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ABSTRACT 
Games often provide a good introduction to interesting phenomena in mathematics. In this note, we examine 
three variations of an iterative sharing game played around a circular (or not so circular) table. More precisely, 
for each variation, we study the tendency toward equal distribution among the players. In the first variation, the 
players have discrete amounts at each step. The second variation removes this restriction, and the third one 
considers an infinitely long table with an infinite number of players.  
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1. Sharing around a Table with Discrete Amounts 
Suppose you have n  persons seated around a circular table, each having an even number of dimes. Number 
them from 1 to n  counterclockwise, and denote by ia  the (even) number of dimes that the i-th person has, 

1, , .i n=   
The game is played by repeating the same two steps over and over, as follows: first, each person gives one 

half of her dimes to the person sitting on her right. In symbols,  

1 , 1, , ,
2 2

i i
i

a a a i n−+ → =                                         (1) 

with the convention 0 na a= . Note that the new ia ’s are not all necessarily even. The second step, which 
allows us to repeat (1), is to add one dime to each odd ia : 

( )1 1
, 1, , .

2

ia

i ia a i n
− −

+ → =                                      (2) 

We call this game the “discrete sharing game”. 
Proposition 1.1 By iterating (1) and (2), after a finite number of steps, we will have 1 2 na a a= = = , i.e. 

every person ends up with the same number of dimes. 
This problem can be found in [1]. The proof follows easily from two observations. First, the maximum 

amount around the table cannot increase, nor can the minimum amount decrease. Second, if the minimum 
amount is strictly smaller than the maximum amount, then after the next step, either the minimum amount will 
have increased, or else the number of players having the minimum amount will have decreased. Together, these 
observations imply that after finitely many steps, the maximum and minimum amounts will coincide. We leave 
the details of the proof to the reader. Another interesting problem is to determine the number of iterations 
needed to reach equidistribution in terms of the initial data (see Figures 1, 2 and 3). 

An iterative sharing game that tends toward the equal distribution of the players’ amounts is what we call an  
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Figure 1. 3-D graph of the discrete sharing game with 10 players and with initial distribution as shown. In this 
example, equidistribution is achieved at the 16-th iteration. 
 

 
Figure 2. 2-D graph of the game given in Figure 1. This graph does not show how the initial amounts are distributed 
around the table. 
 

 
Figure 3. 2-D graph of a generalized discrete sharing game with 20 players and k = 3. 
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“equidistribution process”. You may think that in the above example, the equidistribution is due to the fact that 
the sharing is done by halves. However, Proposition 1.1 generalizes without much effort: suppose all the ia ’s 
are initially multiples of a fixed number k . Replace (1) with  

1
1 1 , 1, , ,i i i

k a a a i n
k k −
−

+ → =   

and (2) with a similar step where you add dimes until you reach the first multiple of k  greater than or equal to 
ia  for all 1, ,i n=  . Then again you will end up with 1 2 na a a= = =  after a finite number of steps.  

2. Sharing around a Table with Complex Numbers 
Suppose there are n  persons around a circular table, numbered counterclockwise as before. But this time each 
of them starts with an initial amount , 1ia i n≤ ≤ , that can be any complex number. Let r  be a positive real  

number, 0 1r< < . It will play the role of 1
k

 above. We want to study the behavior of  

( ) 11 , 1, , ,i i ir a ra a i n−− + → =   

as the number of iterations goes to infinity. Note that the balancing step (2) does not make sense here anymore,  

as neither the ia ’s are necessarily integers nor 1r
k

=  for some k∈ . We can give a realistic feeling to the  

game if we restrict the ia ’s to real numbers. Then at each step, each person is sharing her wealth ( )0ia >  or 
debt ( )0ia <  by giving a portion r  of her number to the person on her right. But this restriction is 
unnecessary, so we will work in the more general setting of complex numbers. In contrast to the discrete version 
of the last section, we call this the “complex sharing game”. 

