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ABSTRACT 
This paper investigates the H∞  controller design method for a class of singular networked control systems 
(SNCS) based on the singular plant. In view of the network-induced delay less than or equal to a sampling period, 
finite external disturbance, clock-driven sensors, event-driven controller and actuators as well as impulse 
behavior and structural instability of singular plants, the H∞  controller design method of SNCS with state feed- 
back way and dynamic output feedback way is investigated respectively by means of the linear matrix inequality 
method. The existence condition of H∞  control law, the solving approaches of H∞  controller parameters and 
disturbance attenuation degree are presented. Finally, a simulation example is given to illustrate the effectiveness 
and feasibility of the presented method.   
 
KEYWORDS 
Singular Networked Control Systems; H∞  Controller Design; Network-Induced Delay;  
Disturbance Attenuation Degree 

1. Introduction 
Networked control system (NCS) is a distributed real- 
time feedback control system where the system node 
situates different geographical position exchange data 
and control signal with controller via communication net- 
work [1]. Due to limited network bandwidth and restraint 
of communication mechanism, unexpected phenomenon 
such as networked-induced delay and data packet loss 
exist typically in communication channel, which often 
makes NCS lose invariability, integrality, causality and 
certainty [2], therefore, the study of NCS is more com- 
plicated and challenging. The traditional control theories 
and methods built on point-to point direct control system 
are not suitable for NCS, which makes rapid develop- 
ment on NCS over the past few years. Since the end of 
last century, the research of NCS experiences the process 
of from simple to complex, from single to comprehensive 
and from special to general. A large number of results 
have been reported, for instance, system complexity ana- 
lysis [3,4], quantized dynamic output feedback control 

[5], observer-based controller design [6], state estimation 
and stabilization [7], H∞  control method [8,9], fault- 
tolerant control [10], guaranteed cost control [11], co- 
design [12], etc. 

It should be pointed out that, most of the results in the 
existing literature are focused on linear normal system, 
while the study of singular networked control system 
(SNCS) based on singular system has not been addressed 
intensively. Since the dynamics of singular system is 
quite different from normal linear/nonlinear system, and 
has many characteristics such as pulse characteristics, no 
causality, no solution, no uniqueness, structure instability, 
etc. [13]. Therefore, the investigation of SNCS is rather 
interesting. In fact, the research about SNCS is still in the 
primary stage. The existing results are limited to system 
modeling, stability analysis and ordinary control method 
[14-18]. 

In this paper, we aim to investigate the stabilization 
and H∞  controller design method for a class of SNCS 
subject to the double characteristics of singular systems 
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and NCS. In this work, network-induced delay, limited 
input disturbance, impulse behaviour are taken into si- 
multaneous consideration. The H∞  control method of 
SNCS with state feedback way and dynamic output 
feedback way is investigated respectively by means of 
the linear matrix inequality method. The existence con- 
dition of H∞  control law, the solving approaches of 
H∞  controller parameters and disturbance attenuation 
degree in different feedback way are presented. Finally, a 
simulation example is given to illustrate the effectiveness 
and feasibility of the proposed method. 

2. Problem Formulation 
The SNCS based on singular plant is shownin Figure 1. 
where , , ,u x y w  and z  are control input, measure state 
or measure output, external disturbance andexpectation 
output respectively. The plant is a class of singular plant, 
and the data packets are transmitted via network. Choice 
of communication network and determine of feedback 
control way depend on site state and control goals of 
plant. The aim are to guarantee systems stable, for ex- 
ternal disturbance, expected output of the system is not 
affected as far as possibleor very small. 

In this paper, it is assumed that sensors are driven by 
clock, controller and actuators are driven by event, the 
measuresensorssample the state value or output value of 
the plant with period T , the measured value are trans- 
mitted to the remote controller via network after A/D 
conversion and packaging; controller respond immedia- 
tely to calculate control law and transmit to actuator node 
after receiving the information from sensors, and actuator 
node work immediately to implementadjustment job after 
receiving the control signal from the controller. 

As the system is shown in Figure 1, there are two 
kinds of problem to consider: the singular characteristics 
the plant and the network communication characteristics 
of the control network. For singular plant, its state 
response contains not only the exponential term similar 
to normal systems, but also the pulse term and input 
derivative item, which will make the whole system have 
pulse behavior. The pulse reduces not only the perfor- 
mance and even leads to unstable system, which is a fatal 
destructiveness for the system. For network commu- 
nication,as a result oflimited network bandwidth and 
restraint of communication mechanism, the network 
communication obtains uncertainty and complexity. The 
most prominent problem is network-induced delay. As 
seen in Figure 1, scτ  denotes the network-induced de- 
lay between sensor node and controller node, and caτ  
denotes the network-induced delay between controller 
node and actuator node, and all of the network-induced  
delay of closed-loop system sc caτ τ τ= + . The delay  
performance depends on the communication protocol  

 
Figure 1. General structure of SNCS. 

 
employed by the communication network. The delay 
maybe is constant, random, limited, even Markov chain 
feature. In order to enhance the system performance, in a 
general way, we make as far as possible it constant. 
Furthermore, there exists single packet and multiple 
packet transmission, data packet loss, network connec- 
tion interrupt and channel interference etc. All of these 
problems will make the structure characteristics of close- 
loop systems change, and influence the stability and 
control performance of the SNCS.  

