )1−′− −x xµ µΣ  is the Mahalanobis distance from x  to .µ  
The function G  is symmetric, semi-definite positive and satisfies  

( ) ( ) ( ) ( )2 , , , 2 , .x x G x x G x x G x xδ ′ ′ ′ ′= + −                           (8) 

It can be proved [19], that there is an embedding ( ) ( )( )1 2, ,x Q x Q x→   of I  into 2
  such that  

( ) ( ) ( )( )

( ) ( ) ( )

22

22
0 0

,

, .

V X E X E X

D x X x E X

δ

δ

 = −  

= −   

Q Q

Q Q
 

G is the continuous counterpart of the centered inner product matrix computed from a n n×  distance matrix 
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and used in metric multidimensional scaling [20,21]. The Euclidean embedding or method of finding the Eucli-
dean coordinates from the Euclidean distances was first given by Schoenberg [22]. The concepts of geometric 
variability and proximity function, were originated in [23] and are used in discriminant analysis [19], and in 
constructing probability densities from distances [24]. In fact, ( )V Xδ  is a variant of Rao’s quadratic entropy 
[25]. See also [14,26]. 

In order to obtain expansions, our interest is on ( ) ( ), ,X X Q Xδ ′  and ( ), ,G X X ′  i.e., we substitute x  by 
the r.v. .X  

For convenience and analogy with the finite classic scaling, let us use a generalized product matrix notation 
(i.e., a “multivariate analysis notation”), following [18]. We write ( ),G X X ′  as ,′=G QQ  where 

( ) ( )( )1 2, ,Q X Q X=Q   is a Euclidean centered configuration to represent ( ), ,I δ  according to (5), (8), i.e., 
we substitute x  by X  in ( ) ( ) ( )( )1 2, ,x Q x Q x=Q   and suppose that each ( )nQ X  has mean 0. The cova-
riance matrix of Q  is ( ) ,ijσ=Σ  where for , 1,i j ≥  ( ) ( ) ( ) ( )d ,ij i j i jI

E Q Q Q x Q x f x xσ = = ∫  and may be ex-
pressed as  

1 2 1 2 ,′= ∗Q f f QΣ  

where 1 2f  stands for the continuous diagonal matrix ( )( )1 2diag f x  and the row × column multiplication, 
denoted by ,∗  is evaluated at x I∈  and then follows an integration w.r.t. .x  

In the theorems below, 
1 1
2 2f f G⊗  and n nu u⊗  stands for ( ) ( ) ( )

1 1
2 2 ,f x f x G x x′ ′  and ( ) ( ).n nu x u x′  

Theorem 2. Suppose that for a Euclidean distance δ  the geometric variability ( )V Xδ  is finite. Define 
( ) ( ), .Xtr G E G X X=     Then: 

1. ( ) ( ).XV X tr Gδ =  

2. 
1 1
2 2f f G⊗  is a Hilbert-Schmidt kernel, i.e., 

( ) ( ) ( )2

2, d d .
I

G x x f x f x x x′ ′ ′ < ∞∫  

Proof. Let ,X X ′  be i.i.d. and write ( ).v V Xδ=  From (7) ( ) ( )1, 2 0,
2

E G X X v v v′ = − − − =    and hence  

using (8), 

( ) ( ) ( )

( )( ) ( )( )
( )

2
2

1 , d d
2
1 2 , 2 ,
2

.

I

X

v x x f x xf x x

E G X X E G X X

tr G

δ ′ ′ ′=

 ′= − 

=

∫

 

This proves 1). Next, G  is p.s.d., so for 1, , nx x  the n n×  matrix with entries ( ),i jG x x  is p.s.d. In par-
ticular, for 2n =  with 1 ,x x=  2 ,x x′=  the determinant  

( ) ( )
( ) ( )

, ,
, ,

G x x G x x
G x x G x x

′
′ ′ ′

 

is non-negative. Thus  

( ) ( ) ( ) ( ) ( ) ( ) ( )2, , , .f x G x x G x x f x f x G x x f x′ ′ ′ ′ ′≥  

Integrating this inequality over 2I  gives  

( ) ( ) ( ) ( )2 2
2 , d d ,X I

tr G G x x f x f x x x′ ′ ′≥ ∫  

and 2) is also proved.  

Theorem 3. Suppose that ( )V Xδ  for a Euclidean distance δ  is finite. Then the kernel 
1 1
2 2f f G⊗  admits  

the expansion  
1 1
2 2

1
,n n n

n
f f G u uλ

≥

⊗ = ⊗∑                                 (9) 
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where ( )nu  is a complete orthonormal set of eigenfunctions in ( )2L I . Let  
1
2 ,n n nc f uλ

−
=                                    (10) 

and ( ) , 1.n nC c X n= ≥  Then ( )varn nCλ =  and ( )nC  is a sequence of centered and uncorrelated r.v.’s, 
which are principal components of ,Q  where ′=G QQ  and  

( ) ( )
1

.X n
n

tr G V Xδ λ
≥

= =∑  

Proof. The eigendecomposition (9) exists because 1 2 1 2f f G⊗  is a Hilbert-Schmidt kernel and 
( ) ,Xtr G < ∞  by Theorem 2. Next, (9) and (10) can be written as  

1 1
2 2 ,′=f Gf U UΛ                                  (11) 

i.e., 
1 1
2 2 ,∗ =f Gf U UΛ  and 

1 1
2 2 ,  ,

−
′= =C f U G CCΛ  where ( ) ,iu=U  ( ) ,ic=C  ( )1 2 1 2diag ,f=f  

( )diag .iλ=Λ  Thus, for all , ,x x I′∈   

( ) ( ) ( )
1

, .n n
n

G x x c x c x
≥

′ ′= ∑  

Next, for x I∈  we have ( ) ( ), , 0.E G x X E G X x= =        In particular, since  

