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ABSTRACT 
Based on the feedback linearization technique, we present a systematic design method for the General Integral 
Control and a new integral control strategy along with a class of fire-new integrator. By using the linear system 
theory and Lyapunov method along with LaSalle’s invariance principle, the conditions on the control gains to 
ensure regionally as well as semi-globally asymptotic stability are provided. Theoretical analysis and simulation 
results demonstrated that: by using this design method, General Integral Control can deal with nonlinearity and 
uncertainties of dynamics more effectively; the optimum response can be achieved in the whole control domain, 
even under uncertain payload and varying-time disturbances. This means that General Integral Control has 
strong robustness, fast convergence, good flexibility, and then makes the engineers design a high performance 
controller more easily.  
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1. Introduction 
Integral control [1] plays an important role in control 
system design because it ensures asymptotic tracking and 
disturbance rejection. In the presence of the parametric 
uncertainties and unknown constant disturbances, inte- 
gral control can still preserve the stability of the closed- 
loop system and create an equilibrium point at which the 
tracking error is zero. The main task of the integral con-
troller is to stabilize this point, which is challenging be-
cause it depends on uncertain parameters and unknown 
disturbances. 

The design of integral control for general linear sys- 
tems was done in the 1970’s in the work of Davision, 
Francis, and others [2,3]. In the early 1990’s, Isidori and 
Byrnes [4] extended integral control to nonlinear systems. 
Their results, however, were local. Regional and semi- 
global results for integral control appeared later in the 
work of Khalil [1,5]. These papers dealt with minimum- 
phase input-output linearizable systems and designed 
output feedback control using high-gain observers and  

the tool of saturating the control outside a compact re-
gion of interest. All these design methods above for 
integral control are achieved by using a conventional 
integrator y rσ = − , where y  is the controlled output 
and r  is a constant reference. In 2009, we originated 
General Integral Control in [6], which presented a unified 
framework for General Integral Control, some general in- 
tegrator, and the necessary conditions and basic prin- 
ciples for designing a general integrator. Based on linear 
system theory, we presented a systematic design method 
for General Integral Control [7] with a linear integrator in 
2012. The results, however, were local. In 2012, regional 
and semi-global results were proposed in [8], which pre-
sented a nonlinear integrator shaped by sliding mode 
manifold. And then, General Integral Control design was 
achieved by sliding mode technique and linear system 
theory. 

In this paper, based on feedback linearization techni- 
que, we present a systematic design method for General 
Integral Control. The main contributions are as follows: 1) 
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A new integral control strategy along with a class of fire- 
new integrator is proposed; 2) By using linear system 
theory and Lyapunov method along with LaSalle’s inva- 
riance principle, the conditions on the control gains to 
ensure regionally as well as semi-globally asymptotic 
stability are provided. 

Throughout this paper, we use the notation ( )m Aλ  
and ( )m Aλ  to indicate the smallest and largest eigen- 
values, respectively, of a symmetric positive define 
bounded matrix ( )A x , for any nx R∈ . The norm of  
vector x  is defined as Tx x x= , and that of matrix  
A  is defined as the corresponding induced norm  

( )T
MA A Aλ= . 

The remainder of the paper is organized as follows. 
Section 2 describes the system under consideration, as- 
sumptions, and General Integral Control law proposed 
here. Section 3 addresses the systematic design method 
of General Integral Control. Example and simulation are 
provided in Sections 4. Conclusions are presented in 
Section 5. 

2. Problem Formulation 
Consider the feedback linearizable system,  

( ) ( ), ,x f x w g x w u= +           (1) 

where nx R∈  is the state, mu R∈  is the control input, 
lw R∈  is a vector of unknown constant parameters and  

disturbances. The function ( ),f x w  and ( ),g x w  are 

continuous in ( ),x w  on a domain, n l
x wD D R R× ⊂ × . 

The inequality, ( ) 0, 0g x w g> >  holds for all xx D∈  
and ww D∈ . 

Assumption 1: Suppose that there is a unique pair 
( )00,u  that satisfies the equation, 

( ) ( ) 00 0, 0,f w g w u= +             (2) 

so that 0u  is the steady-state control that is needed to 
maintain equilibrium at the origin. 

