
Journal of Data Analysis and Information Processing, 2014, 2, 12-18
Published Online February 2014 (http://www.scirp.org/journal/jdaip)
http://dx.doi.org/10.4236/jdaip.2014.21003

OPEN ACCESS JDAIP

Dealing with Empty and Overabundant Answers to
Flexible Queries

Samyr Abrahão Moises, Silvio do Lago Pereira
Department of Information Technology, FATEC-SP/CEETEPS, São Paulo, Brazil

Email: samyr.moises@fatec.sp.gov.br, slago@fatecsp.br

Received November 22, 2013; revised December 28, 2013; accepted February 6, 2014

Copyright © 2014 Samyr Abrahão Moises, Silvio do Lago Pereira. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP
and the owner of the intellectual property Samyr Abrahão Moises, Silvio do Lago Pereira. All Copyright © 2014 are guarded by law
and by SCIRP as a guardian.

ABSTRACT
In traditional database applications, queries intend to retrieve data satisfying precise conditions. As a result,
thousands of data can be retrieved (overabundant answer) or, even worse, no data at all (empty answer). In both
cases, the queries must be reformulated to produce more significant results and, typically, many related queries
are submitted by a user before he can be finally satisfied. To overcome these problems, this paper proposes a
unified solution in the framework of flexible queries with fuzzy semantics. This solution, based on the concept of
semantic proximity and implemented in a tool for flexible query answering, allows the automatic reformulation
of queries with empty or overabundant answers.

KEYWORDS
Relational Database; Fuzzy Logic; Flexible Query; Empty Answer; Overabundant Answer

1. Introduction
In traditional database applications, the queries submitted
by a user are rigid and intend to retrieve data satisfying
precise conditions [1]. As a result, the user can obtain
tens of thousands of data or, even worse, no data at all. In
the former case, the user can be overwhelmed because he
has no means of deciding what is the best answer; and, in
the latter, he can be frustrated because he has no answer.
In both cases, the user tends to reformulate his queries in
order to obtain a more significant result. Thus, typically,
many related rigid queries are submitted by a user before
he can be finally satisfied [2].

To overcome these problems, many works in literature
propose the use of flexible queries [3-5], that is, queries
with vague conditions whose semantics is based on fuzzy
logic [6]. In this setting, each answer retrieved by a query
has a satisfaction degree between 0 and 1. More precisely,
the result of a flexible query is a set of all answer satis-
fying, in some degree, the vague conditions imposed by
the query. Clearly, the advantage of this approach is that
the chance of obtaining an empty answer set is reduced
and, by sorting an overabundant answer set in decreasing

order of satisfaction degree, the selection of the best an-
swer is simplified. Even though, flexible queries are not
sufficient to completely avoid these problems.

In fact, there are situations where no available data can
satisfy a flexible query with degree greater than 0 (Empty
Answer Problem—EAP). Most of the solutions to EAP
proposed in the literature are based on automatic relaxa-
tion [7-10], that is, the weakening of the predicates used
in a vague condition, to obtain a less restrictive variant of
it. On the other hand, there are also situations where a
huge amount of data can satisfy a query with degree
equal to 1 (Overabundant Answer Problem—OAP). The
very few solutions to OAP proposed in the literature are
based on automatic intensification [11,12] that is, the
strengthening of the predicates used in a vague condition,
in order to obtain a more restrictive variant of it.

As pointed out in many works, the major challenge in
solving EAP (or OAP) is to find a form of relaxation (or
intensification) that preserves, as much as possible, the
semantics of the original query submitted by the user. As
we have noticed, since relaxation and intensification are
inverse transformations, no unified solution to EAP and

http://www.scirp.org/journal/jdaip
http://dx.doi.org/10.4236/jdaip.2014.21003
mailto:samyr.moises@fatec.sp.gov.br
mailto:slago@fatecsp.br

S. A. MOISES, S. L. PEREIRA

OPEN ACCESS JDAIP

13

OAP has been proposed in the literature. Thus, this also
seems to be a challenge in solving these problems.

