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ABSTRACT 

This paper discusses the pricing problem of credit default swap in the fractional Brownian motion environment. 
As credit default swap is exposed to both the interest rate risk and the default risk, we assume that the default 
intensity of a firm depends on the stochastic interest rate and the default states of counterparty firms. The inter-
est rate risk is reflected by the fractional Vasicek interest rate model. We model the firm’s default intensity un-
der the looping default model and derive the pricing formulas of risky bonds and credit default swap. 
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1. Introduction 

Credit risk is one of the main risks in the financial industry. It is very important for the financial industry to 
manage credit risk effectively. Since credit default swap (CDS) appeared, it soon became one of the most im-
portant derivatives to manage credit risk because of its great advantages. However, as the rapid expansion of 
credit default swap market, some concealed contradictions exposed gradually, such as the United States sub-
prime crisis and the European sovereign debt crisis. They make people realize that credit derivatives bring con-
venience and contain huge risk at the same time, especially contagious risk. Therefore, the valuation and pricing 
of credit derivatives have called for more effective models according to the real market. 

Until now, there have been mainly two basic models: the structural model and the reduced-form model. In the 
first model, the firm’s default is governed by the value of its assets and debts, while the default in the re-
duced-form model is governed by the exogenous factor. However, the information of the firm’s assets is usually 
unknown and the problem of the valuation of credit derivatives involving the jump-diffusion process is still dif-
ficult to get explicit results in the event of defaulting before the maturity date in the structural model. Therefore, 
comparing with the structural approach, the reduced-form approach is more flexible and tractable in the real 
market. In this paper, we will price the bonds and CDS in the reduced-form models. 

The reduced-form model was pioneered by [1,2]. They introduced exogenous mechanism to describe the 
firm’s default. Their models considered the default as a random event which was controlled by an exogenous 
intensity process. Later, [3] extended their models and considered the default intensity which satisfied the Cox 
process. [4] further discussed the jump affine intensity, and so on. 

In the reduced-form model, suppose that   *

, , ,
T

t P
0t

usual conditions, where *T
 (  is large enough but finite), and  is an equivalent martingale measure 

under which discounted securities’ prices are martingales. On 

    is a filtered probability space satisfying the  
  *T P

  *

0
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
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 *,0s X X s T    where X  represents the economy-wide state variable. Denote  : 0X
t sX s t  

t
 

and , where  s: 0i i
t sN   

0

i i
s s

N N



i

 represents the default process of company . When   i iN
first jumps from 0 to 1, we call the company  defaults and denote i  be the default time of company .  i

Thus,  where  is the indicator function. This paper consider that the interest rate is the only state   1 i
i
t t

N
 

 1

  
0t

variable and that the default intensity tX   is stochastic. The default times of company  can be 
defined as 

i

   0
: d ,

t

st X s E  inf                                  (1) 

where  is the unit exponential random variable. The distributions of conditional default probability of com-
pany  are given by  

E
i

  * 0
1 exp d .

tX
sT

P t X s                                    (2) 

The fractional Brownian motion was firstly defined and studied by Kolmogorov in Hilbert space, and was 
named to the Wiener spiral. Because the fractional Brownian motion has the properties of self-similarity and 
long-range dependence and many phenomena in financial market show these properties in some certain, the 
fractional Brownian motion becomes a very suitable tool in different applications such as mathematical finance. 

However, for the Hurst index 
1

2
H

t 

 , the fractional Brownian motion is neither a Markov process, nor a semi-  

martingale, and we can not use the usual stochastic calculus to analyze it. Worse still after a pathwise integration 
theory for fractional Brownian motion was developed by [5,6], it was proved that their market mathematical 
models driven by the fractional Brownian motion could have arbitrage ([7]). Later, after the development of a 
new kind of integral based on the Wick product (see [8,9]) called fractional Ito integral, it was proved ([9]) that 
the corresponding Ito type fractional Black-Scholes market has no arbitrage. In the same paper, a formula for the 
price of a European option at  was derived. Based on these conclusions, [10] proved some results regard-
ing the quasi-conditional expectation and obtained a risk-neutral valuation formula of the European option for 
every  before the maturity date. All the conclusions build a solid theoretical foundation for its application in 
the financial field. 