Assumption 2: Suppose that there is a diffeomorphism  
: n

xT D R→  such that ( )z xD T D=  contains the origin  
and ( )T x  satisfies the partial differential equations, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

, ,

f

g

T f x w AT x B x x x w
x
T g x w B x x w
x

γ α

γ

∂ = − + ∆ ∂
∂ = + ∆
 ∂

  (3) 

where ( ),A B  is controllable, ( )xα  and ( )xγ  are all  
known nonlinear functions, ( )xγ is nonsingular for all  

xx D∈ , ( ),f x w∆  and ( ),g x w∆  are the uncertain 
terms of the system (1), which arises from several prac- 

tical reasons such as model simplification, parameter 
uncertainty, computational errors.  

The change of variables ( )z T x=  transforms the sys-  
tem (1) into the form, 

( ) ( )( ) ( ) ( ), ,f gz Az B x u x x w x w uγ α= + − + ∆ + ∆  (4) 

For stabilizing the system (4), we need to include 
“integral action” in the control law u . Therefore, Gen- 
eral Integral Controller is proposed as follows, 

( ) ( )( )1
zu x x K z

K zσ

α γ σ
σ

− = − +


= 
        (5) 

where zK  and σK  are all positive define matrices. 
Thus, substituting (5) into (4) to obtain the augmented 

system, 

( ) ( ) ( )
( ) ( )( )1

, ,

,
z f g

g z

z Az BK z B x w x w x

x w x K z

K zσ

σ α

γ σ

σ

−

 = − − + ∆ + ∆


− ∆ +


=





  (6) 

By setting 0z = , 0z =  and 0x =  in (6), we ob- 
tain, 

( ) ( ) ( )
( ) ( )

0

1
0

0, 0, 0

0, 0
f g

g

B w w

w

σ α

γ σ−

= ∆ + ∆

−∆
       (7) 

By Assumption 1 and choosing Kσ  nonsingular to 
counteract the constant uncertainties, we ensure that  
there is a unique solution, 0σ , and then ( )00,σ  is a  
unique equilibrium point of the closed-loop system (6) in 
a domain of interest. At the equilibrium point, 0z = , 
irrespective of the value of w . 

Remark 1: From the control law (5), it is not hard to 
see that the integrator to be shaped by diffeomorphism 
( )T x  is a fire new integrator. And then, it resulted in a 

class of fire-new general integral controller and design 
method. 

Now, the design task is to provide the conditions on  
the gain matrices zK  and Kσ  such that ( )00,σ  is an  
asymptotically stable equilibrium point of the closed- 
loop system (6) in the control domain of interest, which 
is not a trivial task because the closed-loop system (6) 
depends on the unknown vector w , the uncertain terms  

( ),f x w∆  and ( ),g x w∆ . In the next section, we will  
propose a systematic design method to this dilemma. 

3. Design Method 
For analyzing the stability of the closed-loop system (6), 
we substitute (7) into (6) and obtain, 

( ) ( ) ( )0 0, , ,zz A BK z B z x
K zσ

σ σ δ σ σ
σ
 = − − − +


=





    (8) 
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where 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( )( )
( ) ( ) ( ) ( )( )

0

1

1
0

1 1
0

, , , , 0,

, 0, 0

,

,

, 0, 0

f f

g g

g z

g

g g

z x x w w

x w x w

x w x K z

x w x

x w x w

δ σ σ

α α

γ

γ σ σ

γ γ σ

−

−

− −

= ∆ − ∆

+∆ −∆

−∆

−∆ −

− ∆ −∆

 

For stabilizing the system (8), we need to know some 
bound information on ( )0, , ,z xδ σ σ . This results in the 
following assumptions. 