In this paper, a transformation based on the concept of
semantic proximity [13] of fuzzy predicates is proposed.
The main advantage of this transformation is its capabil-
ity of dealing with both problems (EAP and OAP), while
maintaining, as much as possible, the semantics of the
original query submitted by the user.

The rest of this paper is organized as follow: Section 2
presents a fuzzy semantics for flexible queries; Section 3
proposes a unified solution to EAP and OAP, based on
the concepts of semantic proximity and query modifica-
tion; Section 4 describes a tool implemented for flexible
query answering, based on the solution proposed in this
work; Section 5 presents the conclusions of this paper.

2. Semantic Model for Flexible Queries
This section presents a fuzzy semantics for flexible que-
ries and some illustrative examples.

2.1. Fuzzy Sets and Fuzzy Logic
Let U be a universe of discourse. A fuzzy set F in U is
characterized by a membership function µF:U → [0,1].
The value µF(x), for each x ∈ U, denotes the membership
degree of x in the fuzzy set F.

In fuzzy logic, the semantics of a predicate is based on
the concept of fuzzy set and is defined by a membership
function. Moreover, the semantics of a compound fuzzy
formula is derived from the semantics of its predicates
and logical connectives (∧ and ∨), usually defined by
minimum t-norm and maximum s-norm [14].

There are many standard membership functions which
can be used to define the semantics of a fuzzy predicate
(e.g., sigmoidal and Gaussian) [3]. However, due to its
computational simplicity, the trapezoidal function is the
most commonly used in practice. In fact, only symmetric
trapezoidal functions are used in this work.

A symmetric trapezoidal function, with argument x
and fixed parameters b, c and δ, is defined as follows:

()
()

, , ,

,
0, 1,

tmf x b c d

min x b c x
max min

δ
δ

 − − + 
=      

 (1)

Let µT = tmf(x, b, c, δ) be a symmetric trapezoidal
function. The core of µT is the set of all x such that µT(x)
= 1, that is, core(µT) = [b, c]. The support of µT is the set
of all x such that µT(x) > 0, that is, supp(µT) = [b − δ, c + δ].
The boundary of µT is the set of all x such that 0 < µT(x)
< 1, that is, bnd(µT) = supp(µT) − core(µT). The α-cut of
µT is the set of all x such that µT(x) ≥ α, for 0 ≤ α ≤ 1. If b
= c, then µT is called triangular function. In this case, the
core of µT has a single element, called prototype of µT.

2.2. Vague Conditions and Flexible Queries
A simple vague condition is a fuzzy predicate that takes
as argument the value of an attribute in a relational data-
base table. For example, considering a table with attri-
butes salary, age and budget, the following simple vague
conditions can be defined:

() ()2 ,2,2,0.5around k salary tmf salary= (2)

() ()_ ,38,42,1about fourty age tmf age= (3)

() ()_ ,34,36,10medium dept budget tmf budget= (4)

For instance, around2k(1.7) expresses the proposition
“US$ 1.7(K) is a salary around US$ 2(K)”. Analogously,
about_fourty(39) expresses the proposition “39 years is
about 40 years” and medium_dept(23) expresses the
proposition “a department with budget of US$23(K) is a
medium one”. The interpretation of these predicates is
shown in Figure 1.

Notice that the choice of a particular membership
function to define the semantics of a fuzzy predicate is
very subjective, but always must take into account the
human intuition in the context of application.

The truth degree of a simple vague condition is the
value of its membership function. For instance:

Figure 1. Semantics of simple vague conditions.

