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ABSTRACT 
In this paper we introduce a simple procedure for computing the macroscopic quantum behaviour of periodic 
quantum systems in the high energy regime. The macroscopic quantum coherence is ascribed to a one-particle 
state, not to a condensate of a many-particle system; and we are referring to a system of high energy but with 
few degrees of freedom. We show that, in the first order of approximation, the quantum probability distributions 
converge to its classical counterparts in a clear fashion, and that the interference effects are strongly suppressed. 
The harmonic oscillator provides a testing ground for these ideas and yields excellent results. 
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1. Introduction 
The superposition principle lies at the heart of quantum 
mechanics, and it is one of its features that most dis- 
tinctly marks the departure from classical concepts [1]. 
Formally, the superposition principle is rooted in the li- 
nearity of the Hilbert space. A striking and inevitable 
counterintuitive consequence of this principle is the 
phenomenon of quantum interference. The simplest kind 
of interference is displayed in the famous double-slit 
experiments, first performed by Young in 1802 with light, 
then duplicated during the last century with all sorts of 
material particles. 

At the macroscopic scale, all happen as if, by a con- 
spiracy of nature, the naked quantum is hidden, leaving 
us with an apparent world described consistently in a 
classical language [2]. The question that naturally arises 
is if quantum effects can be observed at macroscopic 
level. A classical illustration of the conflict between the 
existence of quantum superpositions and our real-world 
experience (of observation and measurement) is the 
“Schrödinger’s cat”, in which a cat is put in a quantum 

superposition of alive and dead states. A widely accepted 
explanation nowadays for the appearance of classical like 
features from an underlying quantum world is the envi- 
ronment induced decoherence approach [3-6]. According 
to this theory, coupling to a large number of degrees of 
freedom (the environment) results in a loss of quantum 
coherence which leads to emergent classicality. 

In this paper we introduce a simple procedure to com- 
pute the high energy regime of a general density matrix 
for periodic quantum systems. We show that, in the first 
order of approximation, the quantum probability distri- 
bution converges to its classical counterpart in a clear 
fashion, and that the interference effects are strongly 
suppressed. The harmonic oscillator provides a testing 
ground for these ideas as we will illustrate. This problem 
has been considered before by Cabrera and Kiwi [7]. In 
this work, they use purely quantum-mechanical results to 
analyze (by inspection) the amplitude of the oscillations 
and the spatial autocorrelation function for large quantum 
numbers. They conclude that even for arbitrarily high 
quantum numbers, a superposition of (a few) eigenstates 
retains quantum effects. The originality of our paper lies 
in the fact that we propose a well-founded mathematical *Corresponding author. 
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procedure for calculating the macroscopic manifestations 
of quantum behaviour. 

The remainder of the paper is organized as follows. In 
Section 2, we introduce the general procedure. The re- 
sults for the harmonic oscillator are presented in Section 
3. Finally, some conclusions and remarks are given in 
Section 4. 

2. General Procedure 
It is generally accepted that the classical and quantum 
probability density functions for periodic systems ap- 
proach each other in a locally averaged sense when the 
principal quantum number becomes large [8-11], i.e. 
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where the interval n  decreases with increasing the 
quantum number n . For a brief discussion of the mean- 
ing of the classical probability distribution see Ref. [11]. 
The local averaging of the infinite square well potential 
is reported in [9] and [11]. In most cases, Equation (1) is 
very difficult to evaluate analytically. We briefly review 
an alternative procedure to compute the local averages 
appearing in Equation (1) [12,13]. Supported by the 
harmonic analysis criteria, we write the classical and 
quantum distributions as a Fourier expansion, 
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where ( )QM
nf p  and ( )CLf p  are the Fourier coeffi- 

cients of each expansion respectively. An immediate 
consequence of Equations (1) and (2) is that the Fourier 
coefficients have a similar behaviour for n  large, 

( ) ( )~ .QM CL
nf p f p            (3) 

Note that Planck’s constant keep a finite value, so  - 
dependent corrections may arise in Equation (3). This 
implies that even at macroscopic level the Heisenberg’s 
theorem works. Finally calculating the inverse Fourier 
transform of the asymptotic Fourier coefficients we ob- 
tain, at least in a first approximation, the classical proba- 
bility density. Analytical results for the simplest quantum 
systems were reported [12,13]. 

