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ABSTRACT 
In the article, the nonlinear equation is reduced to an ordinary differential equation under the travelling wave 
transformation. Using trial equation method, the ODE is reduced to the elementary integral form. In the end, 
complete discrimination system for polynomial is used to solve the corresponding integrals and obtain the classi-
fication of all single travelling wave solutions to the equation. 
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1. Introduction 
Nonlinear phenomena are general problems in every field of engineering technology, science research, natural 
world and human society activities. So the investigation of exact solutions of nonlinear equations plays a 
important role not only in theoretic research but in application. To obtain the travelling wave solutions, many 
methods were attempted, such as the inverse scattering method [1], Hirotas bilinear transformation [2,3], the 
tanh method [4], sine-cosine method [5], homogeneous balance method [6,7], exp-function method [8], and so 
on. These methods derived many solutions to most nonlinear evolution equations. Recently, Professor Liu 
proposed a powerful method named trial equation method for finding exact solutions to nonlinear differential 
equations [9-11]. By using his method, the nonlinear differential equation is reduced to an ordinary differential 
equation under the travelling wave transformation. Using the trial equation method, the ODE is reduced to the 
elementary integral form. In the end, the complete discrimination system for polynomial is used to solve the 
corresponding integrals. We can obtain the classification of all single travelling wave solutions [12-16] to the 
equation. This idea is so good that many types of nonlinear differential equations can be solved by it. Using the 
trial equation method and complete discrimination system for polynomial, we have obtained a lot of new 
solutions to many nonlinear differential equations. As an application, some new solutions to the Benjamin Ono 
equation are given. 

2. Application of the Trial Equation Method 
The Benjamin Ono equation reads as 

( )2 0.tt xxxxxx
u u uβ γ+ + =                                 (1) 

where ,β γ  are parameters.Taking the traveling wave transformation ( )1u u ξ=  and 1 kx tξ ω= + , we can  
obtain the corresponding reduced ODE.  
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( ) ( )22 2 2 22 2 0.u k uu k u k uω β β γ′′ ′′ ′ ′′′′+ + + =                               (2) 

we take the trial equation as follows: 0 1
m

mu a a u a u′′ = + + + .  
According to the trial equation method of rank homogeneous equation, balancing u′′′′  with uu′′  (or ( )2u′ ) 

gets 2m = . Equation (4) has the following specific form  
2

0 1 2 .u a a u a u′′ = + +                                        (3) 

Integrating the Equation (3)once with respect to 1ξ , we get  

( )2 3 2
2 1 0

2 2 .
3

u a u a u a u d′ = + + +                                  (4) 

By Equation (3) and Equation(4), we derive the following equation  

( )2 3 2 2
2 1 2 0 2 1 2 0 1

10 5 6 2 .
3

u a u a a u a a a u a d a a′′′′ = + + + + +                       (5) 

Substituting Equations (3)-(5) into Equation (2), we have  
3 2

3 2 1 0 0.r u r u r u r+ + + =                                    (6) 

where  

( )2 2 4
0 0 2 0 12 2 .r a k d a d a a kω β γ= + + +                              (7) 

( )2 2 2 4
1 1 0 0 2 16 6 .r a k a a a a kω β γ= + + +                              (8) 

2 2 4
2 2 1 1 24 5 .r a k a a a kω β γ= + +                               (9) 

2 4 2
3 2 2

10 10 .
3 3

r k a k aβ γ= +                                  (10) 

Let the coefficient ( )0 0,1,2,3ir i= =  be zero,we will yield nonlinear algebraic equations.Solving the 
equations, we will determine the values of 0 1 2, , ,a a a d .  

We get 
2

1 2 04 2, ,a a a
k k
ω β
γ γ

= − = −  and d are two arbitrary constants. When the above conditions are  

satisfied, we use the complete discrimination system for the third order polynomial and have the following 
solving process.  

Let 
1 1 2 1
3 3 3 3

2 2 1 2 1 2 1 0 2 0
2 2 2 2, , , 2 , .
3 3 3 3

v a u a d a a d a a d dξ ξ
− −

       = = = = =       
       

             (11) 

Then Equation(4) becomes  

( )2 3 2
2 1 0 .v v d v d v d′ = + + +                                  (12) 

where v  is a function of ξ .The integral form of Equation(12) is  

( )0 3 2
2 1 0

d .v

v d v d v d
ξ ξ± − =

+ + +
∫                               (13) 

Denote  

( ) 3 2
2 1 0 .F v v d v d v d= + + +                                  (14) 

( )
23 2321 32 2

0 1 2 1 1
2

27 4 , .
27 3 3

d dd dd d d D d
 

∆ = − + − − − = − 
 

                     (15) 

According to the complete discrimination system, we give the corresponding single traveling wave solutions 
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to Equation(1). 
Case 1. ( )10, 0 0D F v∆ = < ⋅ =  has a double real root and a simple real root. Then we have  