S. A. MOISES, S. L. PEREIRA

OPEN ACCESS JDAIP

14

() ()2 1.7 1.7,2,2,0.5 0.4around k tmf= = (5)

() ()_ 39 39,38,42,1 1about fourty tmf= = (6)

() ()_ 20 23,34,36,10 0important dept tmf= = (7)

Therefore, the condition around2k(1.7) is partially true
(truth degree of 0.4); about_fourty(39) is completely true
(truth degree of 1); and the condition medium_dept(23) is
completely false (truth degree of 0).

A complex vague condition is a formula composed of
fuzzy predicates and connectives (e.g., conjunction and
disjunction). The truth degree of a complex vague condi-
tion is the value of its formula. In this work, the value of
A ∧ B is defined as min(A, B) and the value of A ∨ B is
defined as max(A, B). Thus, for example, the value of the
complex condition around2k(1.7) ∧ about_fourty(39) is
min(0.4, 1) = 0.4; and the value of the complex condition
about_fourty(39) ∨ medium_dept(20) is max(1, 0) = 1.

A vague condition can be a simple or a complex vague
condition. A flexible query is a query with a vague con-
dition. The answer set for a flexible query is the set of all
data satisfying its vague condition, at least in some de-
gree. Therefore, in order to avoid that a flexible query
retrieves too many data with very low truth degrees, fre-
quently an α-cut value is specified as a flexible query
parameter. In this case, only data with degrees greater
than or equal to α are retrieved.

2.3. An Illustrative Example

To illustrate the use of flexible queries, an example
adapted from [11] is considered. This example concerns
a table of employees with four attributes (i.e., name, sal-
ary, age and budget), as shown in Table 1.

In the first scenario, the user needs to retrieve data of
employees who earn salary around US$ 2(K). Thus, he
submits a flexible query with vague condition around2k.
As shown in Table 2, this query is completely satisfied
by Dupont (truth degree of 1), but it is only partially sa-
tisfied by Martin (truth degree 0.4). The remaining an-
swers are not significant (truth degree 0).

In the next scenario, the user needs to retrieve data of
employees who work in a medium department and are
about forty years old. Thus, he submits a flexible query
with vague condition “medium_dept ∧ about_forty”.
However, as shown in Table 3 no available data can sa-
tisfy this query with degree greater than 0. Indeed, this is
the very situation referred as the EAP.

In the last scenario, the user submits a flexible query
with vague condition medium_dept, in order to retrieve
data of employees who work in a medium department.
However, as shown in Table 4, a “huge” amount of the
available data (relatively to the size of the table) satisfies
this flexible query with degree equal to 1 and the user has

Table 1. Table of employees.

Name Salary Age Budget

Dupont 2.0 48 34.2

Martin 1.7 46 35.7

Durant 1.3 43 34.9

Jones 1.2 37 34.5

Smith 1.0 34 35.6

Carl 1.4 36 34.0

Table 2. Answers to a flexible query.

Degree Name Salary

1.0 Dupont 2.0

0.4 Martin 1.7

0.0 Carl 1.4

0.0 Durant 1.3

0.0 Smith 1.0

0.0 Jones 1.2

Table 3. Empty Answer Problem (EAP).

Degree Name Budget Age

0.0 Durant 34.9 43

0.0 Smith 35.6 34

0.0 Martin 35.7 46

0.0 Jones 34.5 37
0.0 Carl 34.0 36
0.0 Dupont 34.2 48

Table 4. Overabundant Answer Problem (OAP).

Degree Name Budget

1.0 Durant 34.9

1.0 Smith 35.6

1.0 Martin 35.7

1.0 Jones 34.5

1.0 Carl 34.0

1.0 Dupont 34.2

no means of selecting the best answers. This is the situa-
tion referred as OAP.

3. A Unified Solution to EAP and OAP
This section defines the concepts of semantic proximity,
predicate transformation and query modification; after-
wards, a unified solution to EAP and OAP is proposed.