Now we focus on the general problem. Let us consider 
a physical system described completely by the Hamilto- 
nian  . Let { }nψ  be an orthonormal basis of eigen- 
vectors of   with eigenvalues nE . If the initial state 

( )0Ψ  has coefficients ( )0n nc ψ= Ψ , then the state 
at a later time t , according to Schrödinger equation, is 
given by 

( ) e .
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The corresponding density operator reads 
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The terms m n≠  embody the quantum coherence 
between the different components nψ . Accordingly, 
they are usually referred to as interference terms, or 
off-diagonal terms. Consequently, the expectation value 
of the arbitrary observable ̂  is given by 
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with ,
ˆ

m n m nψ ψ=  . 
To explain our procedure, let us consider the coordi- 

nate representation of the matrix density. Its components 
are given by 
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with ( ) ( ) ( )*
, .n m n mx x xρ ψ ψ≡  It is well known that 

space and time play fundamentally different roles in 
quantum mechanics: whereas position is represented by a 
hermitian operator, time is represented by a c -number 
[14]. Then we study separately the roles of space and 
time in Equation (7). We first consider the spatial beha- 
viour. 

It is well known that for periodic quantum systems, 
nodes are always present in the density matrix (by means 
of ( ),n m xρ ) for arbitrarily large quantum numbers, and 
thus the study of its macroscopic behaviour naturally 
implies an average process. To this end we extend the 
Fourier expansion in Equation (2) to the spatial compo- 
nents of the matrix density (7), 

( ) ( ), , e d ,
pxi

n m n mx f p pρ = ∫

          (8) 

where ( ),n mf p  are the Fourier coefficients of the ex- 
pansion. Physically the Fourier coefficients ( ),n mf p  are 
the convolution ( ) ( ) ,n mp pφ φ∗  where ( )n pφ  is the 
wavefunction in momentum representation. Subsequently 
we consider the spatial asymptotic behaviour of the 
Fourier coefficients for large quantum numbers, and fi- 
nally its inverse Fourier transform gives the desired ma- 
croscopic behaviourof ( ),n m xρ . According to our ma- 
croscopic-world experience, the interference effects are 
completely suppressed. For instance, no one has ever 
seen a ball going through two directions at once [2]. 
Therefore, the asymptotics of ( ),n m xρ , for m n≠ , 
should be strongly suppressed. 

We now study the temporal behaviour. We observe 
that Equation (7) is an almost periodic function of the 
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time (except for the diagonal terms), even for arbitrarily 
high energies. It is clear that the off-diagonal terms are a 
rapidly oscillating functions of the time when the ener- 
gies differ significantly, and a slowly varying functions if 
the energies are close each other. This means that in the 
macroscopic regime becomes important only the interfe- 
rence between states with high energies nE  and mE , 
such that n mE E Eυ− =  and nE Eυ  . Under these 
conditions the quantum-mechanical frequencies goes to 
its classical counterpart [15], i.e., 

2 ,QM CLn m nE E E
Jυω υ υω

− ∂
= ≈ π ≡

∂

     (9) 

where we used the standard definition  

2CL nE
J

ω υ
∂

= π
∂

, where J nh=  is the action [16]. 

We conclude this section with the final expression for 
the macroscopic density matrix in coordinate representa- 
tion, i.e., 
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where we have included the spatial and temporal analysis 
described above. We observe that (10) is the Fourier ex- 
pansion of a classical function, which can be immediate- 
ly identified with the classical probability distribution 

( )CL x tρ    . Note that the long-time behavior of ( ),x tρ  
converges towards ( )2

,n n nn c xρ∑  , in agreement with 
the classical result. We point out that in our work the 
macroscopic quantum coherence is ascribed to a one- 
particle state, not to a condensate of a many-particle sys- 
tem. We are referring to a system of high energy, but 
with few degrees of freedom. In the next section we 
present analytical results for the harmonic oscillator. 