In this paper, the considered singular plant is shown in 
Equation (1): 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0

1 1

2 2

Ex t Ax t Bu t H w t

y t C x t H w t

z t C x t H w t

τ= + − +


= +
 = +



     (1) 

where ( ) nx t R∈ , ( ) mu t R∈ , ( ) ly t R∈  and ( ) lz t R∈   
are state vector, control input vector, output vector and 
expectation output vector, respectively. , n mE A R ×∈ , 

n mB R ×∈  and l nC R ×∈  are constant matrix, E is 
singular matrix, i.e. ( )rank E q n=  ; ( )w t is finite 
external disturbance, 0 1 2, ,H H H  are corresponding  
dimension constant matrix. 

Throughout this paper, the following assumptions are 
made: 

1) The singular plant is regular and impulse free, 
which is achieved by adjustingthe part structure and com- 
ponentconfiguration of plant, such that one of the fol- 
lowing holds: 

a) ( ) ( )deg det ranksE A E− =  

b) ( )
0

rank rank
E

n E
A E
 

= + 
 

 

2) The network-induced delay of closed-loop system is 
less than or equal to a sampling period, i.e. Tτ ≤ , and 
the sample period T  is constant, which is achieved 
bychoosing suitable communication protocol of control 
network and designing part device of the system. 

3) The network communication is single packet trans- 
mission, and there is no packet loss. 
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4) The external input disturbance of the plant is finite  
energy, i.e. the close-loop transfer function from ( )w k

to ( )z k  satisfies ( )T z β , β  is a scalar. 

According to condition (1), when the singular plant is 
regular and impulse free, there are always two nonsin- 
gular matrices ,P Q , such that 

1 00
,

00 0
r

n r

AI
PEQ PAQ

I −

  
= =   
   

   , 

1 1
0

2 2

,
W B

PH PB
W B
   

= =   
   

  , 

[ ] [ ]1 11 12 2 21 22, .C Q C C C Q C C= =   

Let ( ) ( )
( )

11

2

x t
Q x t

x t
−  

=  
 

 , Equation (1) can be equiva-  

lent transformed as: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1

2 2 2

11 1 12 2 1

21 1 22 2 2

0

x t A x t B u t W w t

x t B u t W w t

y t C x t C x t H w t

z t C x t C x t H w t

τ

τ

= + − +


= + − +


= + +
 = + +



    (2) 

When the network-induced delay Tτ ≤ , control input
u  is piecewise continuous in a sampling period, the dis- 
crete-time model of Equation (2) in a sampling period 
can be shown as Equation (3): 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 11

10 0

2 2 2

11 1 12 2 1

21 1 22 2 2

1 1

1

dx k A x k B u k

B u k W w k

x k B u k W w k

y k C x k C x k H w k

z k C x k C x k H w k

τ

τ

+ = + −


+ +
 = − − −
 = + +
 = + +

     (3) 

where  
1eA T

dA = ,  

( ) 1
10 10

e d
T A tB B t

τ
τ

−
= ∫ , 

( ) 1
11 1e d

T A t
T

B B t
τ

τ
−

= ∫ ,  

1
0 10

e d
T A tW W t= ∫ . 

The state feedback controller model is shown in Equa- 
tion (4). 

( ) [ ] ( )
( )

1
1 2

2

x k
u k K K

x k
 

=  
 

           (4) 

Combine Equation (3) with Equation (4), the follow- 
ing closed-loop system is obtained 

( ) ( )( ) ( )
( ) ( )( ) ( )

( )( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 10 1 1

11 10 2 2

0 10 2 2

1 1 2 2 2 2

21 1 22 2 2 22 2

1

1

1

1

dx k A B K x k

B B K B u k

W B K W w k

u k K x k K B u k K W w k

z k C x k C B u k H C W w k

τ

τ τ

τ

 + = +

 + − −
 + −


= − − −
 = − − + −

 

Let augmented state vector ( ) ( )
TT T

1ˆ 1x x k u k = −  ,  

therefore, the close-loop model of state feedback SNCS 
is as follows: 

( ) ( )( ) ( ) ( )( )

( ) ( )