3.1. Semantic Proximity
Let U be a subset of the real line. A proximity relation is
a reflexive and symmetric fuzzy relation E on U, i.e.,

S. A. MOISES, S. L. PEREIRA

OPEN ACCESS JDAIP

15

µE(x, x) = 1 and µE(x, y) = µE(y, x), for x, y∈U. The value
µE(x, y) is the degree of approximated equality of x and y.
A relative proximity relation is defined in terms of the
ratio x/y, that is, µE(x, y) = µR(x/y), where R is a tolerance
parameter such that:
• µR(x) = 0 if x ≤ 0 (to avoid zero-division, assuming

that approximately equal values have same sign);
• µR(1) = 1 (to guarantee the reflexivity property, that is,

µE(x, x) = µR(x/x) = 1); and
• µR(x) = µR(1/x) (to guarantee the symmetric property,

that is, µE(x, 1) = µE(1, x)).
Furthermore, to ensure symmetry, the support of R

must be of the form ()1 ,1 1ε ε− −   , with 0 ≤ ε < 1.
In fact, R is a fuzzy predicate expressing “closer to 1”.

Based on it, we can define the relation µN(x, y), called
negligibility relation, that expresses “x is negligible (or
insignificant) relatively to y” as follows:

() () ()(), ,N E Rx y x y y x y yµ µ µ= + = +

In order to guarantee all the properties of these three
relations, it was proved in [13] that, using the interval

() ()5 1 2, 5 1 2 − +  as support of R, all α-cut of R

in the form ()1 ,1 1ε ε− −   must have ()0 3 5 2ε≤ < − ,
that is, ε ∈ [0, 0.38].

Therefore, if a transformation must preserve semantic
proximity, the maximal relaxation allowed for a fuzzy
membership function used as condition in a query being
relaxed is restricted to the tolerance value ε = 0.38.

3.2. Predicate Transformations
A predicate transformation T transforms a predicate P in
a related variant T(P). When semantic proximity is taken
into account, the resulting variant is semantically near to
P, but it can be less restrictive or more restrictive than P.

Let P be a predicate, characterized by a trapezoidal
membership function µP(x) = tmf(x, a, b, δ). The predi-
cate transformations proposed in literature [12,13,15] are
mainly based on the following simple principles:
• If P leads to an empty answer set, clearly, all availa-

ble data is out of supp(µP) = [b − δ, c + δ]. Therefore,
to solve this problem, a relaxation transformation T
must stretch the interval [b − δ, c + δ], so that supp(µP)
⊂ supp(µT(P)). This idea is shown in Figure 2(a).

• If P leads to an overabundant answer set, clearly,
most part of the available data is in core(µP) = [b, c].
Therefore, to solve this problem, an intensification
transformation T must shrink the interval [b, c], so
that core(µT(P)) ⊂ core(µP). This idea is shown in
Figure 2(b).

3.3. Query Modification Approaches
Let Q be a flexible query with vague condition C and let

(a)

(b)

Figure 2. Transformations: (a) stretch and (b) shrink.

T be a predicate transformation. There are two main ap-
proaches to obtain a new variant Q’ of Q, by applying T
to predicates in C. In the local modification approach, T
is applied only to some predicates in C; and in the global
modification approach, T is applied to all predicates in C.
The local modification approach is appropriated when
the cause of an empty answer to Q must be identified. In
this case, a lattice of all possible variants of Q must be
traversed (in a breadth-first search fashion) and, for each
variant Q’ of Q, an answer set must be retrieved. Thus, if
this answer set is not empty, the cause of the empty an-
swer to Q can be explained by the modified predicates in
the vague condition of the successful variant Q’. For
example, a lattice for variants of a query Q with vague
condition P1 ∧ P2 ∧ P3 is depicted in Figure 3. Suppos-
ing that the first non empty answer set is retrieved by the
variant T(P1) ∧ P2 ∧ P3, then we can say that the cause of
the empty answer to Q is P1.

A drawback of the local modification approach is that,
in the worst case, it consumes exponential time. There-
fore, in many practical applications, the cost of using the
local query modification may be prohibitive.