For 0,1,2,=  , let ia  be the amount that person i  has after the  -th step. Then 0
i ia a= , and we also 

extend the definition by setting i ja a=   whenever modi j n≡ , so that ia  makes sense for any integer i. The 
rule for sharing at each step then yields 

( )1
1 1 ,i i ia ra r a+
−= + −                                          (3) 

where the sub-indices are understood modulo n . 
Note that if 2n = , then 1 1

2 1 2 12 1 .a a r a a+ +− = − −     Since 2 1 1,r − <  clearly this sharing game with only  

two people is an equidistribution process. This is particularly trivial if 1 ,
2

r =  in which case both persons will  

have the same number after just one step. From now on, we assume 2n > . Note also that the sum of the 
numbers around the table remains constant with each step. Let us denote this constant by S , that is  

1 2 , 0.nS a a a= + + + ≥  

   

2.1. The Sharing Transformation and Its Eigenvalues 
We can model the sharing process (3) with the aid of the  -linear transformation : n n

rT →   given by  

( ) ( ) ( ) ( )( )1 1 1 2 1, , 1 , 1 , , 1 .r n n n nT z z rz r z rz r z rz r z−= + − + − + −   

With the notation as above, we see that ( ) ( )1 1, , , , ,n r na a T a a=  

   where the exponent on rT  indicates the 
number of times that this transformation is composed with itself: r r rT T T  .  

In the canonical basis of n , rT  has matrix 

1 0 0
1 0 0

,0 0 0

0 0 1

r

r r
r r

A r

r r

− … 
 − … 
 = …
 
 
 … − 

    

 

which has entries 1 r−  along the main diagonal, r  on the diagonal immediately below and at the upper right 
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corner, and zero elsewhere. This is a “stochastic” or “Markov” matrix, as its entries are all non-negative and the 
sum of the entries in each row is equal to 1. For more information on these matrices and their interesting 
properties, we refer the reader to [2]. We will presently prove some of these properties for our matrix rA  in 
order to make this note more self-contained, but the reader should be aware that both Propositions 1.1 and 
Theorem 2.2 below hold for any stochastic matrix. 

Proposition 2.1 The matrix rA  has n distinct eigenvalues 1 21, , , nλ λ λ= ∈   with 1iλ <  for 
2, ,i n=  .  

Proof. Let ( )rf t  be the characteristic polynomial of .rT  Computing it explicitly, we obtain  

( ) ( ) ( )( )det 1 .
n n

r rf t t A t r r= − = − − −  

Let 1, , nω ω  be the nth distinct complex roots of .nr  Then it is easy to see that the n  (distinct) roots of 
rf  are 

1 , 1, , .i i r i nλ ω= + − =   

If we set 1 ,rω =  then we have that 1 1.λ =  For 2, , ,i n=   we have 1 1 1.i i ir rλ ω ω= + − < + − =  The 
inequality is strict, as iω  is not a positive real number if 1.i >                                      □ 

An eigenvector associated to the eigenvalue 1 is ( )1 1,1, ,1 .v =   In our game, this eigenvector corresponds 
to the case where every person has the same amount ( ), 1, ,ia S n i n= =  . Clearly, this situation is stable, i.e. 
does not change after applying rT . Let 2 , , nv v  denote eigenvectors for the eigenvalues 2 , , nλ λ  re- 
spectively. Thus ( )r i i iT v vλ=  for each .i  Now we are ready for the main result of this section, which is that 
the complex sharing game also tends toward equal distribution among the n  players. (See Figures 4 and 5). 

