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Abstract 

On the basis of the vector formula of the Newton’s law for a viscous liquid and the integrated vector form of 
the equation of an impulse for a viscous liquid for resistance and carrying power of a profile of any form and 
the big length dependences are found in a stream. Application of the found dependences at a circulating flow 
of the cylinder located across a stream is showed. The analysis of a tensor of viscosity for laminar and turbu-
lent flow is carried out. 
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1. Introduction 
 
The cross-section flow around of bodies of any profile 
arises at flights of planes, movement of hydrofoils, on 
wires of lines of a high voltage etc. The big contribution 
to the decision of a problem of a flow wingeous profile a 
stream of an ideal liquid was brought by outstanding 
scientist N. E. Zhukovsky’s formula for carrying power 
calculation, has a strict substantiation and is widely used 
in aerodynamic calculations [1,2]. 
 
2. The Equation of a Impulse 
 
At the decision of problems of a flow of bodies, for ex-
ample, wingeous profile the integrated form of the im-
pulse equation is interesting. Let’s find this form, using 
the equation of 2nd Newton’s law for elementary volume 
of a liquid dW in a following kind: 

i
i

dW d  a F ,              (1) 

where a—acceleration of the allocated volume dW, — 
liquid density, idF —the forces operating on the allo-
cated volume of a liquid.  

Writing acceleration in the form of the sum of local 
and convective components, we will receive: 

  i
i

dW dW d
t

 
  

 V
V V F .       (2) 

Let’s integrate on volume the left and right members 
of Equation (2): 

  i
iW W

dW dW
t

 
  

  V V V F .      (3) 

Let’s designate 
W m

dW dm  K V V —A local 

component of quantity of movement of a liquid in weight 
dm in volume dW. Besides, we will use the theorem of 
the vector analysis [3] 

     div
W S W

dW dS dW     V V n V V V V . Believ-

ing a liquid incompressible, i.e. div 0V , we have: 

  i
iS

dS
t


  

 
K

n V V F ,        (4) 

where S—The area of a surface limiting volume W. 
The formula (4) represents the integrated form of the 

equation of an impulse [4]. 
 

3. A Flow Around of Bodies by the Viscous 
Liquid 

 
Let’s find the amendment to the formula Zhukovsky for 
the carrying power, arising at the expense of viscosity of 
a stream of a liquid. 

This correcting is carried out by addition to the for-
mula of carrying power of some, poorly proved, addi-
tional composed till now [5]. In this case it is noticed that 
viscosity influence is double: first, it leads to carrying 
power change, and secondly, there is a force of resistance 
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to a flow. 
Let’s consider some body Т which is permanently 

flowed round by a viscous liquid with accumulating 
speed V  and we will find the main (total) vector of 
forces with which the liquid operates on a body at its 
continuous flow, Figure 1. Axis Y we will direct perpen-
dicularly to drawing. In a direction of axis Y we will 
originally consider the size of a body unlimited, and the 
area of cross-section section invariable. 

Let some any contour abcd covers this body. 
On a liquid between a body and a contour abcd three 

forces operate: pressure force –Fp from external in rela-
tion to a contour abcd liquids, force of a friction from 
external, in relation to this contour, a liquid frF  and 
force from body Т which we will designate –R. We con-
sider that positive values of forces operate on the con-
trary, from a liquid between a body and a contour abcd, 
so that, for example, R—The force operating on body Т 
from a liquid. The finding of last force also is the main 
task of the given research. 

Believing a profile flow stationary, the integrated Eq-

uation (4), with the account 0
t





K

 and nV  n V , it 

is possible to write down in a kind: 

n p frV dS     V F R F .          (5) 

Pressure force is equal: 

p pdS F n ,                (6) 

where р—Pressure in a liquid. 
Using for force of a friction the vector form of the 

Newton’s law for viscosity in the form [6], we will find: 

rotfr d F S V .             (7) 

Hence, it is possible to present the Equation (5) in a 
kind: 

rotnV dS pdS d         R V n S V .    (8) 

The vertical component of force R, concerning speed 
V , Figure 1, a stream running on body Т, is carrying 
power, a horizontal component—Force of resistance to a 
flow. For a finding of these forces it is necessary to know 
pressure communication р and speeds of a liquid V. 