Another drawback of local query modification is that
the semantics of a variant Q’ may not match, as much as
possible, the semantics of Q, because the predicates in Q
are transformed in an arbitrary order (i.e., without taken
into account the user’s preferences, which are unknown).

For example, consider a flexible query Q with a vague
condition P1 ∨ P2 ∨ P3, that has an empty answer set (e.g.,
µPi(x) = 0, for all i and all available data x). Clearly, the
intuitive semantics of disjunction is not exclusive. How-
ever, if a transformation is applied to relax only P1, and
this is sufficient to retrieve a non empty answer set, then

S. A. MOISES, S. L. PEREIRA

OPEN ACCESS JDAIP

16

Figure 3. Lattice of variants of a query.

this answer set will contain only data satisfying P1 (i.e.,
the preference of P1, relatively to the other predicates in
Q, is increased). On the other hand, if Q has an over-
abundant answer set (i.e., µPi(x) = 1, for all i and the most
part of the available data x) and a transformation is ap-
plied to intensify only P1, then the resulting answer set
will contain relatively few data completely satisfying P1
(i.e., the preference of P1, relatively to the other predi-
cates in Q, is decreased). Similar problems can also occur
for flexible queries with conjunctive conditions.

Therefore, since our aim is not to explain failing que-
ries, the global modification approach will be adopted.

3.4. The Stretch & Shrink Transformation
Let µP(x) = tmf(x, b, c, δ) be a symmetric trapezoidal
function, with support [b − δ, c + δ] and core [b, c], and
let x be a value selected from an available dataset. It is
known that if the all possible values of x are in the inter-
val [−∞, b − δ] or [c + δ, +∞], then we have an EAP. In-
versely, if all possible values of x are concentrated in the
interval [b, c], we have an OAP. Thus, to solve both
problems, we propose a transformation that, simulta-
neously, stretches the support and shrinks the core of µP.

More precisely, the stretch & shrink transformation of
a symmetric trapezoidal function µP(x) = tmf(x, b, c, δ) is
a symmetric triangular function S(µP(x)) = tmf(x, m, m,
δ'), where () 2m b c= + and () ()2 1c bδ ε δ′ = − + + × ,
with negligible value ε = 0.38. This idea is depicted in
Figure 4.

As discussed in Subsection 3.1, the negligible value ε
ensures that S(µP(x)) is semantically not so far from µP(x).
Indeed, when the stretch & shrink transformation is used
to solve the OAP, the query with vague condition S(µP(x))
retrieves the same answer set retrieved by the query with
vague condition µP(x), except due to the fact that the new
answer set can be sorted in decreasing order of satisfac-
tion degrees and, consequently, the user can select the
best answers relatively to the prototype of S(µP(x)). On

Figure 4. Stretch & shrink transformation.

the other hand, when the stretch & shrink transformation
is used to solve the EAP, the query with vague condition
S(µP(x)) retrieves answers whose values are approx-
imately equal to those in the boundaries of µP(x).

For example, considering the fuzzy predicates defined
in Subsection 2.2, we have:

() ()_ 39 39,38,42,1 1about fourty tmf= = (8)

() ()_ 23 23,34,36,10 0medium dept tmf= = (9)

Now, by applying the transformation S to these predi-
cates, we obtain:

()()
()

_ 39

39,40,40,3.38 0.7

S about fourty

tmf= =
 (10)

()()
()

_ 23

23,35,35,14.79 0.2

S medium dept

tmf= =
 (11)

As can be observed, the transformation S relaxes the
predicate medium_dept (solving an EAP) and intensifies
the predicate about_fourty (solving an OAP).

It is worth to note that, the proposed transformation S
always solves an OAP. However, the same does not oc-
cur with an EAP. If the available dataset does not contain
any data satisfying S(µP(x)), this problem persists.