Theorem 2.2 The complex sharing game described by (3) is an equidistribution process. That is,  

( )1lim , , , , .n
S Sa a
n n→∞

 =  
 

 



   

Proof. Note that { }1, , nv v  is a basis for n  consisting of eigenvectors of rT . Write  
( )1 1, , n

n i iia a vα
=

=∑  with , 1, ,i i nα ∈ =  . Then 

( ) ( )1 1
1 1

, , , , .
n n

n r n r i i i i i
i i

a a T a a T v vα α λ
= =

 = = = 
 
∑ ∑    

   

Proposition 2.1 now implies that 

( ) ( )1 1 1 1 1 1lim , , , , , .na a vα α α α
→∞

= = 



   

Therefore the game is indeed an equidistribution process.                                       □ 
Note that, since the sum of the n numbers remains constant at each step of the iteration above, we must have  

1
1 .na a S

n n
α

+ +
= =



 There is another way to obtain the value of 1α . Let 0
nC  be the subspace of n  de-  

fined as ( ){ }0 1 1, , : 0 .n n
n nC z z z z= ∈ + + =    

Lemma 2.1 Let { }1, , nv v  be the basis of eigenvectors fixed above. Then { }2 , , nv v  is a basis of 0 .nC   
Proof. Write ( )1, ,i i inv v v=   for 1i > . Since ( ) ,r i i iT v vλ=  we have  

( ) ( ) ( )( ) ( )1 111 , , 1 , , .in i in i i ini nrv r v rv r v v vλ−+ − + − =   

Adding the coordinates on each side of this identity, we get  

( )1 1 .i in i i inv v v vλ+ + = + +   

Since 1iλ ≠  for 1,i >  we conclude that 1 0.i inv v+ + =  Therefore, the subspace spanned by { }2 , , nv v  
is contained in 0 ,nC  and since both of these spaces have dimension 1n − , we must have equality, proving the 
claim.                                                                                   □ 

We can use this statement to compute the value of 1α . We have  

( )1 1 1
1 2

, , .
n n

n i i i i
i i

a a v v vα α α
= =

= = +∑ ∑  

Recall that we chose ( )1 1,1, ,1 .v =   Since 02
n n

i ii v Cα
=

∈∑ , the sum of the coordinates of this vector is equal  

OPEN ACCESS                                                                                       OJDM 



C. D’ANDREA, E. GÓMEZ 13 

 
Figure 4. Evolution of the complex sharing game with 20 players and r = 3/4. The initial amounts are integers be- 
tween 0 and 10. 
 

 
Figure 5. Evolution of the complex sharing game with 50 players and r = 1/2. The initial amounts are integers be- 
tween 0 and 50. 
 
to zero, and hence 1 1.na a nα+ + =  From this we deduce again that  

1
1 .na a S

n n
α

+ +
= =

  

2.2. An Explicit Formula for ia  
Recall that we defined i ja a=  , and in particular i ja a= , whenever modi j n≡ . Let us find a formula, in 
terms of the initial data 1, , na a , for the number that each person will have after any given step of the complex 
sharing game: 

Proposition 2.3 For any i∈  and 0≥∈  , we have  

( )
0

1 .jj
i i j

j
a r r a

j
−

−
=

 
= − 

 
∑
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Proof. We use induction on  , the initial step being obvious. Next, assume the formula holds for all i∈  
and for all 0  with 0 0,≥ ≥   for a fixed 0≥ . Then, 

( )

( ) ( ) ( )

( )

( )

1
1

1
0 0

1 11

1 0

1
1

1

1

1 1 1

(1 ) 1
1

1
1

i i i

j jj j
i j i j

j j

jj j j
i j i j

j j

j
i

j

a ra r a

r r r a r r r a
j j

r r a r r a
j j

r a r r
j j

+
−

− −
− − −

= =

+
+ −+ −

− −
= =

++
− −

=

= + −

      
= − + − −      

      
   

= − + −   −   
    

= + + −    −    

∑ ∑

∑ ∑

∑

  

 

 

 













 

 

 

( )

( )

1 1

1 1

0

1

1
1 ,

j
i j i

jj
i j

j

a r a

r r a
j

− +
−

+
+ −

−
=

+ −

+ 
= − 

 
∑









 

so the formula holds for 1+  and the proof is complete.                                          □ 
In particular, when each person shares one half of her amount at each step, we have 

Corollary. If 1 ,
2

r =  then 0

1
2i i jja a

j −=

 
=  

 
∑ 







 for all i∈  and 0≥ . 