( ) ( ) ( ) ( )
1

, , ,n n
n

G X x c X c x x I
≥

= ∈∑  

we have ( ) 0.nE c X =    Moreover, from (10) we also have  

( ) ( )( )cov , ,m n m mnc X c X λ δ=  

where mnδ  is Kronecker’s delta, showing that the variables ( )nc X  are centered and uncorrelated. 
Recall the product matrix notation. The principal components of Q  such that ′ =QQ G  are QΦ  where  

1 2 1 2′ ′= ∗ =Q f f QΣ ΦΛΦ                                (12) 

is the spectral decomposition of .Σ  Premultiplying (12) by 
1
2f Q  and postmultiplying by ′Φ  we obtain 

1 1 1 1
2 2 2 2∗ =f Gf f Q f QΦ ΦΛ  and therefore 

1 1 1 1
1 2 1 22 2 2 2 .− −∗ =f Gf f Q f QΦΛ ΦΛ Λ  

Thus the columns of 
1

1 22 −f QΦΛ  are eigenfunctions of 
1 1
2 2 .f Gf  This shows that 

1
1 22 ,− =f Q UΦΛ  see  

(11), and ( ) ( )( )1 2, ,c X c X= =C Q Φ  contains the principal components of .Q  The rows in C  may be 
accordingly called the principal coordinates of distance δ . This name can be justified as follows. 

Let us write the coordinates ( ) ( ) ( )( )1 2, ,C x c x c x=   and suppose that ( ) ( ) ( )( )1 2, ,P x p x p x=   is 
another Euclidean configurations giving the same distance δ . The linear transformation ( ) ( )C x P x→  is or-
thogonal and ( ) ( )m mp x C x= a  with 2 2

1 1.m nmn a
≥

= =∑a  Then the r.v.’s ( ) ( )1 2, ,p X p X   are uncorre-
lated and 

( ) ( )22
1 1

1
var var .m nm n m

n
p X a c Xλ λ

≥

= ≤ =      ∑ a  

Thus ( )1c x  is the first principal coordinate in the sense that ( )1var c X    is maximum. The second coordi-
nate ( )2c x  is orthogonal to ( )1c x  and has maximum variance, and so on with the others coordinates.  

The following expansions hold as an immediate consequence of this theorem:  

( )
1

, ,n n
n

G X X C C
≥

′ ′= ∑                                 (13) 

( ) ( )
1

, ,n n
n

G X c Cα α
≥

=∑                                (14) 

( ) ( )22

1
, ,n n

n
X X C Cδ

≥

′ ′= −∑                              (15) 
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where Iα ∈  and ( ) ,nC  ( )nC′ , with ( ) ( ), , 1,n n n nC c X C c X n′ ′= = ≥  are sequences of centered and uncorre-
lated random variables, which are principal components of Q . We next obtain some concrete expansions. 

4. A Particular Expansion 
If X  is a continuous r.v. with finite mean and variance, ( ) ,E Xµ =  ( )2 var ,Xσ =  say, and δ  is the ordi-
nary Euclidean distance x x′− , then it is easy to prove that ( ) ( ) ( ) ( )22 2,  , ,  ,V X D x X x G x xδ δσ µ ′= = − =  
( )( ).x xµ µ′− −  Then from (14) and taking ,x α′ =  we obtain ( ) ( )( ), ,G X Xα µ α µ= − −  which provides 
the trivial expansion .X X=  A much more interesting expansion can be obtained by taking the square root of 
x x′− . 

4.1. The Square Root Distance 
Let us consider the distance function  

( ), .x x x xδ ′ ′= −                                 (16) 

The double-centered inner product ( ),G x x′  is next given. 
Definition 3. Let ( )nh x  be defined as ( ) ( ) ( ) ,n n nh x c x c a= −  where nc  is defined in (10). 
We immediately have the following result. 
Proposition 1. The function nh  satisfies: 
1. ( ) ( ).n n nE h X c aµ= = −    
2. ( ) 0.nh a =  
3. .n n nh c µ= +   
Proposition 2. Assuming ,X X ′  i.i.d., if { }min ,XXE X Xµ ′ ′=    , then  

{ } ( ) ( ) ( )min , , , , .x x G x x G x a G a xµ′ ′ ′= + − −                       (17) 

Proof. From { }2min ,x x x x x x′ ′ ′− = + −  and combining (7) and (6), we obtain ( ) { } ( ), min ,G x x x x xϕ′ ′= −  
( ) ,xϕ µ′− +   where ( ) { }min , ,Xx E X xϕ =  which satisfies ( ) ,a aϕ = ( ) ( ) 0.b E Xϕ µ= =  Hence ( )xϕ =

( ),G x aµ −  and (17) holds.  
Proposition 3. The following expansion holds  

{ } ( ) ( ) ( ) ( )0 0
1

min , .n n n n
n

x x x h x h x h x h b
≥

′ ′ = + − ∑                    (18) 

Proof. Using (17) and expanding { } { }min , min ,x x y y′ ′−  and setting 0, ,y b y x′= =  we get (18).  
Replacing x  by X  we have the expansion  

{ } ( ) ( )0 0
1

min , ,n n n n
n

X X x X X h x h b
≥

′ ′ = + − ∑                     (19) 

and, as a consequence [12]:  

( )2

1
,n n

n
X X X X

≥

′ ′− = −∑  

where X ′  is distributed as X  and ( ).n nX h X′ ′=  This expansion also follows from (15). 
If ( )0 ,E Xµ =  ( ) ,n nE Xµ =  from (19) we can also obtain the expansions  

( ) ( )

( )( )

0 0
1

0
1

,

,

n n n
n

n n n
n

X x h b X h x

X h b Xµ µ
≥

≥

 = + − 

= + −

∑

∑
                           (20) 

as well as 

( ) ( )

( )

( )( )

2
0 0

1

2
0

1

1

,

,

,

n n n
n

n n n
n

n n n n
n

X x X h x h b

X X h b

X X X

µ µ

µ µ µ

≥

≥

≥

 = + − 

 = + − 

= + + −

∑

∑

∑

                          (21) 
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where the convergence is in the mean square sense [27]. 