10 1 11 10 2 2

1 2 2

0 10 2 2

2

ˆ ˆ1 dA B K B B K B
x k x

K K B

W B K W
w k

K W

τ τ τ

τ

 + −
+ =  

−  
− 

+  − 

 

(5) 
When the state variables are not measurable, or partial 

state is measurable, we will put to use the following 
dynamic output feedback controller: 

( ) ( ) ( )
( ) ( )

1c c c c

c c

x k A x k B y k

u k C x k

+ = +


=
      (6) 

Combine Equation (3) and Equation (6), the following 
can be obtained: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

1 1 10

11 0

11 1 12

2 1 12 2

21 1 22 2

2 22 2

1

1

1

1

1

d c c

c c c c c

c c

c c

x k A x k B C x k

B u k W w k

x k B C x k A x k B C

B u k B H B C W w k

u k C x k

z k C x k C B u k

H C W w k

τ

τ

+ = +


+ − +
 + = + −
 × − + −
 =
 = − −
 + −

 

Let augmented state vector 

( ) ( ) ( )
TT T T

1 1cx x k x k u k = −  , then, the close-loop  

model of dynamic output feedback SNCS is shown in 
Equation (7): 

( )
( ) ( )

( )

( )

10 11

11 12 2

0

1 12 2

1
0 0

0

d c

c c c

c

c c

A B C B
x k B C A B C B x k

C

W
B H B C W w k

τ τ 
 + = − 
  
 
 + − 
  

  (7) 

Clearly, whether put to use state feedback or output 
feedback, the close-loop system model of SNCS is a 
linear normal system depending on time delay τ . When 
τ  is constant quantity, the close-loop system model 
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of SNCS is a linear time-invariant system, when τ  
changes with time, the close-loop system model of SNCS 
is a time-varyingsystem. 

3. H∞  Controller Design 
Define 1: Given a positive constant γ , for the state 
feedback case, if close-loop system (5) is asymptotically  
stable under zero initial condition ( )( )0 0x = ,external 

disturbance ( )w k  and expected output ( )z k  satisfy 

H∞  norm constraint condition ( ) ( )
2 2

z k w kγ≤ , then, 

singular plant (1) realizes γ −  second best state feed- 
back H∞  control, the system disturbance attenuation 
degree is defined as γ , the corresponding state control 
law is defined as γ −  second best state feedback H∞  
control law; further optimization make γ  minimum, in 
this case, the state feedback H∞ control law is defined as 
γ −  best state feedback H∞  control law. 

Define 2: Given a positive constant γ , for the dy- 
namic output feedback case, if close-loop system (7) is 
asymptotically stable, and when zero initial state 

( )( )0 0x = , external disturbance ( )w k  and expectation 

output ( )z k  satisfy H∞  norm constraint condition

( ) ( )
2 2

z k w kγ≤ , then singular plant (1) realizes γ −  

second best dynamic output feedback H∞  control, the 
system disturbance attenuation degrees is defined as γ , 
the corresponding dynamic output feedback control law 
is defined as γ −  second best dynamic output feedback 
H∞  control law; further optimization make γ  mini-
mum, in this case, the dynamic output feedback H∞  
control law is defined as γ −  best dynamic output feed-
back H∞  control law. 

Lemma1: [19] For real matrices , ,W M N  and ( )F k , 

where W  is symmetric, ( )F k  satisfies ( ) ( )TF k F k I≤ ,  
then below matrix inequality 

( ) ( )T T T 0,W MF k N N F k M+ + <  

if and only if there is a scale 0>ε , such that 
T 1 T 0.W MM N Nε ε −+ + <  

3.1. State Feedback H∞  Controller Design 
Theorem 1: Without regard to the external disturbance, 
under the control of state feedback controller (4), if there 
exist positive definite matrices RS , , such that 

T T
1 1

T T
2 3

1 2

1 3

0
0

0
0

0

S SM SK
R RM RM

M S M R S
K S M R R

 −
 

−  < −
 

−  

     (8) 

where  

( )1 10 1dM A B Kτ= + , 

( ) ( )2 11 10 2 2M B B K Bτ τ= − , 

3 2 2M K B= − , 

then state feedback SNCS (5) is asymptotically stable. 
Proof: Choose positive definite matrices S  and R , 

define a Lyapunov function as follows: 

( ) ( ) ( ) ( ) ( )T T
1 1 1 1V k x k Sx k u k Ru k= + − − . 

then the forward differential of ( )V k  along trajectory  
of closed-loop system (5) is as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