By grouping the binomial coefficients 
j

 
 
 



 in congruence classes of j modulo n, we obtain an equivalent 

formulation of this result (always for 1
2

r = ): 

1
1 0, 0, 1 0,

1 1 ,
2 2

n

i j n
j l l i j l l i l l i

a a a a
l l l= = ≡ − = ≡ − = ≡

      
= = + +      

      
∑ ∑ ∑ ∑

  



 

  

  

where each congruence is understood to be modulo .n  If all the initial amounts 1, , na a  are equal, the 
sharing process is stable from the beginning, and this formula reduces to the well known fact about the sum of  

the entries in the  -th row of the Pascal triangle, 0 2j j=

 
= 

 
∑ 





. What is more interesting is that, in light of 

Theorem 2.2, lim i
Sa
n→∞ =



 for all i, regardless of the initial amounts. So given n, if we group the binomial 

coefficients 
j

 
 
 



 by the congruence classes of j modulo n and give each class an arbitrary weight, then as we  

go further down the rows of the Pascal triangle, the weighed sum of the entries divided by the sum with no 
weights, 2 , always tends to the average of the weights. More generally, regardless of the value of r, Theorem  

2.2 shows that the sums given in the statement of Proposition 2.3 all tend to the same limit S
n

 as .→∞  

2.3. Eigenvectors of Tr and Vandermonde Matrices 
Let ω  be any n-th root of unity, i.e. 1.nω =  Then it is easy to check that 

( ) ( )( )2 1 1 2 11, , , , 1 1, , , , .n n n
rT r rω ω ω ω ω ω ω− − −= + −   

That is, ( )2 11, , , , nω ω ω −
  is an eigenvector of rT  with eigenvalue 1 1nr rω − + − , the latter being of course 

one of the iλ  above. 
Therefore, if pω  is a primitive n-th root of unity, then the vectors 1, , nv v  given by  

( ) ( )( )( )2 1 1 111, , , ,i n ii
i p p pv ω ω ω− − −−=   

form a basis for n  consisting of eigenvectors of rT . Note that we have again ( )1 1,1, ,1v =   as above, and  
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that the eigenvalue for iv  is ( )( )1 1 1 .i n
i pr rλ ω − −= + −  

Under the (ordered) basis 1, , ,n rv v T  has diagonal matrix  

1 0
.

0
r

n

D
λ

λ

… 
 =  
 … 

    

The matrix whose columns are the coordinates of the vectors 1, , nv v  changes the basis from the canonical 
to 1, , nv v . This is a Vandermonde matrix  

( )
( ) ( )2

2 1

2 1 11

1 1 1 1
1

,

1

n
p p p

r p

n nn
p p p

V
ω ω ω

ω

ω ω ω

−

− −−

… 
 … =  
 
 … 

    

 

and it is well knwon that its inverse is another (normalized) matrix of the same type,  

( ) ( )1 11 .r p r pV V
n

ω ω
− −=  

We can use this last matrix to express the vector of initial amounts ( )1, , na a  in terms of the basis 
{ }1, , nv v . As in the proof of Proposition 2, let ( )1 1, , .n

n i iia a vα
=

=∑  Then  

( )
1 1

2 211
r p

n n

a
a

V
n

a

α
α

ω

α

−

   
   
   =
   
   
   

 

 

and a straightforward computation yields ( )( )1 1
1

1 n j i
j p ii a

n
α ω− − −

=
= ∑  for 1, ,j n=  . This gives us yet another 

way to obtain 1
1

na a S
n

α
+ +

= =


. 

3. Sharing at an Infinite Table 
Suppose now that, instead of a circular table, we have an infinite number of persons seated on one side of an 
infinitely long “rectangular” table , their number being unbounded both from the left and the right. Each person 
has an initial (complex number) amount to be shared in the same way as in the game with the circular table: at 
each step, each person gives a portion r  of her amount to the person on her right. As before, r is a fixed 
positive real number, 0 1r< < . We call this version the “infinite sharing game”. 