4.2. Principal Components 
Related to the r.v. X  with cdf ,F  let us define the stochastic process { }, ,tX t I= ∈X  where tX  is the in-
dicator of [ ]X t>  and follows the Bernoulli ( )1,B p  distribution with ( )1p F t= − . For the distance (16), 
the relation between X , the Bernoulli process X  and δ  is  

( ) ( )2 2d 0 1 d ,
b x

t ta x
x x t t x x

′
′ ′− = − = −∫ ∫                        (22) 

where ( )X xω =  and ( )t tX xω =  is a realization of X. Thus X is a continuous configuration for .δ  Note 
that, if a  is finite, then 

d .tI
X a X t= + ∫  

The covariance kernel ( ),K s t  of X is given by ( ) ( ) ( ){ } ( ) ( ), min , .K s t F s F t F s F t= −  Let us consider 
the integral operator   with kernel K  

( )( ) ( ) ( ), d ,
I

t K s t s sϕ ϕ= ∫  

where ϕ  is an integrable function on [ ], .I a b=  Let ( )( ) , 1,n t nψ ≥  be the countable orthonormal set of ei-
genfunctions of ,  i.e., .n n nψ λ ψ=  We may suppose that ( )nψ  constitutes a basis of ( )2L I  and the ei-
genvalues ( )nλ  are arranged in descending order. As a consequence of Mercer’s theorem, the covariance ker-
nel ( ) ( ) ( ){ } ( ) ( ), min ,K s t F s F t F s F t= −  can be expanded as  

( ) ( ) ( )
1

, .n n n
n

K s t s tλ ψ ψ
≥

=∑                              (23) 

Theorem 4. The functions ( )n n nh c c a= −  (see definition 3), satisfy: 
1. ( ) ( )d .

x
n na

h x s sψ= ∫  

2. ( )( )nh X  is a countable set of uncorrelated r.v.’s such that ( )var , 1.n nh X nλ= ≥    
3. ( ) ( )( )1 2, ,h x h x   are principal coordinates for the distance ,x x′−  i.e.,  

( ) ( ) 2

1
.n n

n
x x h x h x

≥

′ ′− = −  ∑  

Proof. To prove 1), let us use the multiplication “∗” and write ( ),K s t  as 1 2 1 2 ,′= ∗ =K Xf f X ΦΛΦ  
where  

( ) [ ]{ }1 , , ,t tX X F t t a b= = − − ∈  X  

i.e., ( ) ( )( ) ( ) ( ), d ,s s t tI
K s t x x f x x x xµ µ= − −  ∫  with ( )1 ,t F tµ = −  where ( ) 1sx x =  if x s>  and 0 oth-

erwise. Then X  is a centered continuous configuration for δ  and clearly .′= ∗G X X  Arguing as in Theo-
rem 3, the centered principal coordinates are ,= ∗C X Φ  i.e.,  

( ) ( ) ( ) ( )

( ) ( )

d 1 d

d .

n t n nI I
x

n n n na

c x x t t F t t t

t t h x

ψ ψ

ψ µ µ

= − −  

= − = −

∫ ∫

∫
 

2) is a consequence of Theorem 3. An alternative proof follows by taking , , ,m nh h L Kα β= = =  in the for-
mula for the covariance [28]: 

( ) ( )( ) ( ) ( ) ( )cov , , d d .
I J

X X M x y x yα β α β= ∫ ∫                        (24) 

where ( ) ( ) ( ){ } ( ) ( ), min , .M x y F x F y F x F y= −  See Theorem 6. 
To prove 3), let ( ) ( )X x X xω ω′ ′= < =  and ( ) ( ), .t t t tx X x Xω ω′ ′= =  Then ( ) ( )1t n nnx h x tψ

≥
=∑  and 

,x x′−  see (22), is  

( ) ( ) ( ) ( )

( ) ( )

22 2

1
2

1

d d

.

t t n n nI I
n

n n
n

x x t h x h x t t

h x h x

ψ
≥

≥

′ ′− = −  

′= −  

∑∫ ∫

∑
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This proves that ( ) ( )( )1 2, ,h x h x   are principal coordinates for the distance ( ), .x x x xδ ′ ′= −  
The above results have been obtained via continuous scaling. For this particular distance, we get the same re-

sults by using the Karhunen-Loève (also called Kac-Siegert) expansion of X, namely,  

( )
1

,t n n
n

X t Xψ
≥

=∑                                 (25) 

where ( )d ,n t nI
X X t tψ= ∫  i.e., ( ).n nX h X=  Thus each nX  is a principal component of X and the sequence 
( ) , 1,n nX h X n= ≥  constitutes a countable set of uncorrelated random variables. 

4.3. The Differential Equation 
Let ,n n ng h µ= −  where ( ).n nE Xµ =  It can be proved [12] that the means ,nµ  eigenvalues nλ  and func-
tions ,ng  satisfy the second order differential equation  

( ) ( ) ( ) ( ) ( )0, , 0.g x g x f x g a g aλ µ′′ ′+ = = − =                       (26) 

The solution of this equation is well-known when X  is ( )0,1  uniform. 
Examples of eigenfunctions ,nψ  principal components ( )nh X  and the corresponding variances nλ  are 

[12,27,29]: 
1. X  is ( )0,1  uniform: ( ) ( )2 sin π ,n x n xψ =  ( ) ( ) ( )2 π 1 cos π ,nh X n n X = −   ( )21 π .n nλ =  
2. X  is exponential with unit mean. If ( )0 ,n n nc Jξ ξ=  

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

1 0

0 0

exp 2 exp 2 ,

2 exp 2 2 ,

n n n

n n n n

x x J x J

h X J X J c

ψ ξ ξ

ξ ξ

= − −

 = − − 
 

24 ,n nλ ξ=  where nξ  is the n-th positive root of 1J  and 0 1,J J  are the Bessel functions of the first order. 
3. X  is standard logistic ( ) ( )1 1 exp ,F x x= + −    .x−∞ < < ∞  If ( )1 ,nc n n= +  2 1,nd n= +   