Assumption 3: By Assumption 2 and the function  
( ),f x w  and ( ),g x w  are continuous in ( ),x w  on a 

domain, n l
x wD D R R× ⊂ ×  and ( )1x T z−= , it is rea-  

sonable to suppose that the following inequalities hold, 

( ) ( ), 0,f f fx w w zκ∆ −∆ ≤          (9) 

( ) ( ) ( ) ( ), 0, 0g g gx w x w zαα α κ∆ −∆ ≤   (10) 

( ) ( )1 max,g z g zx w x K z K zγγ κ−∆ ≤     (11) 

( ) ( )( )1 max
0 0,g gx w x γγ σ σ κ σ σ−∆ − ≤ −   (12) 

( ) ( ) ( ) ( )( )1 1
0

0

, 0, 0g g

g

x w x w

zγ

γ γ σ

κ σ

− −∆ − ∆

≤
  (13) 

Thus, by the definition of ( )0, , ,z xδ σ σ  and (9)~(13),  
we obtain, 

( )
( )

0

max
0

max
0

, , ,

f g g z g

g

z x

K zα γ γ

γ

δ σ σ

κ κ κ κ σ

κ σ σ

≤ + + +

+ −

   (14) 

where fκ , gακ , max
gγκ , and gγκ  are all positive con- 

stants. 
Setting ( )0, , , 0z xδ σ σ = , the Equation (8) can be re- 

written as, 
η η= Λ                 (15) 

where  

[ ]0
Tzη σ σ= −  and 

0
zA BK B

Kσ

− − 
Λ =  

 
 

Based on linear system theory  [5], we can choose 
zK  and Kσ  such that Λ  is Hurwitz, and then for any 

given positive define symmetric matrix Q  there exists a 
unique positive define symmetric matrix P  that satis- 
fied Lyapunov Equation (16). Consequently, there exists 
a quadratic Lyapunov function, ( ) TV Pη η η= . 

TP P QΛ +Λ = −              (16) 

We use ( ) TV Pη η η=  as a Lyapunov function can- 

didate. Obviously, ( ) TV Pη η η=  is positive define.  
Therefore, our task is to show that its time derivative 
along the trajectories of the closed-loop system (8) is 
negative define, which is given by, 

( )
( )

( ) ( )0
0

, , ,
, , , 0

0

T T

TT

T

V P P

P P

z x
P z x P

η η η η η

η η η η

δ σ σ
η δ σ σ η

= +

= Λ + Λ

 
 + +   

 



 

  (17) 

Now, by definition of η , we have 0σ σ η− ≤  and 

z η≤ , and then inequality (14) can be rewritten  
as,  

( )0, , ,z xδ σ σ κ η≤         (18) 

where max max
0f g g z g gKα γ γ γκ κ κ κ κ σ κ= + + + + . 

Substituting (18) into (17) and taking Q I= , we ob-
tain, 

( )
( )

2 2

2

2

1 2 0

V P

P

η η κ η

κ η

≤ − +

= − − ≤



         (19) 

Using the fact that Lyapunov function ( ) TV Pη η η=   
is a positive define function and its time derivative is a 
negative define function if the inequality (19) holds, we 
conclude that the closed-loop system (8) is stable. In fact,  

0V =  means 0z =  and 0σ σ= . By invoking the  
LaSalle’s invariance principle [5], it is easy to know that 
the closed-loop system (8) is asymptotically stable in the 
control domain of interest. This established the following 
theorem.    

Theorem 1: Let ( )00,σ  be a unique equilibrium  
point for the closed-loop system (8). If Assumptions 1 ~ 
3 hold and there exist the gain matrices zK  and Kσ  
such that the inequality (19) holds, and then the closed- 
loop system (8) is asymptotically stable in the domain  

x wD D× . Moreover, if all assumptions hold globally, and  
then it is globally asymptotically stable. 

Remark 2: From the analysis procedure above, it is 
obvious that the distinct feature of this design method is:  
1) Just the integrator is taken as, K zσσ = , we can easi- 
ly use linear system theory to analyze the stability of the 
closed-loop system; 2) Just the integral control action is 
introduced, we can use the linear growth bound to esti- 
mate the impact of the uncertain term, ( )0, , ,z xδ σ σ  on  
the system stability. All of them provide an ingenious 
solution for designing a stable general integral controller. 