The Equation (8) allows to solve essentially a problem 
of a flow a viscous liquid of a profile of any form. Most 
interesting from the practical point of view the estab-
lished flow of a body a liquid concerning small viscosity 
(air), therefore, with some approach, we will accept 
communication of pressure and speed of a flow accord-
ing to the equation of Bernulli: 

2

2

V
p C


  ,                  (9) 

θ

 

Figure 1. The flow of bodies of any profile at the stream of a 
viscous liquid. 
 
where C—is a constant. 

Substituting (9) in (8), we will receive: 

2

rot
2 n

V
C dS V dS d 

 
      

 
    R n n V S V .(10) 

Let’s consider crossing by a running liquid of the al-
located contour, Figure 1. 

The external normal n is connected with ортами coor-
dinates i, j, k and a corner  between axis Х and a tangent 
to a contour. Between a normal n and axis Х a corner 

2

  .  

Hence: 

cos sin sin cos
2 2

                
   

n i k i k .(11) 

In last composed (10) we use a parity d dSS n  and 
the formula: 

 rot sin cos

cos sin

X Z

X Z X Z

V V

Z X

V V V V

Z X Z X

 

 

           
                   

n V i k j

i k

,  (12) 

where VX and VZ—Components of a vector of speed V. 
Substituting (11) and (12) in the formula (10), we 

have: 

   
2

sin cos
2

cos sin

n X Z

Z X Z X

V
V V V dS

V V V V
dS

X Z X Z

  

  

 
      

 
                      









R i k i k

i k

 

(13) 
At substitution we used 0dS  n .  
Projecting (13) on an axis of coordinates, we find 

making forces R: 
2

sin  
2

        cos

X n X

Z X

V
R V V dS

V V
dS

X Z

 

 

 
   

 
          








.          (14) 
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2

cos  
2

 

    sin

n Z
Z

Z X

V
V V dSR

V V
dS

X Z



 

 
 

 

          








.         (15) 

In the further transformations we used 2 2 2
X ZV V V   

also parities, Figure 1 see: 

sin cos
2

X

l

         
 or cos

X

l





 

and         cos sin
2

Z

l

         
.         (16) 

Besides, we use also: 

    sin cos

 sin cos

n

X Z

X Z

V

V V

V V

 
 

 

   

  

V n

i k i k . 

After corresponding substitutions, formulas (14) and 
(15) will be transformed to a kind: 

 2 2

2

         

X Z

X Z X

Z X

V V
R dZ V V dX dY

V V
dXdY

X Z





  
   
 
 
      








.    (17) 

 2 2

2

         +

X Z

Z Z X

Z X

V V
R dX V V dZ dY

V V
dYdZ

X Z





 
  
 
 

     








.       (18) 

In difference, for example, from [1,2] the analysis of a 
flow of a body we will spend, using flow function , 
without entering potential of speed. It is connected by 
that the potential flow is considered not. 

Projections of speed to coordinate axes are connected 
with flow function: 

XV
Z





 and ZV
X


 


.        (19) 

Let’s accept: 

 0V Z   , 0
XV V

Z





 


, 0

ZV
X


 


,  (20) 

where the first composed  characterizes a homogeneous 
stream of a liquid [4], and the second non-uniform con-
ditions of a flow of a body. 