( )
( )( ) ( )( )

( ) ( )( ) ( )

1 1

11 2

1 ,2 2 2

1 ,

n nn
n

n n n

n
n n n n

L F x L F xcx
d d d

h X c L F X d

ψ − +

+−

 
= − 

− +  
 = + − 

                        (27) 

( )1 1 ,n n nλ = +    where ( )nL  are the shifted Legendre polynomials on [ ]0,1 .  
4. X  is Pareto with ( ) 31 , 1:F x x x−= − >   

( ) ( ) ( ) ( )
( ) ( ) ( )

sin 1 cos ,

sin sin ,
n n n n

n n n n

x c x x x

h X c X X

ψ ξ ξ

ξ ξ

 = − 
 = − 

 

23 ,n nλ ξ=  where  

( ) 1 21 22 2 sin 2n n n nc ξ ξ ξ
−−  = −   

and ( )tan .n nξ ξ=   
Note that the change of variable y x α=  transforms g  in gα  and (26) in  

( ) ( ) ( ) ( ) 0.g y g y f yα αλ α α α α α′′ + ⋅ =  

Hence ( ) ( ) ,n nh x h yα α→  ( ) ( )n nx yψ αψ α→  and ,n nλ λ α→  providing solutions for the variable 
.X α  For instance, we immediately can obtain the principal dimensions of the Pareto distribution with cdf 

( ) 31 ,x α −−  .x α>  

4.4. A Comparison 
The results obtained in the previous sections can be compared and summarized in Table 1, where X  is a ran-
dom variable with absolutely continuous cdf ,F  density f  and support [ ], .I a b=  The continuous scaling 
expansion is found w.r.t. the distance (16). Note that we reach the same orthogonal expansions (we only include 
two), but this continuous scaling approach is more general, since by changing the distance we may find other  
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Table 1. Principal components and principal directions of a random variable. 

Principal components expansion Continuous scaling expansion 

Bernoulli process Euclidean distance 

[ ]t X tX >= 1  ( ) ( ) ( ),x x x x Q x Q xδ ′ ′ ′= − = −  

Mercer’s theorem  Eigen decomposition of G  

( ) ( ) ( ) ( )1
, cov ,s t n n nn

K s t X X t sλψ ψ
≥

= =∑  ( ) ( ) ( ) ( ) ( )
1 1
2 2

1
, n n nn

G x x QQ f x u x f x u xλ − −

≥
′ ′ ′ ′= =∑  

Orthogonal sequence Orthogonal sequence (centered) 

( ) ( )d
x

n na
h x t tψ= ∫  ( ) ( ) ( )

1
2

n n nc x f x u xλ −
=  

Principal components Principal dimensions 

( ) ( )dn t n nI
X X t t h Xψ= =∫  ( ) ( ) ( )n n n nX h X c X c a= = −  

Karhunen-Loève expansion Continuous scaling expansion 

( )1t n nn
X t Xψ

≥
=∑  ( ) ( ) ( )1

, n nn
G x x c x c x

≥
′ ′=∑  

Trace of K  Geometric variability 

( ) ( ), d
I

tr K K s s s= ∫  ( ) ( ) ( ) ( )2

21 , d d
2 I

V X x x F x F xδ δ ′ ′= ∫  

Decomposition of ( )tr K  Decomposition of ( )V Xδ  

( ) ( )1 1
varn nn n

tr K Xλ
∞

≥ =
= =∑ ∑  ( ) ( )1 1

varn nn n
V X Xδ λ

≥ ≥
= =∑ ∑  

Orthogonal expansions 

( ) ( ) ( )0 01 n n nn
X x h b h X h x

≥
= + −  ∑  

( ) ( ) 2

1 n nn
X X h X h X

≥
′ ′− = −  ∑  

 
principal directions and expansions. This distance-based approach may be an alternative to the problem of find-
ing nonlinear principal dimensions [30]. 

4.5. Some Properties of the Eigenfunctions 
In this section we study some properties of the eigenfunctions nψ  and their integrals .nh  

Proposition 4. The first eigenfunction 1ψ  is strictly positive and satisfies 

( ) ( ) ( ) ( )1 0, , , 2.n nx a b x a b nψ ψ ψ> = = ∈ ≥  

Proof. K  is positive, so 1ψ  is also positive (Perron-Frobenius theorem). On the other hand ( ),K t t =  
( ) ( ) ( )2

11 ,n nnF t F t tλ ψ
≥

− =   ∑  which satisfies ( ) ( ), , 0.K a a K b b= =   

Clearly, if 1ψ  is positive, 1h  is increasing and positive. Moreover, any nh  satisfies the following bound. 
Proposition 5. If ( )2 var Xσ =  is finite then ( )nh b  is also finite and  

( ) , 1.n
n

h b nσ
λ

< ≥                                (28) 

Proof. n nhψ ′=  is an eigenfunction and from (24) 

( ) ( )( )
( ) ( ) ( )( )
, d d

d cov , .

nI I

n n n n nI

K x y x x y

y y h b h X X

ψ

λ ψ λ= = =

∫ ∫
∫

 

Hence ( )22 2.n n nh bλ λ σ<   
Proposition 6. The principal components ( )( )nh X  of tX  constitutes a complete orthogonal system of 
( )2 .L F   
Proof. The orthogonality has been proved as a consequence of (24). Let ( )2L Fφ ∈  be a continuous function 
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such that ( ) ( )( )cov , 0,nX h Xφ =  1.n ≥  Suppose that φ′  exists. As ( )nψ  is a complete system 
1 n nn cφ ψ
≥

′ = ∑  and integrating, we have 0 1 .n nnc c hφ
≥

= +∑  But ( ) ( )( )cov , 0,n n nX h X cφ λ= =  1,n ≥  which 
shows that φ  must be constant.  