4. A Tool for Flexible Query Answering
To validate our proposal, a simple tool for flexible query
answering was developed in SWI-Prolog [16], using the
ODBC library to access the relational database MySQL
[17]. This tool is composed of two applications:
• The Membership Function Designer is used to define

predicates over attributes of a database table.
• The Flexible Query Executer is used to execute a

flexible query submitted by a user or to automatically
reformulate a flexible query that leads to an EAP or to
an OAP (by applying the transformation stretch &
shrink, proposed in the last section).

4.1. Membership Function Designer
The Membership Function Designer helps the user in the
definition of the fuzzy predicates to be used as conditions

S. A. MOISES, S. L. PEREIRA

OPEN ACCESS JDAIP

17

in flexible queries. By using this application, the user can
choose one of several predefined types of membership
functions (e.g., Gaussian, bell and sigmoidal) and adjust
its parameters, according to his intuition about the con-
cept to be expressed by the predicate. After choosing the
desired function, the user must select a table, and an
attribute of it, to which the predicate will be associated.
For example, Figure 5 shows the definition of the fuzzy
predicate about_fourty, with argument age, for the table
Employee.

The graphic for the defined function is plotted when
the user clicks the button Plot. This helps him to validate
its definition. When the user is finally satisfied, he can
save the definition in the MySQL database, by clicking
the button Save. After that, the new predicate can be used
in flexible queries submitted to the associated database.

All information about fuzzy predicates defined by the
user is maintained in a MySQL relational database table.

4.2. Flexible Query Executer
The Flexible Query Executer allows the user to formulate
and to execute flexible queries in the connected database.
When an EAP or an OAP occurs, this application also
allows the user to submit a new related query, which is
automatically reformulated by the system.

To formulate a flexible query, the user must specify
the attributes to be selected, the table from which these
attributes will be selected, a precise condition, a vague
condition and a threshold (i.e., an α-cut).

To submit a flexible query, the user must to click the
button Execute. As a result, the can see the corresponding
query in standard SQL (automatically generated by the
application) and the corresponding answer set (sorted in
decreasing order of degrees). For example, Figure 6

Figure 5. Definition of a fuzzy predicate.

Figure 6. An example of EAP.

shows the result of the execution of a flexible query with
vague condition medium_dept and about_fourty.

When the user faces an EAP (Figure 6), he can also
click the button Stretch & Shrink to automatically submit
a reformulated query to solve the problem (Figure 7).

Analogously, when the user faces an OAP (Figure 8),
he can also click the button Stretch & Shrink to solve the
problem, as can be seen in Figure 9.

4.3. Empirical Results
A series of experiments was performed to test the func-
tionality of the developed tool.

In these experiments it was considered flexible queries
with various types of vague conditions, such as conjunc-
tive, disjunctive, negated and mixed conditions. It was
also considered flexible queries with precise conditions
and vague conditions.

In all the experiments, the results retrieved by the que-
ries were compatible with those intuitively expected.

5. Conclusions
This paper proposes a unified solution to overabundant
and empty answer problems, in the framework of flexible
queries with fuzzy semantics.

The proposed solution consists in a predicate trans-
formation, based on the concepts of semantic proximity
and global query modification. This transformation,
named stretch & shrink, is capable of relaxing or inten-
sifying a query, in order to solve an empty or an over-
abundant answer problem.

To validate our proposal, a tool for flexible query
answering was implemented. The experiments performed
with this tool showed the effectiveness of the approach to
the development of cooperative answering systems in the
framework of flexible queries with fuzzy semantics.

S. A. MOISES, S. L. PEREIRA

OPEN ACCESS JDAIP

18

Figure 7. Solving EAP.

Figure 8. An example of OAP.

Figure 9. Solving OAP.

In future works, we intend to test the efficiency of the

approach, when applied to large databases.

Acknowledgements
This research is supported by CNPq (Brazilian National
Counsel of Technological and Scientific Development),
under grant numbers 305484/2012-5 and 104200/2013-8.