T T
1 1

T T
1 1

T

1 1

1 1

ˆ ˆ

V k x k Sx k u k Ru k

x k Sx k u k Ru k

x k x k

∆ = + + +

− − − −

= ∏
 

where ( ) ( ) ( )
TT T

1ˆ 1x k x k u k = −  , 

T T T T
1 1 1 1 1 2 1 3

T T T T
2 1 3 1 2 2 3 3

M SM K RK S M SM K RM
M SM M RK M SM M RM R

 + − +
Π =  

+ + − 
 

By Lyapunov stability theory, if ( ) 0V K∆ < ,then  
system (5) is asymptotically stable, so,the asymptotically 
stability condition is as follows: 

T T T T
1 1 1 1 1 2 1 3

T T T T
2 1 3 1 2 2 3 3

0
M SM K RK S M SM K RM

M SM M RK K SM M RM R
 + − +

< 
+ + − 

(9) 

By Schur complement, Equation (9) can be transfor- 
med as: 

T T
1 1
T T
2 3

1
1 2

1
1 3

0
0

0
0

0

S M K
R M M

M M S
K M R

−

−

 −
 

−  < −
 

−  

      (10) 

Multiplying ( )1 1diag , , ,S R I I− −  on the left side and  

the right side of equation (10), it is derived that 
1 1 T 1 T

1 1
1 1 T 1 T

2 3
1 1 1

1 2
1 1 1

1 3

0
0

0
0

0

S S M S K
R R M R M

M S M R S
K S M R R

− − −

− − −

− − −

− − −

 −
 

−  < −
 

−  

  (11) 

Let 1 1,S S R R− −= = , then Equation (11) is equivalent  
to Equation (8), the proof is completed. 

Theorem 2: For singular plant (1), under the control of 
state feedback controller (4), for given disturbance atte-  
nuation degree 0>γ , if there exist symmetric positive  
definite matrices RS , , such that  
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T T T
1 1 21
T T T
2 3 4

2 T T T
3 4 5

1
1 2 3

1
1 3 4

21 4 5

0 0
0 0
0 0

0
0 0

0 0
0 0

S M K C
R M M M

I W W W
M M W S
K M W R
C M W I

γ
−

−

 −
 

− 
 −

< 
− 

 − 
−  

  (12) 

where  

4 22 2 5 2 22 2,M C B W H C W= − = − , 

4 2 2W K W= − , 

( )3 0 10 2 2W W B K Wτ= − , 

 then singular plant (1) canrealize γ −  second best state 
feedback H∞  control. 

Proof: The external disturbance is taken into account,  
according to definition 1, to make ( ) ( )

2 2
z k w kγ≤

hold, Let ( ) ( ) ( ) ( )TT 2

0
z

k
J z k z k w k w kγ

∞

=

 = − ∑ , choo- 

sepositive definite matrices ,S R , and define a Lyapu-  
novfunction ( ) ( ) ( ) ( ) ( )T T

1 1 1 1V k x k Sx k u k Ru k= + − − .  
For close-loop system (5), when meet theorem 1, the 
system is asymptotically stable, in the zero initial condi-  
tions, for ( ) [ )2 0,w k L∀ ∈ ∞ , it is derived as 

( ) ( ) ( ) ( ) ( )TT 2 '

0
0

k
z k z k w k w k V kγ

∞

=

 − + ∆ < ∑  

( ) ( ) ( ) ( ) ( )TT 2 ' T 0z k z k w k w k V k x xγ− + ∆ = Φ <   

where ( ) ( ) ( )
TT T T

1 1x x k u k w k = − 
 , 

11

21 22

31 32 33

* *
* 0

A
A A
A A A

 
 Φ = < 
  

         (13) 

 
T T T

11 1 1 1 1 21 21A M SM K RK S C C= + − + , 
T T T

21 2 1 3 1 4 21A M SM M RK M C= + +  

T T T
22 2 2 3 3 4 4A M SM M RM R M M= + − + , 

T T T
31 3 1 4 1 5 21A W SM W RK W C= + +  

T T T
32 3 2 4 3 5 4A W SM W RM W M= + + , 

T T T 2
33 3 3 5 5 4 4A W SW W W W RW Iγ= + + −  

By Schur complement, Equation (13) can be transformed as 
T T T T T
21 21 21 4 21 5 1 1

T T T T T
4 21 4 4 4 5 2 3
T T T 2 T T

5 21 5 4 5 5 3 4
1

1 2 3
1

1 3 4

0
0

0

S C C C M C W M K
M C R M M M W M M
W C W M W W I W W

M M W S
K M W R

γ
−

−

 − +
 

− + 
  <−
 

− 
 − 

                   (14) 

 
Similarly, further transform, Equation (12) can be de- 

rived, the proof is completed. 
Theorem 3: For singular plant (1), under the control of 

state feedback controller (4), if there exist symmetric  

positive definite matrices ˆ ˆ,S R , matrices 1 2 3, ,Y Y Y , 
scalars 10, 0, 0ε ε β> > >  and compatible dimension  
unit matrix I , such that 