4.6. The First Principal Component 
In this section we prove two interesting properties of 1h  and the first principal component ( )1 ,h X  see [10]. 

Proposition 7. The increasing function 1h  characterizes the distribution of .X   
Proof. Write 1.z h=  Then z  satisfies the differential equation (see (26)) 

( ) ( ) ( )0, 0,z z f z a z aλ µ′′ ′+ − = = =                           (29) 

where ( ) ,E z Xµ =     ( )var .z Xλ =     When the function z  is given, µ  and λ  may be obtained by 
solving the equations 

( ) ( )
d 1, d ,

I I

z zx z x
z z
λ λ µ
µ µ
′′ ′′− −

= =
− −∫ ∫  

and the density of X  is ( ).f z zλ µ′′= − −   
Proposition 8. For a fixed t  let ( )( )2 ,tX g Xρ  denote the squared correlation between tX  and a func-

tion ( ).g X  The average of ( )( )2 ,tX Xρ φ  weighted by ( ) ( ) ( ), 1K t t F t F t= −    is maximum for 1,g h≡  
i.e., 

( )( ) ( ) ( )( ) ( )2 2
1, , d , , d .sup t tI Ig

X g X K t t t X f X K t t tρ ρ=∫ ∫  

Proof. Let us write (see Proposition 6) 
1 .n nng a h
≥

= ∑  Then ( )( ) 2
1var n nng X a λ
≥

= ∑  and we can suppose 
2

1 1.nn a
≥

=∑  From (25) 

( )( )2 2 2

1
cov , d .t n nI

n
X g X t a λ

≥

= ∑∫  

As ( ) ( )var , ,tX K t t=  we have 

( )( ) ( )2

2 2 2 2 2
1 1

1 1 1 1

, , dsup

.

tIg

n n n n n n n n
n n n n

X g X K t t t

a a a a

ρ

λ λ λ λ λ λ
≥ ≥ ≥ ≥

       = ≤ =       
       

∫

∑ ∑ ∑ ∑
 

Thus the supreme is attained at 1.g h≡  

5. An Inequality 
The following inequality holds for X  with the normal ( )0,1N  distribution [31,32]: 

( ){ } ( ) ( ){ }2 2
var ,E g X g X E g X′ ′≤ ≤            

where g  is an absolutely continuous function and ( )g X  has finite variance. This inequality has been ex-
tended to other distributions by Klaassen [33]. Let us prove a related inequality concerning the function of a 
random variable and its derivative. 

If ( )1h X  is the first principal dimension, then 1 1 0hψ ′= ≥  and ( ) ( )1 1 d .
I

h b x xψ= < ∞∫  We can define the 
probability density 1f  with support [ ],I a b=  given by 

( ) ( )
( )

1
1

1

.
y

f y
h b
ψ

=  

Theorem 5. Let Y  be a r.v. with pdf 1.f  If g  is an absolutely continuous function and ( )g X  has finite 
variance, the following inequality holds 

( ) ( ){ } ( ) ( )
2 22

1 1 1var d ,
I

h b E g Y g X g x xλ λ′ ′≤ ≤          ∫                   (30) 

with equality if g  is 1.h   
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Proof. From Proposition 6, we can write 
1 ,n nng aψ
≥

′ = ∑  where ( ) ( ) ( ) ( )( )1 1 1d .
I

a x g x x h b E g Yψ ′ ′= =∫  
Then 

1 n nng a h
≥

= ∑  and ( )var n nh X λ=   , so 

( ) 2

1
var .n n

n
g X a λ

≥

=   ∑  

From Parseval’s identity ( ) 2 2
1d .nnI

g x x aγ
≥

′= =   ∑∫  Thus we have  

2 2
1 1 1

1
,n n

n
a aλ λ γλ

≥

≤ ≤∑  

proving (30). Moreover, if 1g h=  we have ( ) ( )( ) 22
1 1h b E g Y ′ =   and ( ) 2

d 1.
I

g x x′ =  ∫  

Inequality (30) is equivalent to 

( ) ( ){ } ( ) ( )
2 2

1 1 1d var d .
I I
g x x x g X g x xλ ψ λ′ ′≤ ≤      ∫ ∫                       (31) 

Some examples are next given. 

5.1. Uniform Distribution 
Suppose X  uniform ( )0,1 .  Then ( ) ( )1 πsin π 2,f y y=  0 1y< <  and 2

1 1 π .λ =  We obtain 

( ) ( ){ } ( ) ( )1 1 2

2 20 0

2 1sin π d var d .
π π

g x x x g X g x x′ ′≤ ≤      ∫ ∫  

5.2. Exponential Distribution 
Suppose X  exponential with mean 1. Then 2

1 14λ ξ=  and  

( ) ( ) ( )( )
( )

1 1 1
1

0 1

exp 2 exp 2
,

2 1
y J y

f y
J

ξ ξ
ξ

− −
=

−  
 

where 1 3.83171ξ =  satisfies ( )1 1 0.J ξ =  Inequality (31) is 

( ) ( ){ } ( ) ( ) 22 2
1 1 1 20 0

1

4e e d var d ,x xc g x J x g X g x xξ
ξ

∞ ∞− −′ ′≤ ≤      ∫ ∫  

where ( )2
1 1 0 14 .c Jξ ξ =    

5.3. Pareto Distribution 
Suppose X  with density ( ) 31f x x−= −  for 1.x >  Then 2

1 13λ ξ=  and 

( ) ( ) ( ) ( )
( )