REFERENCES
[1] S. Abiteboul, R. Hull and V. Vianu, “Foundation of Da-

tabases,” Addison-Wesley, Boston, 1994.
[2] A. G. Maguitman, “Intelligent Support for Knowledge

Capture and Construction,” Ph.D. Dissertation, Indiana
University, Indianapolis, 2004.

[3] D. H. Lee and M. H. Kim, “Accommodating Subjective
Vagueness through a Fuzzy Extension to the Relational
Data Model,” Information Systems, Vol. 18, No. 6, 1993,
pp. 363-374.
http://dx.doi.org/10.1016/0306-4379(93)90013-Q

[4] J. Galindo, A. Urrutia and M. Piattini, “Fuzzy Databases:
Modeling, Design and Implementation,” Idea Group Pub-
lishing, Hershey, 2006.

[5] Z. M. Ma and L. Yan, “A Literature Overview of Fuzzy
Database Models,” Journal of Information Science and
Engineering, Vol. 24, No. 1, 2008, pp.189-202.

[6] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol.
8, No. 3, 1965, pp. 338-353.
http://dx.doi.org/10.1016/S0019-9958(65)90241-X

[7] P. Bosc, A. Hadjali and O. Pivert, “Weakening of Fuzzy
Relational Queries: An Absolute Proximity Relation-
Based Approach,” Mathware & Soft Computing, Vol. 14,
No. 1, 2007, pp. 35-55.

[8] T. Gausterland, “Cooperative Answering through Con-
trolled Query Relaxation,” IEEE Expert, Vol. 12, No. 5,
1997, pp. 48-59. http://dx.doi.org/10.1109/64.621228

[9] I. Muslea, “Machine Learning for Online Query Relaxa-
tion,” 10th International Conference of Knowledge and
Discovery and Data Mining, Washington DC, 2004, pp.
246-255.

[10] T. Andreasen and O. Pivert, “On the Weakening of Fuzzy
Relational Queries,” First 8th International Symposium
on Methods for Intelligence System, Charlote, October
1994, pp. 144-153.

[11] P. Bosc, A. Hadjali and O. Pivert, “About Overabundant
Answers to Flexible Queries,” Proceedings of the 11th
International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems
(IPMU’06), Paris, 2-7 July 2006, pp. 2221-2228.

[12] P. Bosc, A. Hadjali and O. Pivert, “Empty versus Over-
abundant Answers to Flexible Relational Queries,” Fuzzy
Sets and Systems, Vol. 159, No. 12, 2008, pp. 1450-1467.
http://dx.doi.org/10.1016/j.fss.2008.01.007

[13] A. Hadj Ali, D. Dubois and H. Prade, “Qualitative Rea-
soning Based on Fuzzy Relative Orders of Magnitude,”
IEEE Transactions on Fuzzy Systems, Vol. 11, No. 1, 2003,
pp. 9-23. http://dx.doi.org/10.1109/TFUZZ.2002.806313

[14] L. Wang, “A Course in Fuzzy Systems and Control,” Pren-
tice-Hall, Upper Saddle River, 1997.

[15] E. E. Kerre and M. de Cock, “Linguistic Modifiers: An
Overview,” In: G. Chen, M. Ying and K.-Y. Cai, Eds.,
Fuzzy Logic and Soft Computing, Vol. 9, Kluwer Aca-
demic Publishers, Norwell, 1999, pp. 69-85.

[16] I. Bratko, “Prolog Programming for Artificial Intelli-
gence,” 4th Edition, Pearson, London, 2011.

[17] Oracle, “MySQL 5.6 Reference Manual.”
http://dev.mysql.com/doc/refman

http://dx.doi.org/10.1016/0306-4379(93)90013-Q
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/64.621228
http://dx.doi.org/10.1016/j.fss.2008.01.007
http://dx.doi.org/10.1109/TFUZZ.2002.806313
http://dev.mysql.com/doc/refman