 

d 10 1 11 0

1

21 22 2 2 22 2

2 2

2 2 1
T

3 10

2 1

ˆ

ˆ0
0 0

ˆ ˆˆ

ˆ0 0 0
ˆ ˆ 0 0

ˆ0 0 0 0
ˆ0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

S

R
I

A S B Y B R W S

Y R

C S C B R H C W I

B R W I

B R W I
Y B I

Y I

β

ε

ε
ε

ε

 − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
 

− ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 + − ∗ ∗ ∗ ∗ ∗ ∗
 
 − ∗ ∗ ∗ ∗ ∗
 

− − − ∗ ∗ ∗ ∗ 
 

− ∗ ∗ ∗ 
 − ∗ ∗ 
 − ∗


− 

0<




         (15) 
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then the disturbance attenuation degree γ β= , γ −
second best state feedback H∞  controller is as following: 

( ) ( )
( )

11 T
1 2 1

2

ˆ x k
u k Y S Y

x k
ε−   =     

        (16) 

 

Proof: For singular plant (1), if γ −  second best state 
feedback H∞  control law exists, then theorem 2 is true.  
Spread out 1 4 3 5~ , ~M M W W , then Equation (12) can  
be expressed as 
 

2

1
d 10 1 11 10 2 2 0 10 2 2

1
1 2 2 2 2

21 22 2 2 22 2

0
0 0

0

0
0 0

S
R

I
A B K B B K B W B K W S

K K B K W R
C C B H C W I

γ
−

−

− ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗

< 
+ − − − ∗ ∗ 

 − − − ∗
 

− − −  

              (17) 

Equation (17) can be written as: 

[ ]

T

2
T

2 21
d 10 1 11 0 10 2 10 2

1
1 2 2 2 2

21 22 2 2 22 2

0 0
0 * 0 0
0 0 0 0

0 0 0 0 0

0 0 0
0 0 0 0

S
R

I
I B W I

A B K B W S B K B K
K K B K W R
C C B H C W I

γ
−

−

− ∗ ∗ ∗ ∗ ∗     
     − ∗ ∗ ∗ ∗     
     − ∗ ∗ ∗

+ <     + − ∗ ∗ − −     
     − − − ∗
     

− − −          

 (18) 

From lemma 1 and Schur complement, Equation (18) can be transformed as 

T
2

2 T
2

d 10 1 11 0
1

1 2 2 2 2

21 22 2 2 22 2

2 2

0
0
0 0

00
0 0
0 0 0

0 0 0 0

S
R B

I W
A B K B W

K K B K W R
C C B H C W I

B W I

γ

ε

−

− ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗
 

<+ Γ ∗ ∗ 
 − − − ∗
 

− − − 
 − 

                (19) 

where ( )T1
10 2 10 2S B K B Kε−Γ = − + . further transform, Equation (19) is derived that 

2

1
d 10 1 11 0

1
1

21 22 2 2 22 2

2 2

2 2 1
T

10 2
T

1 2 1

0
0 0

0 0 0
0

0 0
0 0 0 0
0 0 0 0 0
0 0 0 ( ) 0 0 0 0
0 0 0 0 0 0 0 0

S
R

I
A B K B W S

K R
C C B H C W I

B W I
B W I

B K I
K I

γ

ε
ε

ε ε
ε ε

−

−

− ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ ∗
 

+ − ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗
  <

− − − ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ 

− ∗ ∗ 
 − ∗ 
 − 

    (20) 

 

Multiplying ( )1 1diag , , , , , , , , ,S R I I I I I I I I− −  on the  

left side and the right side of Equation (20), and Let 
1 1ˆ ˆ,S S R R− −= = , and then Let 2β γ= , 1 1

ˆY K S= ,  

T
2 1 2Y Kε= , T

3 2Y Kε= , Equations (15) and (16) are de-  
rived, the disturbance attenuation degree γ β= . The 
proof is completed. 
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Theorem 4: For singular plant (1), if the following op- 
timization problem has feasible solutions: 

1

min
0, 0, 0

s.t. (15)

β
ε ε β> > >               (21) 

the minimum disturbance attenuation degree is γ β∗ ∗= ,  
γ −  best state feedback H∞  controller is 

( ) ( )
( )

11 T
1 2 1

2

ˆ x k
u k Y S Y

x k
ε∗ ∗ ∗− ∗ ∗   =     

      (22) 

By means of feasibility problem Solver “feasp” and 
optimization problem Solver “mincx” of MATLAB LMI 
tool-box, if the feasible solutions of theorem 3 and theo- 
rem 4 exist, γ −  second best state feedback H∞  control- 
ler, γ −  best state feedback H∞  controller as well as cor- 
responding disturbance attenuation degree are obtained. 