1 1
1

1 1

sin 1 cos
,

sin
y y y

f y
ξ ξ

ξ ξ
−

=
−

 

where 1 4.49341ξ =  satisfies ( )1 1tan .ξ ξ=  Inequality (31) is 

( ) ( ) ( ) 21 1
1 21 1

1

1 3sin cos d var d ,c g x x g X g x x
x x x
ξ ξ

ξ
∞ ∞     ′ ′− ≤ ≤                 
∫ ∫  

where ( ){ }3
1 1 1 13 4 2 sin 2 .c ξ ξ ξ= −    

5.4. Logistic Distribution 
Suppose that X  follows the standard logistic distribution. The cdf is 

( ) ( ) 1
1 exp , ,F x x x

−
= + − −∞ < < +∞    

and the density is ( )1 .f F F= −  
This distribution has especial interest, as the two first principal components are 1 26 , 30 ,h F h f= =  i.e., 

proportional to the cdf and the density, respectively. Note that 1h  can be obtained directly, as if we write 
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1 ,h cF=  then 22, 12c cµ λ= =  and (29) gives 

( )
2 11 2 0,

12 2
c F F − + − = 

 
 

so 6.c =  Similarly, we can obtain 2.h  Besides  

( )( ) ( ) ( )( ) ( )2 2, d , d ,sup t tI I
X X f t t X F X f t t

φ
ρ φ ρ=∫ ∫  

i.e., the expectation of ( )( )2 ,tX Xρ φ  w.r.t. t  with density ( )f t  is maximum for .Fφ =  

Now 1 1 2λ =  and ( )1 6.h b =  The density ( )1 1 1f h bψ=  is just f , therefore inequality (30) for the lo-
gistic distribution reduces to  

( )( ) ( ) ( )
2 213 var d .

2
E g X g X g x x

+∞

−∞
 ′ ′≤ ≤        ∫  

In general, if Z  is logistic with variance 2σ  then Z Xα=  with ( )3 π .α σ=  Noting that the func-
tions , 2,nh n′ ≥  are orthogonal to f  and using (24), we obtain 

( ) ( )( )

( )( ) ( ) ( ) ( )( )
2

cov ,

6 d d .
2 2I I

F X g X

f x x f y g y y E g X

α

α αα α′ ′= =∫ ∫
 

As ( )var 1 12,F X =    the Cauchy-Schwarz inequality proves that  

( ) ( ) ( )( )
2 2

2
3var var .
π

g Z Z E g Z
 

 ′≥      
 

 

6. Diagonal Expansions 
Correspondence analysis is a variant of multidimensional scaling, used for representing the rows and columns of 
a contingency table, as points in a space of low-dimension separated by the chi-square distance. See [15,34]. 
This method employs a singular value decomposition (SVD) of a transformed matrix. A continuous scaling ex-
pansion, viewed as a generalization of correspondence analysis, can be obtained from (3) and (4). 

6.1. Univariate Case 
Let ,h f  be two densities with the same support .I  Define the squared distance 

( ) ( ) ( ) ( ) ( ) 22 , .x x h x f x h x f xδ ′ ′ ′= −    

The double-centered inner product is given by 

( ) ( ) ( ) ( ) ( ), 1 1G x x h x f x h x f x′ ′ ′= − −        

and the geometric variability is 

( ) ( ) ( ) ( )2
tr 1 d ,X I

G h x f x f x x= −  ∫  

which is a Pearson measure of divergence between h  and .f  If ( )nu  is an orthonormal basis for ( )2 ,L I  
we may consider the expansion 

( ) ( ) ( ) ( )1 2

1
1 n n

n
h x f x f x u xα

≥

− =   ∑  

and defining 1 2 ,n n nA f uα −=  then 

( ) ( ) ( )
1

1 n
n

h x f x A x
≥

 = +  
∑  

and 

( ) ( ) ( ) 22

1
, .n n

n
x x A x A xδ

≥

′ ′= −  ∑  
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However, ( ) ( )( )1 2, ,A x A x   are not the principal coordinates related to the above distance. In fact, the con-
tinuous scaling dimension is 1 for this distance and it can be found in a straightforward way. 

6.2. Bivariate Case 
Let us write (4) as 

1
,n n n

n
h f g fa gbρ

≥

− ⊗ = ⊗∑                               (32) 

where 1 2 1 2, ,n n n na f u b g v− −= =  1,n ≥  are the canonical functions and ( )nρ  is the sequence of canonical  

correlations. Note that ( ) ( ) 0X n Y nE a X E b Y= =        and ( ) ( )2 2 1.X n Y nE a X E b Y   = =     

Suppose that h  is absolutely continuous w.r.t. f g×  and let us consider the Radom-Nikodym derivative 

( ) ( )
( ) ( )

,
, .

h x y
r x y

f x g y
=  

The so-called chi-square distance between [ ], ,x x a b′∈  is given by 

( ) ( ) ( ) ( )

( ) ( ){ }
2 12

2

, d

, , .

d

c

Y

x x f y x f y x g y y

E r x Y r x Y

δ −′ ′= −  

′= −  

∫
 

Let ( ) ( ) ( )( ) 2
, d d ,

b d

a c
z h x y f x g y x y =  ∫ ∫  the Pearson contingency coefficient is defined by  

( ) ( ) ( )
( ) ( )

2

2 ,
d d 1.

b d

a c

h x y f x g y
x y z

f x g y
φ

−  = = −∫ ∫  

The geometric variability of the chi-square distance is 2.Vδ φ=  In fact 

( ) ( ) ( )2 12 d d d 2.
b b d

a a c
V f y x f y x g y x x y z zδ

−′ ′= − = + −  ∫ ∫ ∫   

The proximity function is 

( ) ( ) ( )
( ) ( ){ }

2 2 2, , 1

, 1 , 1 ,

X Y

Y

D x E x X V E r x Y

E r x Y r x Y

δ δδ   = − = −   

= − −      
 

and the double-centered inner product is 

( ) ( ) ( ){ }
( ){ } ( ){ }

, , , 1

, 1 , 1 .