Substituting (20) in (17) and (18), we are limited only 
composed, not containing squares and products deriva-
tive from 0 . It is connected by that far from a body 
derivative from 0  quickly aspire to zero—A flow 
homogeneous. Actually, we are limited to linear ap-
proach of a flow of a body by a liquid. It is as a result  

found: 

2 0 01
2

2

        2

XR V V dZ V dX dY
Z X

dXdY

 


 

  

             










, 

(21) 

2 0 01
2

2

        2

ZR V V dX V dZ dY
Z X

dYdZ

 


 

  

           










, 

  (22) 

where it is designated 
1

2
Z XV V

X Z


      
—Angular 

speed of rotation of a liquid round a streamline body [7]. 
The sign before last composed is defined by positivity of 
last composed in (21) since making XR —is the force 
operating on a body from a liquid at the expense of its 
viscosity, equal on the module to force of resistance of a 
streamline body. 

Using taking into account (16) conditions  

sin sin 0dZdY dldY dS         and 

sin sin 0dZdY dldY dS        , we will find: 

0 0

        2

XR V dZ dX dY
Z X

dXdY

 


 



      









.     (23) 

0 0

        2

ZR V dX dZ dY
Z X

dYdZ

 


 



      









.      (24) 

On Figure 1 the elementary expense of a liquid dQ 
through a contour abcd between two lines of a flow e and 
f is shown. The full expense Q of a liquid having on unit 
of length Y forming cylinder, entered or left a contour 
abcd is equal to zero. At the proof of the given position 
we use Green’s formula. According to [4], we have: 

0 0

2 2
0 0 0 0 0

X Z

G

Q V dZ V dX V dZ dX
Z X

dZ dX
Z X Z X X Z

 

   



         
    

     
      

 

 

 


. (25) 

The factor in the first integral in (24) represents circu-
lation of speed [4] on unit of length Y forming the cy-
linder: 

0 0

0 0

  

  

X ZГ V dX V dZ

V dX dZ
Z X

dX dZ
Z X

 

 



 

              
            













.    (26) 
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Using linear dependence of projections of force R on 
coordinate Y, taking into account (25) and (26) we will 
write down (23) and (24) in a kind: 

2XR Y dX   ,               (27) 

2ZR V ГY Y dZ     .        (28) 

Under size Y in this case we mean the size of a stream-
line body in a direction of axis Y. At 0   from (28) 
we have the Zhukovsky’s formula for carrying power. 

Formulas (27) and (28) allow to calculate basically 
force of resistance XR  and ZR  carrying power in a 
viscous stream for bodies of any form. 

Originally we will show that for an ideal liquid addi-
tional viscous composed in (27) and (28) are equal to 
zero owing to not only formal 0  , but also at the 
expense of arising structure of a stream. For example, for  
a case uncirculatation flows of the circular cylinder, i.e. 

at 0Г  , with use of function  0 1 2 2

Z
C

Z X
  


 [4] 

where 1С —A constant, direct calculation it is possible 

to show, 0

1
0

2
      as both making forces R are 

equal in approach of an ideal liquid to zero. 
Let’s consider a circulating flow of the cylinder in ra-

dius b an ideal liquid. We will accept communication 
between speed of a stream and circulation in the form of 

2

Г
V

r
  [4], where r—distance from a cylinder axis.  

Angular speed we will find from a condition 

22

V Г

r r



  , where 2 2 2r X Z  . Circulation we 

will consider as a constant [5]. Speed of a circulating 
component of a stream thus falls in inverse proportion to 
distance from the cylinder center. Substituting expression 
for angular speed in formulas (27) and (28), we will find: 

2 2X

YГ dX
R

X Z





 ,           (29) 

2 2Z

YГ dZ
R V ГY

X Z


 

 .       (30) 

Integrals in (29) and (30) are equal among themselves 
from a condition of coordinate symmetry. These inte-
grals are simple for calculating, using Green’s formula. 
For example, integral  

 
2

2 2 2 22 2
0

2
cos 0

b

dZ XdXdZ d
d

X Z X Z

  




    
 

    , 

where transition to polar coordinates is carried out. 
Hence, both viscous additives to components of force R 
are equal to zero. 