3. Macroscopic Density Matrix of  
the Harmonic Oscillator 

The harmonic oscillator provides a testing ground for 
these ideas as we now illustrate. We first consider again 
the spatial behaviour. The energy eigenfunctions and ei- 
genvalues of the corresponding Schrödinger equation are 
well known. The quantized energies are given by 

1
2nE nω = + 

 
             (11) 

with n +∈ , while the stationary states can be written as 
follows 
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where mωα ≡


. The spatial components of the matrix 

density are given by 
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Figure 1 illustrates the spatial components ( ),n m xρ  
for different values of n and m. In Figures 1(a)-(c) we 
first consider the smooth oscillatory quantum regime for 

1n =  and 1,10,20,m =  respectively. When increasing 
the quantum numbers, ( ),n m xρ  becomes a rapidly os- 
cillatory functions around the x-axis. This is illustrated in 
Figures 1(d)-(f) for 100n =  and 100,125,150,m =  
respectively. As we anticipated, nodes are always present 
for arbitrarily large quantum numbers. Note that the 
number of nodes increase with decreasing the difference 
n m− . It is clear that, after the local averaging process, 
the off-diagonal components will be strongly suppressed 
compared with the diagonal terms. Now we focus on ap- 
plying the procedure presented in Section 1. 

We first calculate the Fourier coefficients appearing in 
Equation (8). The corresponding inverse Fourier trans- 
form is reported in many handbooks of mathematical 
functions [17,18]: 
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mL −  is an asso- 

ciated Laguerre polynomial. In this expression it can be 
seen that the correlation between two wave functions in- 
creases as the difference n m−  decrease. 

The asymptotic behaviour of ( ),n mf p , for n  and m  
large, is also well known. Szegö finds the following itera-
tive relation for n  large [19]: 
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where Jυ  and Yυ  are the usual Bessel functions of the  

first and second kind respectively, and 1.
2

N n υ +
= +  

Szegö also shows that the iteration terms are strongly 
suppressed compared with the first order of approxima- 
tion in the limit N →∞ . In this paper we will consider 
only the first order of approximation, however the higher 
orders of approximation follows immediately from Equa- 
tion (15). The asymptotic behaviour of the Fourier coeffi- 
cients is then 
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Figure 1. Spatial behavior ( ) ( )n m
n m

x
x

 ,
,

ρ
ρ

α
= . Graphs (a), (b) and (c) corresponds to n 1=  and m 1,10,20,=  respectively. 

The high energy regime is illustrated in graphs (d), (e) and (f) for n 100=  and m 100,125,150,=  respectively. 
 

with 1
2

N n υ −
= −  and n mυ = − , such that 1n υ ≥ . 

In Equation (16) we have used the approximation  
! ~
!

n n
m

υ . From Equation (16) it follows that, in the asymp-  

totic Fourier coefficients matrix, the order of the Bessel 
function increases as we move away from the main di- 
agonal. For example, in the main diagonal we have  

0 0
12
2
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 

+  
 

, in the secondary diagonals we have first- 
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and so on. Physically this means that in the high energy 
regime the interference between two states becomes im- 
portant when its energies are close each other, as antic- 
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ipated. 
Finally the macroscopic behaviour of ( ),n n xυρ −  is 

obtained by substituting the Equation (16) into Equation 
(8) and calculating the resulting Fourier transform. In 
Refs. [20] and [21] is reported the Fourier transformation 
of Bessel functions. Our final expression for the asymp-
totic behaviour of ( ),n n xυρ −  for large quantum numbers 
is then 
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where ,
2

n n
N

mυχ
ω− ≡
 , Tυ  is the Chebyshev polyno-  

mial of the first kind and Rect is the rectangular function. 
Note that the rectangular function restricts the domain of  
(17) to , ,,n n n nx υ υχ χ− − ∈ −  . 

We observe that the diagonal terms in (17) are simply 
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. Note that ( ),n n xρ  coin-  

cides with the probability density of a classical harmonic 
oscillator with amplitude nx . Rearranging the expres- 

sion for ,n nχ  we obtain 2 21 1
2 2nm x nω ω = + 

 
 , which  

is the well-known expression for the classical energy. 
Therefore we have shown that the classical features (e.g. 
amplitude, energy, probability distribution and the con- 
finement effect) naturally emerge as the first order of 
approximation of quantum mechanics in the high energy 
regime. When considering higher orders of approxima- 
tion in (18) we observe macroscopic quantum behaviour. 
For example, a residual oscillatory behaviour (in all 
space) is retained in ( ),n n xρ  even for arbitrarily high 
quantum number n  [12]. This is because   keeps a 
finite value, and thus the Heisenberg’s theorem still 
works. The exact classical result is recovered if we take 

0→ , however   is a fundamental constant of nature 
whose numerical value although small is not zero. 