0

t

This paper also consider the Hurst index 
1

, 1
2

H

 


 . We will give the following definitions and theorems  

without the proofs. The details can be found in [10].  
 2f L   if  Definition 1 Let  be measurable. Then : f 

     2
, d d ,f f s f t s t s t


    

 

   where 
2 2

1
H

H t s
   , , t s  . , 2s t H

Definition 2 (Fractional Brownian motion) Let  , , P   be the filtered probability space satisfying the 
usual conditions.  0,1 H is a constant. The fractional Brownian motion with Hurst index H  is a continu-
ous Gauss process      : 0 ,Ht t B t : 0,t H HB B     , which satisfies 

    0 0B t  , 0t H HB E

  

;  1) 

2)   22 21 H H

2

H
t s t s     H HE B t B s .  

Definition 3 (Quasi-conditional expectation) Let   *
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dn
n

n Hn
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 


   ,  be the random distribu-  *G

tion space with inductive topology, then the quasi-conditional expectation of  with respect to G
  , 0H

t HB t s t   is defined by  
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
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                       (3) 
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 0
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
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


where . For simplicity, we denote it as  0, t . 

Definition 4 (Quasi-martingale) Suppose that   
0t

M t


 is an adapted stochastic process with respect to  
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H
t . If   *, t s M t G   ,     ,sE M t M s    then we say that   

0
, 

t
M t 


 is a quasi-martingale. 

From the above definitions, it is easy to prove the following theorems:  
Theorem 1 ([10])  
1) HB  is a quasi-martingale;  

2) Let , then  2f L           
2

00

1
: exp d

2

t

H s tt f s B s f s


   
   
   is a quasi-martingale;  

3) Let  1, 2f L  , then      , d
t

H0
X t f s B  s  is a quasi-martingale.  

The interest rate has an important influence on pricing credit derivatives, especially after the fixed interest rate 
is replaced by the floating interest rate, and the impact will be more important. From the point of time, the inter-
est rate also has the characteristics of the fractional Brownian motion. Therefore, [11] used the fractional 
Brownian motion to describe the interest rate process which was the fractional Vasicek interest rate model and 
priced the European option. In this paper, we also consider the Vasicek interest rate model:  

   d d ds s Hr a b r s B s   ,                                    (4) 

where   : 0HB s s   is the fractional Brownian motion which describes the market risk,   is the standard 
deviation which represents the stochastic volatility, parameter  is the long-term average of interest rate, and 

 represents the speed of recovery that t  returns to b  from the deviation value of the long-term average. 
The interest rate has the following explicit solution:  

b
a r

   0 0
e e e d

sas as at
sr b r b B t      ,H                                (5) 

where  is the interest rate value at time 0.  follows the normal probability distribution with 

mean  and the variance 

0r

0

 
0
e d

s at
HB t

 
2

0eat
t s 

   . Thus, sr  is the normal stochastic variable with mean  0 e asb r b    

and the variance  
2

2 2
0e eas at

t s 
 

  . 

To make the formula simple, we suppose that the face value of bond is 1 dollar. The default-free bond’s price 
was obtained in [11] as following:  

Theorem 2 ([11]) Let  , P t T  be the time-t value of the default-free bond with the maturity date . The 
interest rate is derived by the fractional Brownian motion as above. The price of market risk is 

T
 , then  

     , , , e ,tr B t T A t TP t T                                      (6) 

where  

         2 12 2, , d ,
T H

t
, A t T b B t T b T t H s B s T s

a a

               
      