Y

Y

G x x E r x Y r x Y

E r x Y r x Y

′ ′= −

 ′= − − 
 

We can express (32) as 

( )1 2 1 2

1
1 .n n n

n
f g r u vρ

≥

⊗ − = ⊗∑  

This SVD exists provided that 2 .φ < ∞  Multiplying ( )1 2 1 2 1f g r⊗ −  by himself and integrating w.r.t. y  
we readily obtain 

1 2 1 2 2

1
.n n n

n
f f G u uρ

≥

⊗ = ⊗∑  

Comparing with (9) we have the principal coordinates ( ) ( )( )1 2, , ,A x A x   where 1 2 ,n n nA f uρ −=  which 
satisfy 

( ) ( ) ( ) 22

1
, .n n

n
x x A x A xδ

≥

′ ′= −  ∑  

Then  
2 2

1
.n

n
φ ρ

≥

= ∑  
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See [18] for further details. 
Finally, the following expansion in terms of cdf’s holds [35]:  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1

, , d , d ,
b d

n n na c
n

H x y F x G y M x s a s M t y b tρ
≥

− =∑ ∫ ∫              (33) 

where ( ) ( ) ( ){ } ( ) ( )1 , min , ,M x y F x F y F x F y= −  ( ) ( ) ( ){ } ( ) ( )2 , min , .M x y G x G y G x G y= −  Using a ma-
trix notation, this diagonal expansion can be written as  

( ) ( )1 2= ,H F G D M dA M dBρ− ⊗ ∗ ⊗ ∗  

where Dρ  stands for the diagonal matrix with the canonical correlations, and ( )1 2, , ,dA da da ′=  dB =  
( )1 2, , .db db ′

  

7. The Covariance between Two Functions 
Here we generalize the well-known Hoeffding’s formula 

( ) ( ) ( ) ( )cov , , d d ,
b d

a c
X Y H x y F x G y x y= −  ∫ ∫  

which provides the covariance in terms of the bivariate and univariate cdf’s. The proof of the generalization be-
low uses Fubini’s theorem and integration by parts, being different from the proof given in [28]. 

Let us suppose that the supports of ,X Y  are the intervals [ ] [ ], , , ,a b c d ⊂   respectively, although the re-
sults may also hold for other subsets of .  We then have  

( ) ( ) ( ) ( )0, 1.F a G c F b G d= = = =  

Theorem 6. If ( ) ( ),x yα β  are two functions defined on ],,[],,[ dcba  respectively, such that: 
1. Both functions are of bounded variation. 
2. ( ) ( ) ( ) ( ) 0.a F a c G cα β= =  
3. The expectations ( ) ( )( ) ( )( ) ( )( ), ,E X Y E X E Yα β α β  are finite.  
Then:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )cov , , d d .
b d

a c
X Y H x y F x G y x yα β α β= −  ∫ ∫                 (34) 

Proof. The covariance exists and is 

( ) ( ) ( ) ( ) ( ) ( ) ( )d , d ,
b d

K S a c
I x y H x y x dF x y G yα β α β= −∫ ∫ ∫  

where [ ] [ ], , .S a b c d= ×  Integration by parts gives  

( ) ( ) ( ) ( ) ( ) ( )d d ,
b b

Fa a
A x F x b F x x b Iα α α α= = − = −∫ ∫  

and similarly ( ) .GB d Iβ= −  By Fubini’s theorem for transition probabilities  

( ) ( ) ( )( ) ( ), , d d ,
b d

xa c
E X Y x y F y F xφ φ=   ∫ ∫  

where ( )xF y  is the cdf of Y  given X x= , we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( )d , d d .
b d

xS a c
C x y H x y x F x y F yα β α β= =∫ ∫ ∫  

We first integrate with respect to .y  Setting ( ) ( ), d ,
y

xc
u y v F tβ= = ∫  to find d ,

d

c
u v∫  integration by parts 

gives  

( ) ( ) ( ) ( ) ( ) ( )d d d d .
d d d y

x x xc c c c
y F y d F t F t yβ β β= −∫ ∫ ∫ ∫  

Since ( ) ( ) ( )d d d , ,xF x F t H x t=  setting ( ) ( ) ( ), d , ,
x d

a c
u x v H x t F xα= = =∫ ∫  we find 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 ) d d

d ,

b d
xa c

b

a

C d x F x F t

d b F x x

β α

β α α

=

 = −  

∫ ∫

∫
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and setting ( ) ( ) ( ) ( ) ( ), d , d , d ,
d x y d

c a c c
u x v H s t y H x y yα β β= = =∫ ∫ ∫ ∫  again integration by parts gives  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 d d d

, d ,

d ,

b d y
xa c c

bd
Hc a

d
Hc

C x F x F t y

x H x y y I

b G y y I

α β

α β

α β

=

= −

= −

∫ ∫ ∫

∫

∫

 

where ( ) ( ) ( ), d d .H S
I H x y x yα β= ∫  Therefore 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 d d .
b d

Ha c
C C C b d d F x x b G y y Iα β β α α β= − = − − +∫ ∫  

A last simplification shows that .K H F GI C A B I I I= − × = − ×   

8. Canonical Analysis 
Given two sets of variables, the purpose of canonical correlation analysis is to find sets of linear combinations 
with maximal correlation. In Section 6.2 we studied, from a multidimensional scaling perspective, the nonlinear 
canonical functions of X  and ,Y  with joint pdf .h  Here we find the canonical correlations and functions for 
several copulas. 

Let ( ),U V  be a bivariate random vector with cdf ( ),C u v , where U  and V  are ( )0,1  uniform. Then 
C  is a cdf called copula [36]. Let us suppose C  symmetric. Then ( ) ( )( ) ( ) ( )( )cov , cov , .U V U Vφ ϕ ϕ φ=  
Therefore, in finding the canonical functions, we can suppose .φ ϕ=  

Let us consider the symmetric kernels 

( ) ( ) ( ) { }, , , , min , .K u v C u v uv L u v u v uv= − = −  

We seek the canonical functions ( ) ( ),U Vφ φ  and the corresponding canonical correlations, i.e.,  

( ) ( )( )cor , .sup U V
φ

ρ φ φ=                              (35) 

Definition 4. A generalized eigenfuction of K  w.r.t. L  with eigenvalue λ  is a function ϕ  such that 

( ) ( ) ( ) ( )1 1

0 0
, d , d .K u v v L u v vφ λ φ=∫ ∫                          (36) 

From the theory of integral equations, we have  

( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

, d dsup

constrained to , d d 1.