The exact classical limit requires the off-diagonal terms 
equal to zero (means no interference), however according 
to our result (17) this is never attained. In Figure 2 we 
present the asymptotic behaviour of ( ),n n xυρ −  for 

10000n =  and different values of υ . Figures 2(a) and 
(b) depict the interference between neighboring states 

with 1, 2υ =  respectively, while in Figures 2(c) and (d) 
we consider states with 50,100υ =  respectively. Note 
that in all cases, although the interference effect is very 
small (less than 0.01) is not zero. Also it can be seen that 
the nodes increase with increasing υ , so that the expec-
tation values ˆ

m nψ ψ of a smooth function ( )x  
converge more rapidly to zero for υ  large. This means 
that at high energies the interference becomes important 
only for neighboring states. 

Regarding to the temporal behaviour, from Equation (7) 
it follows that the off-diagonal temporal terms in the ma- 
trix density are simply e i tυω− , were we used (11). We 
observe that the frequency of the temporal oscillations 
increase as we move away from the main diagonal. In this 
case the high energy temporal behaviour is exactly the 
same as its low energy counterpart (with the same υ). In 
the macroscopic regime nυ   therefore e i tυω−  is a 
slowly varying function. 

To complete this section we write an asymptotic ex- 
pression for the expectation value of an arbitrary observa- 
ble ̂ . According to our results ̂  will be, at first 
order of approximation, the classical expectation value 

CL  plus corrections coming from the possible inter- 
ference between states, i.e. 
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where ( ) ( )2
, dCL

n n nn c x x xρ= ∫∑   . We can also  

evaluate higher orders of approximation in a simple fa- 
shion[19], however these are strongly suppressed com- 
pared with Equation (19). In practice only a few number 
of terms are important in the summation. Because the 
properties of Chebyshev polynomials, if ( )x  is a po- 
lynomial function of order k , then the integral in Equa- 
tion(19) vanishes for k υ>  [17]. Therefore x  and 

2x  requires only 1,2υ = , respectively. We point out 
that the ergodic behaviour of Equation (19) yields the 
correct classical expectation value. 

4. Final Remarks 
It is well known that the concepts of classical and ma- 
croscopic systems are distinct, as the existence of ma- 
croscopic quantum phenomena (such as superconductiv- 
ity) demonstrates, but the behaviour of most macroscopic 
systems can be described by classical theories [22]. In this 
paper we have shown that quantum mechanics is appli- 
cable in every scale of nature, and the macroscopic re- 
gime emerges as a consequence of its high energy beha- 
viour. Quantum effects remain at this level (called ma- 
croscopic quantum behaviour), as the interference between  
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Figure 2. Asymptotic spatial behaviour of ρ ( ) ( )n m
n m

x
x

 ,
,

ρ
ρ

α
=  for n 10000= . Graphs (a) and (b) depict the interference 

between neighboring states with 1,2,υ =  respectively, while in graphs (c) and (d) we consider states with 50,100,υ =  re- 
spectively. 
 
quantum states. It would be interesting to test these ef- 
fects with real quantum systems approaching the micro- 
scopic-macroscopic boundary, taking Rydberg atoms or 
neutron interferometry for example. At higher energies 
these macroscopic quantum effects are so strongly sup- 
pressed that it is impossible to detect, leaving us with an 
apparent world described consistently in a classical lan- 
guage. With the appropriate experimental devices such 
effects should be observed even in our real-world expe- 
rience, however nowadays it is impossible. 

Technical difficulties in the calculation of the Kepler 
problem are greater than in the simple case which we 
have treated here, however we can definitely foresee that 
our procedure gives its correct macroscopic behaviour. 
Even though our approach gives the correct classical 
results for periodic quantum systems, it is far from the 
general solution to the classical limit problem. Several 
other questions remain to be resolved as the study of un- 
bound systems and entanglement, but it is not clear in the 
framework adopted here. The environment induced de- 
coherence approach successfully resolves these problems. 
Based on our results, in our future research we concen- 
trate on the definition of the classical regime, which is of 

considerable importance in the study of quantum chaos. 
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