3.2. Dynamic Output Feedback H∞   
Controller Design 

Theorem 5: when the external disturbance is not taken 
into account, under the control of dynamic output feed- 
back controller, if there exist positive definite matrices 

, ,P Q S  , such that 

5 6

7 8

0
0 0

0

0
0 0 0 0

d

c

c

P
Q

S
A P M Q M S P
M P A Q M S Q

C Q S

 − ∗ ∗ ∗ ∗ ∗
 − ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗

< 
− ∗ ∗ 

 − ∗ 
−  







  

  

 

   (23) 

whe re  ( )5 10 cM B Cτ= ,  ( )6 11M B τ= ,  7 11cM B C= ,

8 12 2cM B C B= − , then dynamic output feedback SNCS  
(7) is asymptotically stable. 

Proof: Let ( )5 10 cM B Cτ= , ( )6 11M B τ= , 7 11cM B C= ,

8 12 2cM B C B= − , ( )6 1 12 2cW B H C W= − , then Equation(7)  
can be written as 

( ) ( ) ( )
5 6 0

7 8 61
0 0 0

d

c

c

A M M W
x k M A M x k W w k

C

   
   + = +   
     

 

When the external disturbance of system is not taken 
into account, choose positive definite matrices , ,P Q S  
and define a Lyapunov as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1

1 1

T T
c c

T

V k x k Px k x k Qx k

u k Su k

= +

+ − −
 

Then the forward differential of ( )V k  along trajec- 
tory of close-loop system (7) is as follows: 

( ) TV k x x∆ = Ψ   

where ( ) ( ) ( ) ( )
TT T T

1 1cx k x k x k u k = −  , 

11

21 22

31 32 33

D
D D
D D D

∗ ∗ 
 Ψ = ∗ 
  

 

11 7 7
T T
d dD A PA M QM P= + − , 

T T
21 5 7d cD M PA A QM= +  

T T
22 5 5

T
c c c cD M PM A QA C SC Q= + + −  

T T
31 6 8 7dD M PA M QM= + , 

T T
32 6 5 8 cD M PM M QA= +  

T T
33 6 6 8 8D M PM M QM S= + −  

By Lyapunov stability theory, the asymptotically sta- 
bility condition of system (7) is as follows: 

11

21 22

31 32 33

0
D
D D
D D D

∗ ∗ 
 ∗ < 
  

        (24) 

By Schur complement, the above Equation (24) can be 
transformed as: 

1
5 6

1
7 8

1

0
0 0

0

0
0 0 0 0

d

c

c

P
Q

S
A M M P
M A M Q

C S

−

−

−

− ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗

< 
− ∗ ∗ 

 − ∗
 

−  

  (25) 

Multiplying { }1 1 1diag , , , ,P Q S I I I− − −  on the left side 

and the right side of Equation (25), and Let 1,P P−=
1 1,Q Q S S− −= =  , Equation (25) is equivalent to Equation  

(23), the proof is completed. 
Theorem 6: For plant (1), under the control of dynamic 

output feedback controller (6), for given disturbance 
attenuation degree 0γ > , if there are symmetric 
positive definite matrices , ,P Q S , such that 

2

1
5 6 0

1
7 8 6

1

21 4 5

0
0 0
0 0 0

0

0
0 0 0 0 0

0 0 0 0

d

c

c

P
Q

S

A M M W P
M A M W Q

C S
C M W I

γ
−

−

−

− ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗
 

− ∗ ∗ ∗ ∗  < − ∗ ∗ ∗
 

− ∗ ∗ 
 − ∗ 

−  

 

(26) 
then singular plant (1) realizes γ −  second best dyna- 
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mic output feedback H∞  control.  
Proof: The external disturbance is taken into account, 

by definition 2, to make the following equation exist: 
( ) ( )

2 2
z k w kγ≤ , we Let  

( ) ( ) ( ) ( )TT 2

0
z

k
J z k z k w k w kγ

∞

=

 = − ∑ , choose positive  

definite matrices , ,P Q S , define a Lyapunov function 
( )V k  as follows: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

1 1 1 1c cV k x k Px k x k Qx k u k Su k= + + − −  

For dynamic output feedback close-loop system (7), when satisfies theorem 5, the system is asymptotically stable, in 
the zero initial conditions, for ( ) [ )2 0,w k L∀ ∈ ∞ , we have: 