The initial data now is a sequence ( )i i
a

∈  of complex numbers. We define ia  as in (3) for i∈  and 
0≥ . Note that this time there is no “congruence modulo n “, as there are infinitely many players, indexed by 

the integers. Indeed, the rectangular table can be regarded as the limit of circular tables having .n →∞  The 
recursion from sharing is the same as before: 

( )1
1 1 0, .i i ia ra r a i+
−= + − ∀ ≥ ∀ ∈  

                              (4) 

Proposition 2.3 also holds here, and the proof is the same. The only difference is that now we do not have 
i ja a=  whenever modi j n≡ , the condition that effectively made the game circular (and with n  players) 

before. So we still get  

( )
0

1 .jj
i i j

j
a r r a

j
−

−
=

 
= − 

 
∑








                                     (5) 

This formula shows something that is obvious in the new context, namely that the amount of the person in the 
i-th place will depend only on the initial amounts of those people seated to her left (and on her own initial 
amount, of course). So there is no reason to believe that this new game should be an equidistribution process. 
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For instance, if there is a concentration of wealth (by which we mean numbers with large absolute value) in 
some section of the table, it will never spread to the left. However, as the following result shows, if one of the 
sequences ( )

0ia
≥





 converges, then the game will tend toward equal distribution. 
Theorem 3.1 If lim ia→∞





 exists for some i∈ , then lim ja→∞




 exists for all j∈ , and all of these 
limits coincide. 

Proof. Let i∈  be such that limi iL a→∞= 



 exists. Then, using (4), we have  

( )( )1
1lim 1 ,i i i ia L r L L
r−→∞

= − − =



 

i.e. 1iL −  exists and it is equal to iL . By induction, we have then that jL  exists and j iL L=  for all j i≤ .  
Now, using (4) again, 

( )1
1 11i i ira a r a+
+ += − −                                       (6) 

for all 0≥ . Since i ia L→  as →∞ , given 0ε >  there exists 0 ∈   such that 
2i ia L ε

− <  for all 
0≥  . But then we have that for 1k ≥ , 

( ) ( ) ( )

( ) ( )

( )

0

0 0

0

0

1

1
1 0

1 1 1
=0

1

1

1 1 1

1 1
1

2

1 ,
2

k
i i

k j kk j k j
i i i i i

j

k
k

i i

k
i i

a L

r a r a rL r a L

r
r r a L

r

r a L

ε

ε

+
+

−
+ − + − −

+ + +

+

+

−

≤ − − − − + − −

− −
≤ + − −

≤ + − −

∑





 





               (7) 

because 

( )0 0 01 1
1 11

2
k j k j k j

i i i i ia r a rL r a L r ε+ − + − − + − −
+ +− − − = − <    

thanks to (6), and 

( ) ( )
1

0
1 1 .

k j k
i i

j
L r r r L

−

=

 
− − − − = − 
 

∑  

For 0k  , we can get ( ) 0
11

2
k

i ir a L ε
+− − <  which, together with (7), shows that 1 1limi i iL a L→∞ + += =



,  

and from here we deduce (again by induction) that limj j iL a L→∞= =


 for all j i> .                  □ 
It would be an interesting problem to characterize those sequences ( )i i

a
∈  of initial data that induce an 

equidistribution process in the infinite rectangular table. Note for instance that if :f →   is any periodic 
function and we set ( )ia f i=  for i∈ , then the game will be an equidistribution process (this is essentially 
the complex game around a circular table, where the number of players is the period of f , “lifted” to the 
infinite rectangular table). One natural question to ask is this: if the initial data is bounded, must the infinite 
game be an equidistribution process? Suppose that ia C≤  for all i∈ . Then, since 

( ) ( )( )
0

1 1 1,jj

j
r r r r

j
−

=

 
− = + − = 

 
∑








                         (8) 

we see from (5) that ia C≤  for all i∈  and 0≥ . Does this imply that the sequence ( )
0ia

≥





 converges 
for some (and hence all) i∈ ? The answer is NO, as the following example shows. 