    1
, 1 e .a T tB t T

a
    

2. Bonds’ Pricing under the Looping Default Model 

[12] firstly proposed the model of credit contagion to account for concentration risk in large portfolios of de-
faultable securities (DL Model). Later, [13] thought the traditionally structural and reduced-form models were 
full of problems because they all ignored the firm’s specific source of credit risk. They made use of the Davis’s 
contagious model and introduced the concept of counterparty risk which was from the default of firm’s counter-
parties. In their models, they paid more attention to the primary-secondary framework in which the intensity of 
default was influenced by the economy-wide state variables and the default state of the counterparty. Beside 
these, there are also other similar applications such as [14,15] and so on. In recent years, [16,17] further allowed 
the stochastic interest rate to follow an jump-diffusion process and studied the pricing problem of bonds and 
CDS in details. Based on the obtained conclusions, we will price the bonds and CDS with the fractional Vasicek 
interest rate in the looping default framework. 

In the following, we only consider the case with two firms: firm A  and firm . Their defaults are mutually 
influenced and both correlated with the market interest rate. We assume their intensity processes respectively sa-
tisfy some linear relations below:  

B
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 1 2 31 B
A

t t t
a a r a





   ,

,

                                  (7) 

 1 2 31 A
B

t t t
b b r b





                                      (8) 

where , 2 , ,  are positive constants, 3 , 3  are the real numbers which satisfy 
, .b b  We will give the defaultable bond’s price without the proof (see [13]). Let 

.  

1a
a 

A B
t t t   

a
> 0

r

1b

1 2 


2b

3 > 0b
a

i

b

1 2 3a a

t

Lemma 1 ([13]) Suppose that the bond issued by firm  has the maturity date  and the recovery rate 


T  . 
Let the default time be A , the default intensity be i

t  and the interest rate be , then tr

     
d

, e 1 1
T

st
i i

r si i
t T T

V t T E
 



 

 .
  


   

                           (9) 

Now, we calculate the conditionally marginal distributions of default time A  and B  in [0, T] before de-
riving the prices of bonds. To avoid the looping influences, we firstly apply the change of measure to get the 
joint conditional distributions of A  and B . We define two firm-specific probability measures  ,iP i A B  
by  

   0

d
1 exp d

d
i

i
t Ti

t t st T

P
.iZ s

P 




 
                                (10) 

Under the new measure  A BP P , the intensity  1 2 1 2
B A
t t tb b r a a r     t

Thus, the default model can be simplified and the calculation of the default probabilities and bonds’ prices 
will be relatively easy.  

 for   > >A Bt t  .

Theorem 3 Let A  and B  be the default times of firm A  and . Assume the interest rate t  and the 
default intensities 

B r
A

t , B
t  satisfy (4), (7) and (8). If no defaults occur up to time , then the joint conditional 

distribution of 
t

A  and B  on    0, 0,T  T  is given by the following:  

 
           

*

21 2 2 , 1 2 2 , 1 2 1 2 , 1 1 2 2 ,3 2 12 2 1 2

1

1 2

3
3

,

e e e e et t t t t t t s

A B A B r
t t T

tb t t b R a t t a R a t t a R a s t b t s a Rb t t

t

P t t

b s

 

              

   

      

  

1 d ,
 

when  and 1 2t t t T  

 
         

*

11 1 2 , 1 1 2 , 1 1 2 2 , 1 2 3 1 2 ,3 1 21 1 2 1

2

1 2

( )

3

> , >

e e e e et t t t t t t s

A B A B r
t t T

ta t t a R b t t a R b t t b R b s t a t s b Ra t t

t

P t t

a s

 

              

 

      

  

2 d ,

s

 

when   2 1 .t t t T  

Proof. Let  When , from the properties of quasi-conditional expectation ([10]),  , d .
T

t T st
R r  1 2t t t T  

we have  

 

   

      

 
     

*

2

*
1

2

*21

1 2 2 , 2
*

1 2

1 2

1 2 2 , 3

3 2

,

1 exp d

1 exp exp 1 d

e 1 exp 1

A

A A

t t
A A

A B A B r
t t T

tB B A B r
s t t Tt t

tB A B r
t t t t Tt st

b t t b R B A A B r
t t Tt t

P t t

E s

E b t t b R b s

E b t



 