Discussion 1: Compared with General Integral Con- 
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trol design proposed by [7,8], it is easy to see that: 1) The 
design method proposed here can cancel the central non- 
linear action via feedback linearization; 2) When the 
bound of the system uncertainty is fairly estimated we 
can design a stable general integral controller with the 
lesser conservativeness. All those mean that general 
integral control design method proposed here can more 
effectively deal with nonlinearity and uncertainty of dy- 
namics, and then makes the engineers more easily design 
a stable controller. 

4. Example and Simulation 
Consider the pendulum system [5] described by, 

sina b cTθ θ θ= − − +   

where 0a g l= > , 0b k m= > , 21 0c ml= > , θ  is  
the angle subtended by the rod and the vertical axis, and 
T  is the torque applied to the pendulum. View T  as 
the control input and suppose we want to regulate θ  to  
δ . Taking 1x θ δ= − , 2x θ=  , we can write the pen- 
dulum system as, 

( )
1 2

2 1 2sin
x x
x a x bx cuδ
=

 = − + − +





      (20) 

It can be easily seen that the system (20) is feedback 
linearizable with ( )z T x x= = . Thus, general integral 
controller can be taken as, 

( )( )1 1 1 2 2
1 2

1 2

ˆ ˆsinu a x k x k x c

k x k xσ σ

δ σ

σ

 = + − − −


= + 
  (21) 

where â  and ĉ  are the nominal values of a  and c .  
Substituting (21) into (20), we obtain, 

( ) ( ) ( )
1 2

2 1 1 2 2 0 0
1 2

1 2

, ,
x x
x k x b k x x

k x k xσ σ

σ σ δ σ σ
σ

=
 = − − + − − +
 = +







 (22) 

where  

( ) ( ) ( ) ( )( )
( )( ) ( )( )

0 1

1 1 2 2 0

ˆ ˆ ˆ, , sin sin

ˆ ˆ ˆ ˆ

x ca ac x c

k x k x c c c c c c

δ σ σ δ δ

σ σ

= − + −

− + − − − −
. 

For the closed-loop system (22), taking ˆ ˆ 10a c= =  as 
the nominal values of a  and c , and using the design 
method proposed here, general integral controller can be 
taken as, 

( )1 1 2

1 2

sin 8 4
8 4

u x x x
x x

δ σ
σ
= + − − −


= + 

 

Thus, regulation will be achieved for all [ ],δ π π∈ − . 
In simulation, the normal parameters are 10a c= =  

and 1b = . In the perturbed case, b  and c  are reduced  

 
Figure 1. System output under normal (solid line) and per- 
turbed case (dashed line). 
 
to 0.5 and 5, respectively, corresponding to doubling of 
the mass. Moreover, we consider an additive impulse- 
like disturbance ( )d t  of magnitude 30 acting on the 
system input between 11 s and 12 s. 

Figure 1 showed the simulation results under normal 
(solid line) and perturbed (dashed line) cases. The fol- 
lowing observations can be made: under normal and per-
turbed cases, the optimum response in the whole domain 
of interest can all be achieved by a set of the same con-
trol gains, even under the case that the payload is 
changed abruptly. This demonstrates that general inte- 
gral control proposed here has strong robustness, fast 
convergence and good flexibility, and then can more ef-
fectively deal with unknown exogenous disturbances, 
nonlinearity and uncertainties of dynamics and makes the 
engineers more easily design a high performance con- 
troller. 

5. Conclusions 
Based on the feedback linearization technique, we 
present a systematic design method for General Integral 
Control. The main contributions are as follows: 1) A new 
integral control strategy along with a class of fire-new 
integrator is proposed; 2) By using the linear system 
theory and Lyapunov method along with LaSalle’s inva-
riance principle, the conditions on the control gains to 
ensure regionally as well as semi-globally asymptotic 
stability are provided. 

In this paper, only one design method for General 
Integral Control was presented. It is clear that we cannot 
expect one particular procedure to apply to all system. 
Therefore, new design techniques for General Integral 
Control are needed to solve wider theoretical and prac-
tical problems. 
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