The finding of expressions convenient for calculation 
viscous composed for components of force R at a flow a 
liquid of any profiles is generally exclusively challenge. 

For example, for the cylinder the formula (27), using 
Figure 2, it is possible to transform as follows: 

2

0

2 2 2

    2 sin

   2 4 sin 8

X XR Y dX Y dX Y V d
t

Y V d

YV d V Y



    

  

    


  


 

 

  





  
 .  (31) 

Integration limits in (31) are defined by the following. 
We consider only area of monotonously growing depen-
dence of projection VX from a corner   where flow 
lines have circular character. With corner increase   
from some minimum value which it is approximately  

considered equal to zero, to value 
2


, the longitudinal  

component of speed sinXV V   grows from some 
minimum to the maximum value, which on some small 
distance from the cylinder equally V . Then VX again 
falls almost to zero. A thickness of an interface it is con-
sidered by the small. In vicinities of points A and B, 
Figure 2, stream structure it is complicated. The strong 
bend of lines of a flow is observed. Therefore the re-
ceived result (31) which are not considering features of 
these areas, the confidant. Attracts attention absence of 
dependence of force XR  from cylinder radius b. This 
effect, proceeding from the dimension analysis, is marked 
in [8]. It vanishes at transition to nonlinear approach in 
calculations. 

The question on dependence of force of resistance to a 
flow a viscous liquid of the cylinder from its radius is of 
interest. From the analysis of the spent calculation fol-
lows that existence of circular lines of a flow, Figure 2,  
doesn’t lead to dependence of force RX on radius. But in 
vicinities of points A and B sharp change of a direction of 
these lines is observed, there are points of an excess of 
lines of a flow. It is known that at sharp reduction of ra-
dius of the pipeline where the excess of lines of a flow 

 
Figure 2. The form of the lines of a flow and speeds compo-
nents VX, VZ at the cross-section flow of the cylinder a visc-
ous liquid. 
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also is observed, there is a loss of static pressure in a 
flow viscous liquid which is spent for maintenance of a 
constancy of dynamic pressure [9]. The same process 
should be observed in vicinities of points A and B. Sharp 
changes of kinetic energy of a stream at an excess of 
lines of a flow, basically, are described convective non-
linear composed in the equation of an impulse (2). 
Therefore, only at the account of this composed there can 
be a dependence of force RX on radius, as proves to be 
true in [8]. 

Dependence of factor of resistance of the cylinder on 
Reynolds’s number in approach (31) looks like: 

2

16
1 Re2
2

X
X

R
C

V Y b 

  ,           (32) 

where Re
V d

 , diameter of the cylinder 2d b . 

On Figure 3 the attitude of factor of the resistance 
8

7,406
Re ln

Re

DC



   
 

 [10] found taking into account 

nonlinear convective composed  V V  at decision 

the equation of an impulse in the differential form, to the 
factor of resistance found under the formula (32) is 
shown. The formula (32) states a quite good estimation 
of factor of resistance of the cylinder in area  
0,5 Re 2  . 

Let’s estimate carrying power increase at a circulating 
flow of the cylinder, arising at the expense of viscosity. 
We will transform the formula (28) similarly transforma-
tion (31): 

2

0

2 2

2 4 cos 8

Z Z

c c

R V ГY Y dZ V ГY Y V d

V ГY YV d V ГY V Y



     

     

 

 

    

   

 



 
.(33) 

Not circulating component ZV  at integration on the 
closed contour can to be considered, since it is symme-
tric concerning axis Х, with change of a direction in the 
course of integration. 