 

 







 

  

 

   

 
    

 
           

  
         

  





  

  

  

  

 
      

1 2 2 , 2
* *

1 2 2
3 2e 1 exp 1t t

A A

b t t b R B A A B r B A B r
t t t tT Tt t t

E b t E
 

  

  
,

   
       


   

  

 

     

 

where  B
tE   denotes the quasi-conditional expectation  under probability measure *

A B
t t T
    r .BP  
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When 2<s t , the intensity of A  becomes 1 2
A
s sa a r    under BP , so we have  

    * 22
1 2 2 ,1 expA

B A B r
t t t tTt

E a
 

 
      

 
   t t a R  

Denote * tT
 Hence, we proceed to calculate the quasi-conditional expectation in the first 

term of the above joint conditional distribution as follows.  
.A B r

t t     

 
 

 
 

        
       

3 2

1 2

3 2

11 2

2

1 21 1

21 2 1 2 , 1 1 3 2 2 ,3 2 11 2 1

1

3 2 1 2

3

1 e

1 e

1 exp d 1 exp d

e e e d .

A

A

A

A

t t t s

b tB
tt t

b tB B
t tt t

t sB
u tt s tt t

ta t t a R a s t b t s a Rb t t

t

E

E E

E b t s a a r

b s









 

 

 

 

 

        

 
 
 
  

   
   
         

   

 





 

u

 

Then, substituting the obtained two quasi-conditional expectation into the joint conditional distribution, we 
can deduce the conclusion of the theorem when 1 2 .t t t T    When 2 1t t t T   , the calculating process is 
similar to above. We omit it.  

Corollary 1 Let A  and B  be the default times of firm A  and . Suppose that the default intensities B
A

t  and B
t  satisfy (7) and (8). If no defaults occur up to time , then the conditionally marginal distribu-

tions of 
t

A  and B  on  0,T  are given by  

         11 1 2 , 1 3 1 2 ,3 11
*1 3e e et t t s

ta t t a R b s t a t s b Ra t tA A B r
t t T t

P t a          ds                   (11) 

         21 2 2 , 1 3 1 2 ,3 12
*2 3e e et t t s

tb t t b R a s t b t s a Rb t tB A B r
t t T t

P t b s          d ,                  (12) 

Proof. We can obtain the corollary from Theorem 3, so omit the process. 
Now, we apply the above results to price the bonds issued by firm A  and  in the looping default frame-

work. We firstly give the other form of pricing formula for the bond. Later, we will price the bonds based on this 
formula.  

B

Lemma 2 ([13]) The defaultable bond price can also be expressed as 

          , , 1 1 exp d , i

Ti i i i
t s st t

V t T P t T E r s t T


  


       . 
          (13) 

In this paper, we will not consider the risk from the recovery rate. Therefore, without loss of generality, we 
suppose that the recovery rates  and the face value of bond 0A B    1, ,i i n   is 1 dollar. 

Theorem 4 Assume the interest rate follows the fractional Vasicek model and the default intensities A
t  and 

B
t  satisfy (7) and (8). If no defaults occur up to time , then the time-  prices of bonds issued by firm t t A , 
 with the same maturity date  are respectively given by  B T

       1 2 3, , , ,A A A AV t T V t T V t T V t T   ,                          (14) 

       1 2 3, , , ,B B B BV t T V t T V t T V t T   ,                          (15) 

where 

                

                          

   

2 2
1 10, 0,

1 3 2

2 2 2 2
1 1 1 1 10, 0, 0, 0,

3 1 31

1 3

1 1
, ,

1 , 2 2
1

1 1 1 1
, , , , , , , ,

2 2 2 2
2 3

3 3 3

, e e ,

, e e e e

, e e

T t

T t s t

f s T f s T
a a T t a t TA

s t T f s T f s T g s u T g s u TT a T s b b s ta T tA

t

T sa T t aA

t t

V t T

V t T a s

V t T a b

 