( ) ( ) ( )2
1 2 1 2, .F v v vλ λ λ λ= − − ≠                         (16) 

when 2v λ> , the corresponding solutions are  

( ) ( ) ( )
1 1
3 31 22

1 2 1 2 2 1 0 2 1 2
2 2tanh , ;
3 2 3

u a a
λ λ

λ λ ξ ξ λ λ λ
−   −     = − − + >           

         (17) 

( ) ( ) ( )
1 1
3 31 22

2 2 1 2 2 1 0 2 1 2
2 2coth , ;
3 2 3

u a a
λ λ

λ λ ξ ξ λ λ λ
−   −     = − − + >           

          (18) 

( ) ( ) ( )
1 1
3 31 22

3 2 1 2 2 1 0 1 1 2
2 2sec , .
3 2 3

u a a
λ λ

λ λ ξ ξ λ λ λ
−   − +     = − + − + <           

       (19) 

Case 2. ( )10, 0 0D F v∆ = = ⋅ =  has a triple root. Then we have  

( ) ( )3 .F v v λ= −                                   (20) 

The corresponding solution is  

( )
2
3 2

4 2 1 0
24 .
3

u a ξ ξ λ
−

− = − + 
 

                           (21) 

Case 3. ( )10, 0 0D F v∆ > < ⋅ =  has three different real roots. Then we have  

( ) ( )( )( )1 2 3 1 2 3, .F v v v vλ λ λ λ λ λ= − − − < <                         (22) 

when 1 2vλ λ< < , we take the transformation as follows  

( ) 2
1 2 1 sin .v λ λ λ ϕ= + −                                    (23) 

According to the Equation(12), we have  

( )
( )0 2 2

3 1

d 2 d .
1 sin

v
F v m

ϕξ ξ
λ λ ϕ

± − = =
− −

∫ ∫                      (24) 

where 2 2 1

3 1

m λ λ
λ λ

−
=

−
.On the basis of the Equation(24) and the definition of the Jacobi elliptic sine function, we  

have  

( ) ( )3 12
1 2 1 1 0 , .

2
v sn m

λ λ
λ λ λ ξ ξ

 −
= + − −  

 
                        (25) 

The corresponding solutions is  

( ) ( )
1
3 3 12

5 2 1 2 1 1 0
2 , .
3 2

u a sn m
λ λ

λ λ λ ξ ξ
−   −   = + − −         

                    (26) 

when 3v λ> , we take the transformation as follows  
2

2 3
2

sin
.

cos
v

λ ϕ λ
ϕ

− +
=                                      (27) 

The corresponding solutions is  
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( )

( )

1
33 12

3 2 2 1 01
3

6 2 1
33 12

2 1 0

2 ,
2 32 .

3 2 ,
2 3

sn a m

u a

cn a m

λ λ
λ λ ξ ξ

λ λ
ξ ξ

−

  −    − −        =       −   −       

                  (28) 

where 2 2 1

3 1

m λ λ
λ λ

−
=

−
. 

Case 4. ( )0 0F v∆ < ⋅ =  has only a real root. Then we have  

( ) ( )( )2 2, 4 0.F v v v pv q p qλ= − + + − <                        (29) 

when 1v λ> , we take the transformation as follows  

2 2tan .
2

v p q ϕλ λ λ= + + +                            (30) 

According to the Equation(13), we have  

( )( ) ( )
0 1 2 22 2 4

d 1 d .
1 sin

v

mv v pv q p q

ϕξ ξ
ϕλ λ λ

− = =
−− + + + +

∫ ∫                  (31) 

where 2

2

1 21
2

p

m
p q

λ

λ λ

 + 
= − 

+ +  
 

. On the basis of the Equation(31) and the definition of the Jacobi elliptic  

cosine function, we have  

( ) ( )

2
2

1
2 4

1 0

2
.

1 ,

p q
v p q

cn p q m

λ λ
λ λ λ

λ λ ξ ξ

+ +
= + − + +

 
+ + + − 

 

               (32) 

The corresponding solutions is  

( ) ( )

1
23 2

7 2 1
1 32 4

2 1 0

22 .
3 21 ,

3

p q
u a p q

cn p q a m

λ λ
λ λ λ

λ λ ξ ξ

−

−

 
 
 

+ +   = + − + +         + + + −       

           (33) 

In Equations (17), (18), (19), (21), (26), (28) and (33), the integration constant 0ξ  has been rewritten,but we 
still use it. The solutions ( )1, ,7iu i =   are all possible exact traveling wave solutions to Equation (1). It is 
easy to write the corresponding solutions to the Benjamin Ono equation. For brevity, we omitted.  

3. Conclusion 
Trial equation method is a systematic method to solve nonlinear differential equations. The advantage of this 
method is that we can deal with nonlinear equations with linear methods. This method has the characteristics of 
simple steps and clear effectivity. Based on the idea of the trial equation method and the aid of the computerized 
symbolic computation, some exact traveling wave solutions to the Benjamin Ono equation have been obtained. 
With the same method, some of other equations can be dealt with. 
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