Circulating component of district speed Vc, arising, for 
example, at cylinder rotation, we will connect since cor-
responding this speed circulation Г1 under the formula  

1

2c

Г
V

b
 , as a result we will find: 

1
1

8
8 1

2 ReZ

Г
R V ГY Г Y V ГY

b Г

 
  

     
 

. (34) 

Let’s notice that at increase in number of Reynolds 
carrying power to aspire to that at a circulating flow of 
the cylinder an ideal liquid. If the circulating component  

D

X

C

C

 

Figure 3. Dependence of the ratio of factors of resistance of 
the cylinder in the stream at the account СD and not the 
account СX of nonlinear effects in a flow of a liquid de-
pending on Reynolds’s number. 
 
of speed is defined only by cylinder rotation, for example, 
at the problem decision on occurrence of effect of Mag-
nus [10] at falling of the cylinder rolling down from a 
table on a floor the first composed in the formula (34) to 
consider there is no necessity. The first composed in (34) 
needs to be considered only at circulation occurrence not 
connected with effects of viscosity, for example, around 
wingeous a profile at the expense of a certain angle of 
attack. 

 
4. Tensor of Viscosity 
 
We will analyse Newton’s law for force of viscosity (7) 
in more details. More the general view of this law looks 
like: 

rotтрd d 


F S V ,            (35) 

where dS—A vector of the area of contact of layers of a 
liquid. 

Generally viscosity  —Tensorous size (affinor) the 

second rank (i = 1, 2, 3 and j = 1, 2, 3) since it is the 
linear operator at transition from one vector to another. 
In coordinate representation the formula (35) can be co-

pied in a kind    
3

1

rotfr ij ji
j

d F d


  S V . At calcula-

tion, for example, flow of liquid crystals it is necessary 
to consider tensorous character of viscosity [11].  

Believing vector bases at the left and on the right in 
equality (35) identical, we find that  

11

22

33

0 0

0 0

0 0


 



 
   
 
 


, i.e. a matrix of a tensor   the 

diagonal. Hence, there are three various factors of vis-  
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cosity on three coordinate axes. 
If to consider a liquid newtonous, i.e. all components  

of a tensor of viscosity the identical 11 22 33      . 
Therefore the formula (35) becomes simpler to (7). 

The viscosity tensor becomes not diagonal at transition 
to liquid turbulent flow. In this case it looks like: 

11 12 13

21 22 23

31 32 33

11 12 13

22 21 23

33 31 32

0 0 0

 0 0 0

0 0 0

 d nd

  
   

  

  
  

  
 

 
   
 
 
   
       
   
   

 



 

.     (36) 

And the tensor d


 represents molecular viscosity, 
and nd —Turbulent viscosity. We will notice that the 
tensor (36) is symmetric ik ki  . 

Using the equation of an impulse (4), and also apply-
ing Reynolds’s method of decomposition of speed upon 
average and pulsation components  V V v , we find 
Reynolds’s pressure: 
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3 1 3 2
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 
 

 
   
 
 

S

j k

i k

i j

S V

S rotv

,    (37) 

where i, j, k—is unit vectors and angular brackets is 
mean sign [12]. 

For example in flat geometry, for one of a component 
of a tensor of pressure of Reynolds it is simple to receive 
the formula: 

/1
1 2 12 12

2

2
V

v v
X

   
 

    
,       (38) 

where / 1 2

2 1

1

2

v v

X X


  
    

 and 1 2

2 1

V V

X X

 
 

 . 

 

Let’s notice that unlike a hypothesis of Bussineska 
[7] for turbulent pressure, they remain 3 and at 

 1 2V X const , i.e. in case of homogeneous and iso-
tropic turbulence [13], for example, in a stream of gas 
after a frequent lattice. 
 
5. Conclusions 
 
Use of the vector form of the Newton’s law for a viscous 
liquid allows to solve a problem of a flow around of bo-
dies. Application of the found dependences at a circulat-
ing flow of the cylinder located across a stream is 
showed. In article the way of taking into consideration 
viscosity at correction N. E. Zhukovsky’s elevating force 
is showed. Factor of viscosity carries tensor character. 
The tensor of viscosity includes as molecular, so turbu-
lent viscosity. 
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