Example 1 Suppose 1
2

r ≤ , and set 

1
0

1 if 1,

1 if 2 3 2 3 1 for some ,
0 otherwise.

k k k k
i

i
a i k−

>

= −


= − ≤ ≤ − − ∈
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This sequence can be defined recursively by first setting all its values equal to zero for 0i ≥ , then 1 1a− = , 
and from there on we move to the left two zeroes, then three ones. Every time we end with a list of ones, we put 
a sequence of zeroes doubling in the number of the sequence already built so far (starting from 1a− ). And every 
time we end with a list of zeroes, we put a sequence of ones equal to the number of the sequence already built so 
far (starting from 1a− ), always moving to the left. So, the sequence looks like this (starting from 1a−  on the right):  

,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1  

With this sequence as the initial data and (5), one can show that for any positive integer ,k  
12 3 2 3

1 1
1 1, ,
2 3

k k k k
a a

−

− −≥ ≤  

so the sequence ( )1 0
a− ≥





 does not converge and, in light of Theorem 3.1, ( )
0ia

≥





 does not converge for any 
i∈ . 

An immediate consequence of Theorem 3.1, is that if there exist j∈  and a∈  such that ia a=  for all 
i j< , then the infinite game is an equidistribution process. This is, in fact, a particular case of a more general 
fact: it turns out that equidistribution follows from the existence of limi ia→−∞  (and not, as we just saw, from 
the boundedness of ( )i i

a
∈ ). 

Theorem 3.2 Suppose that limi ia a→−∞ = ∈ . Then lim ia a→∞ =


 for every i∈ . 
Proof. Consider the sequence ( )i i

b
∈  defined as i ib a a= −  for all i∈ . For a fixed i , due to (4), it is 

easy to see that lim ia a→∞ =


 if and only if lim 0ib→∞ =


, so we can assume without loss of generality that 
lim 0i ia→−∞ = . For a fixed i , since the sequence ( )i j j

a − ∈
 converges, there exists 0C >  such that 

i ja C− <  for all 1j ≥ . Let 0ε >  be given. Since 0ia − →


, there exists 0 ∈   such that 
2ia ε

− <


 if  

0>  . For 0>  , we use (5) to write  

( ) ( )
0

00 1
1 1 .j jj j

i i j i j
j j

a r r a r r a
j j

− −
− −

= = +

   
= − + −   

   
∑ ∑




 





 

              (9) 

As ( )
0 1 1 1jj

j r r
j

−

= +

 
− ≤ 

 
∑ 





 (because of (8)), we get easily  

( )
0 1

1 .
2

jj
i j

j
r r a

j
ε−

−
= +

 
− < 

 
∑








 

As for the first summand of (9), we have:  

( )

( ) ( )

( ) ( ) ( )
( )

0

0 0

0

0

0

0 0

0 0

2

1

1 1

1 1 1 .
1

jj
i j

j

j j
i j

j j

r r a
j

r r a r r C
j j

Cr r C r
r

−
−

=

− −
−

= =

−

 
− 

 

      
≤ − ≤ −               

≤ − + = −
−

∑

∑ ∑





 

   



  





 

 

Since 21 1r− < , for 0  we get ( )
( ) 0

21
21

Cr
r

ε
− <

−





, and hence we can bound (9) as follows:  

, 0,
2 2ia ε ε ε≤ + =

  

which proves that lim 0.ia→∞ =
                                                               □ 

When the initial amounts are all real, ( )i i
a

∈
⊂  , one can similarly show that if limi ia→−∞ = +∞  (resp. 

−∞ ), then ia →+∞  (resp. −∞ ) as →∞ , for every i∈ . 
Note that the existence of ii alim −∞→  is sufficient but not necessary for the infinite game to be an 

equidistribution process. This can be seen from the above example where the initial data take on the values of a 
periodic function :f →  . As mentioned above, it would be interesting to find more explicit necessary and  
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sufficient conditions than the existence of ( )0lim 1 jj
i jj r r a

j
−

→∞ −=

 
− 

 
∑ 





 for some i∈ , which is essen-  

tially the characterization we get from Theorem 3.1 and (5). 
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