( ) ( ) ( ) ( ) ( )2

0
0T T

k
z k z k w k w k V kγ

∞

=

 ′′− + ∆ ∑   

Let ( )6 1 12 2cW B H C W= − , 5 2 22 2W H C W= − , 4 22 2M C B= − , ( ) ( ) ( ) ( )
TTT T T

1 1cx x k x k u k w k = − 
 , 

we have: ( ) ( ) ( ) ( ) ( )TT 2 " Tz k z k w k w k V k x xγ− + ∆ = Ω  , 

11

21 22

31 32 33

41 42 43 44

0

A
A A
A A A
A A A A

∗ ∗ ∗ 
 ∗ ∗ Ω = <
 ∗
 
 

                               (27) 

11 7 7 21 21
T T T
d dA A PA M QM P C C= + − + , 21 5 7

T T
d cA M PA A QM= + , 22 5 5

T T T
c c c cA M PM A QA C SC Q= + + −  

31 6 8 7 4 21
T T T

dA M PA M QM M C= + + , 32 6 5 8
T T

cA M PM M QA= + , 33 6 6 8 8 4 4
T T TA M PM M QM S M M= + − +  

41 0 5 21 6 7
T T T

dA W PA W C W QM= + + , 42 0 5 6
T T

cA W PM W QA= + , 43 0 6 5 4 6 8
T T TA W PM W M W QM= + +  

2
44 5 5 0 0 6 6

T T TA W W W PW W QWγ= − + +  

 
Further transform, inequality (27) can be derived, the 

proof is completed. 
Theorem 7: For singular plant (1), under the control of 

dynamic output feedback controller (6), if there exist 

symmetric positive definite matrices , ,P Q S , matrices
4 , ,c aY D D , scalars 0, 0ε µ> > and compatible dimen- 

sion unit matrix I , such that 

 

5 6 0

21 4 5

11 2 1

4

0
0 0
0 0 0

0
0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0

d

a

c

P
Q

S
I

A P M Q M S W P
D Q
D S

C P M S W I
C P I

Y I

µ

ε
ε

 − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
 − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ ∗
 

− ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗
  <

− ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ 
 − ∗ ∗
 

Γ Γ − ∗ 
 − 

                  (28) 

 

where 1 1 12 2H C WΓ = − , 2 12 2C B SΓ = , then the distur- 

bance attenuation degree γ µ= , γ − second best dy- 

namic output feedback H∞  control law is as follows: 

( ) ( ) ( )
( ) ( )

1 T

1

1 1c a c

c c

x k D Q x k Y y k

u k D Q x k

ε−

−

 + = +


=
    (29) 

Proof: if plant (1) can realize γ −  second best dy- 
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namic output feedback H∞  control, then theorem 6 exists. Spreading out 5 7 8 6, , ,M M M W  of inequality (26), inequa- 
lity (26) can be written as 

2

1
10 6 0

1
11 12 2 1

1

21 4 5

0
0 0
0 0 0

0

0
0 0 0 0 0

0 0 0 0

d c

c c c c

c

P
Q

S
I

A B C M W P
B C A B C B B Q

C S
C M W I

γ
−

−

−

− ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗
 

− ∗ ∗ ∗ ∗  < − ∗ ∗ ∗
 

− Γ − ∗ ∗ 
 − ∗ 

−  

                   (30) 

From lemma 1, inequality (30) can be transformed as 

2

1
5 6 0

1

1

21 4 5

11 12 2 1

0
0 0
0 0 0

0
0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0

d

c

c

T
c

P
Q

S
I

A M M W P
A Q
C S

C M W I
C C B I

B I

γ

ε
ε ε

−

−

−

− ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗ ∗ ∗
 

− ∗ ∗ ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ ∗ ∗
  <

− ∗ ∗ ∗ ∗ 
 − ∗ ∗ ∗ 

− ∗ ∗ 
 Γ − ∗ 
 − 

 

 
Multiplying { }1 1 1diag , , , , , , , , ,P Q S I I I I I I I− − − on the  

left side and the right side of the above inequality, and 
Let  

1 1 1, ,P P Q Q S S− − −= = = , 

a cD A Q= , c cD C Q= , 
2γ µ= , T

4cB Yε = , 

we can obtain inequality (28). By calculating the feasible 
solutions of inequality (28), we can get controller para- 
meters 4, , , , ,a cQ D D Y µ ε  and Equation (29), therefore,  
the proof is completed. 