K u v u v

L u v u v

φ
λ φ φ

φ φ

=

=

∫

∫
                        (37) 

Definition 5. On the set of functions in ( )2 ,L I  with [ ]0,1 ,I =  we define the inner products 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2

, , d d ,

, , d d .
I

I

K K u v u v

L L u v u v

φ ϕ φ ϕ

φ ϕ φ ϕ

=

=

∫
∫

 

Clearly, see Theorem 6, if φ  is eigenfunction of K  w.r.t. L  with eigenvalue ,λ  we have the covariance 
( ) ( )( ) ( )cov , ,U V Kφ φ φ φ=  and the variance ( ) ( )var , .U Lφ φ φ=    Therefore the correlation between ( ) ,Uφ  

( )Vφ  is:  

( ) ( )( ) ( )
( )

,
cor , .

,
K

U V
L

φ φ
φ φ λ

φ φ
= =  

Thus the canonical correlations of ( ),U V  are the eigenvalues of K  w.r.t. .L  
Justified by the embedding in a Euclidean or Hilbert space via the chi-square distance, the geometric dimen-

sion of a copula C  is defined as the cardinal of the set ( )nρ  of canonical correlations. The dimension can be 
finite, infinite countable (cardinality of 0ℵ ) or uncountable (cardinality of the continuum  ). 

We next illustrate these results with some copulas. Since { }min ,u v  is a copula, the so-called Fréchet- 
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Hoeffding upper bound, we firstly suggest a procedure for constructing copulas and performing canonical anal-
ysis. This procedure is based on the expansion (23) for the logistic distribution. 

For this distribution, if ( )1 ,nc n n= +  2 1,nd n= +  we have [27]: 

( ) ( ){ } ( ) ( ) ( )( ) ( )( )1

1
min , ,n n n

n
F x F y F x F y c F x F yψ ψ−

≥

− =∑  

where ( )n xψ  is given in (27). With the change ( ) ,u F x=  ( ) ,v F y=  we find: 

{ } ( ) ( )1

1
min , ,n n n

n
u v uv c u vψ ψ− ∗ ∗

≥

= +∑                            (38) 

with 0 , 1u v≤ ≤  and  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1

1 1

1 1

1 2 1 2 1 2 1
2

1 2 1 2 1
2

1 1 1 ,
2 2 2

n
n n n

n

n
n n

n

n
n n

n n n

d
u nP u n u P u

c

c
P u P u

d

c
L u L u

d d d

ψ ∗
−

− +

− +

= − − − −  

= − − −  

 
= − 

− +  

 

where nP  are Legendre polynomials and nL  are shifted Legendre polynomials on [ ]0,1 . Thus ( )1 uψ ∗ =
( )6 1 ,u u−  ( ) ( )( )2 30 1 2 1 ,u u u uψ ∗ = − −  ( ) ( )3 2

3 84 5 10 6 1 ,u u u u uψ ∗ = − + − +  etc. 

8.1. FGM Copula 
If we consider only 1ψ ∗  in (38), we obtain the Farlie-Gumbel-Morgenstern copula:  

( ) ( )( ), 1 1 1 , 1 1.FGM u v uv u vθ θ θ= + − − − ≤ ≤    

Then ( ) ( ) ( ) ( )1

0
, d 6 1K u v v u uφ θ= −∫  and ( ) ( ) ( ) ( )1

0
, d 1 2 1L u v v u uφ = −∫  if ( ) .v vφ =  Thus v  is an ei-  

genfunction with eigenvalue 3.θ  Then u  and v  are the canonical functions with canonical correlation 
3.θ  The geometric dimension is one. 

8.2. Extended FGM Copula 
By taking more terms in expansion (38), we may consider the following copula 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )

3 1 2

3 2 3 2
3

, 1 1 2 1 1 2 1 1

5 10 6 1 5 10 6 1 ,

C u v uv u u v v u u u v v v

u u u u v v v v

θ θ

θ

= + − − + − − − −

+ − + − − + −
 

where 1 1.iθ− ≤ ≤  The canonical correlations are 1 1 2 2 3 33 , 5 , 7 .ρ θ ρ θ ρ θ= = =  The canonical functions  
are ( ) ( )1 6 1 2 ,u uψ ∗′ = −  ( ) ( )2

2 30 6 6 1 ,u u uψ ∗′ = − +  ( ) ( )3 2
3 84 20 30 6 1 ,u u u uψ ∗′ = − + −  respectively. 

This copula has dimension 3. 
Clearly 3C  reduces to the FGM copula if 2 3 0.θ θ= =  When the dimension is 2, i.e., 3 0,θ =  we have a 

copula with cubic sections [37]. A generalization is given in [38]. 

8.3. Cuadras-Augé Copula 
The Cuadras-Augé family of copulas [39] is defined as the weighted geometric mean of { }min ,u v  and :uv  

( ) ( ) { }( )1, min , , 0 1.CA u v uv u v
θθ

θ θ−= ≤ ≤  

For this copula, the canonical correlations constitute a continuous set. If ( ) 1xγφ =  for x γ=  and 0 other-
wise, it can be proved [40] that the set ( ),γ γφ λ  of eigenpairs of ( ) ( ), ,K u v CA u v uvθ θ= −  w.r.t. 1,L K=  is 
given by  

1, , 0 1.θ
γ γφ λ θγ γ−= ≤ ≤  
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Thus, the set of canonical functions and correlations for the Cuadras-Augé copula is the uncountable set 
( )1, ,θ

γφ θγ −  0 1,γ≤ ≤  with dimension of the power of the continuum. In particular, the maximum correlation 
is the parameter θ  with canonical function the Heaviside distribution 1.  The maximum correlation θ  was 
obtained by Cuadras [28]. 
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