Theorem 8: For dynamic output feedback SNCS (7), if 
the feasible solutions following optimization problem (31) 
exist: 

min
0, 0

s.t. (28)

µ
ε µ> >               (31) 

The minimum disturbance attenuation degree  

γ µ∗ ∗= ， γ −  best dynamic output feedback H∞   
control law : 

( ) ( ) ( )
( ) ( )

1 T

1

1 1c a c

c c

x k D Q x k Y y k

u k D Q x k

ε∗ ∗ ∗− ∗ ∗

∗ ∗ ∗−

 + = +


=
   (32) 

4. System Simulation 
To illustrate the effectiveness of proposed method, we 
focus on state feedback control way. A typical singular 
plant model with external disturbance is as follows: 

 

( ) ( ) ( ) ( )

( ) [ ] ( ) ( )

1 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 1 1 1 0.1

1 1 1 1 0.1

x t x t u t w t

z t x t w t

τ

       
       
       = + − +       −
        −       
 = +


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The sampling period 0.1T s= , the network-induced 

delay 0.01k sτ = . 
Choose nonsingular matrices as follows: 

1 0 1 1 1 0 0 0
0 1 0 0 1 1 1 0

,
0 0 1 1 0 1 0 0
0 0 1 0 1 0 0 1

P Q

−   
   − −   = =
   −
   
   



， 

The above singular plant model can be transformed as 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) [ ] ( ) [ ] ( ) ( )

1 1

2

1 2

1 1 1 0.1
1 0 0 0

1 0.1
0

0 0

1 0 1 1 0.1

x t x t u t w t

x t u t w t

z t x t x t w t

τ

τ

 − − −     
= − + +      
     

 −    = + − +    
   

 = + +




 

Its discrete model parameter is as follows： 

0.9002 0.0950
0.0950 0.9952dA

− 
=  
 

, 10

0.0860
0.0039

B  
=  
 

, 

11

0.0091
0.0009

B  
=  
 

, 2

1
0

B
− 

=  
 

, 2

0.1
0

W  
=  
 

, 

[ ]21 1 0C = , [ ]22 1 1C = , 2 0.1H = , 

0

0.0013
0.0053

W
− 

=  − 
 

Choose the controller ( ) [ ] ( )5 4 0 0u t x t= − − ,  
by LMI tool-box of MATLAB to solve the feasible solu- 
tions of theorem 1, it is shown that the system is asymp- 
totically stable. When initial state ( ) ( )0 0,2,1, 1x = − , the  
system state response trajectory of external Sine distur-
bance is as blue solid line shown in Figure 2. 

By H∞  control, use theorem 3 to solve its feasible 
solutions as follows: 

  0.0972   0.0148ˆ
 0.0148    0.0937

S
− 

=  − 
, 2 3

0
0

Y Y  
= =  

 
 

[ ]1  0.0276    0.0011Y =  , 1289.8β =  

Therefore the disturbance attenuation degree 
35.9133γ β= = ; the γ −  second state feedback H∞  

controller is ( ) [ ] ( )0.2896 0.0339 0 0u t x t= − −  
Under the same conditions, the system state response 

trajectory is as black dotted line shown in Figure 2. 
By LMI tool-box of MATLAB to find the optimized 

solutions of theorem 4, the obtained corresponding solu- 
tions are as follows:  

2 3

0.0951 0.0002 0ˆ ,
0.0002 0.1051 0

S Y Y∗ ∗ ∗−   
= = =   −   

 

[ ]1 1.0 006 0.2110 0.0126 =0.0091Y e β∗ ∗= − − ， . 

Therefore the minimum disturbance attenuation 

0.0951γ β∗ ∗= = , the γ − best state feedback H∞   
control law is as follows:  
( ) [ ] ( )1.0e 005 0.2219 0.0116 0 0u t x t= − − . 
After putting optimal H∞  into effect, the system state 

response trajectory is as dotdashline shown in Figure 2. 
Before and after optimization control, the system ex- 

pectation output is as blue solid line and black dotted line 
shown respectively in Figure 3. 

The system simulation shows that the disturbance at- 
tenuation degree γ  can decrease to 0.0591 from 35.9133 
after H∞  optimization control, and the anti-interference 
performance is enhanced markedly. As a result, the sys- 
tem stability performance has been improved. 

5. Conclusion 
In this paper, when focused on network communication  
 

 
Figure 2. State response simulation. 

 

 
Figure 3. Expectation output simulation. 

app:ds:dot
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characteristics and singular plant characteristics si- 
multaneously, the H∞  optimal control problems for a 
class of SNCS are addressed with both state feedback 
case and dynamical output feedback case. The network 
communication characteristics include the network-in- 
duced delay less than or equal to a sampling, limited 
input disturbance, clock-driven sensors as well as event- 
driven controller and actuators. The singular plant cha- 
racteristics include impulse behavior, structuralinstability 
and something like that. This paper presents respectively 
the H∞  optimal control method, the existence condition 
of H∞  control law and the solving method of H∞  
control law and disturbance attenuation degree. The 
simulation results show that H∞  optimal control of 
SNCS makes the disturbance attenuation degrees de- 
crease obviously and makes the anti-interference per- 
formance enhance obviously. Therefore, the analytical 
method and the results are valid and feasible. 
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