   

 

    


    

  
     

  

 

 
   

  





         1 1 3 1e d d ,T s b s t a v t b s v v s         
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                

                          

   

2 2
2 20, 0,

1 3 2

2 2 2 2
2 2 2 2 20, 0, 0, 0,

3 1 31

1 3

1 1
, ,

1 , 2 2
1

1 1 1 1
, , , , , , , ,

2 2 2 2
2 3

3 3 3

, e e ,

, e e e e

, e e

T t

T t s t

f s T f s T
b b T t b t TB

s t T f s T f s T g s u T g s u TT b T s a a s tb T tB

t

T sb T t bB

t t

V t T

V t T b s

V t T a b

 

   

 

    


    

  
     

  

 

 
   

  





         1 1 3 2e d d ,T s a s t b v t a s v v s         

d ,  

where 

               

               

               

       

2 2

1 2 2 2 1 10, 0,

2 2 2

1 1 1 10, 0, 0, 0,

2 2

2 2 2 2 2 20, 0,

2

2 20, 0,

1 1
, , 1 , , ,

2 2
1 1 1 1

, , , , , , ,
2 2 2 2

1 1
, , 1 , , ,

2 2
1 1

, , , ,
2 2

T s

s v v

T s

s v

b t s a t v a t T f u T f u T

g u s T g u s T q u T q u T

a t s b t v b t T f u T f u T

g u s T g u s T

 

  

 

 

    

  

    

 

       

   

       

 

2

t 


       

       

         
         
      
      
    

2 2

2 20, 0,

0

1 2 2

2 2 2

1 2

2 2

1 2 2

1 1
, ,

2 2

, e e ,

, , 1 1 e 1 e ,

, , 1 1 e 1 e ,

, 1 1 e ,

, 1 1 e ,

, , , , 1 e

v t

aT at

a T u a s u

a T u a s u

a T s

a T s

a s u

q u T q u T

b r
t T b T t

a

g u s T a b
a a

g u s T b a
a a

f s T a
a

f s T b
a

q s u v T b a
a

2

,
 

 



 

 







 

   

   

 

 

 

 


   

     

     

   

   

            
             
         

         

2

2 2 2 2

0
1 2 2

0
2 2 2

1 e 1 1 e ,

, , , , 1 e 1 e 1 1 e ,

, , 1 , e e ,

, , 1 , e e .

a v u a T u

a s u a v u a T u

as at

as at

a

q s u v T a b b
a

b r
t s T a s T b b s t

a

b r
t s T b s T a b s t

a



 

 

   

     

 

 

   

       

        
 

        
 

 

Proof. Firstly, according to the pricing formula on fractional quasi-martingale in Hu and Ksendal (2003) 
and Lemma 2, we can obtain the price of bond issued by firm  at time t  on 

Ø
B  >B> ,A t  t  is 

    
       

        

1 2 , 3

1 2 , 3

, exp d

exp 1 1

exp 1 exp 1 ,

A

A

TB B
t s st

A
t t T T

A r
t t T T

V t T E r s

E b T t b R b T

E b T t b R E b T















     
            
 

*t T

            
    



 

 

where 

             
     3 3

3 * 3

3 *

exp 1 exp 1 d 1

e e d .

A

TA r A
t T t Ts TT t T

Tb T t b T t A r
t Tt

E b T b T s P s

b P s s


 







   

              
  

   

 



   

 

*
r
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By Corollary 1, we have 

 
          

             

         

1 2 , 3

1 3 2 , 2 , 2 ,3 3 11

2 ,1 3 1 1 3

1 3
3 *

1 1
3

3 3

,

e e e d

e e e e

e e e e

t T

t T t s t T

t s

B

Tb T tb T t b R b T t A r
t t Tt

Tb b T t b R a R b Rb T s a a s tb T t
t tt

T s a Rb T t b T s a s t b v t a s v
tt t

V t T

E b P s s

E b E

a b E

      

            

         

      
  ds      

 





 

 

 2 , 2 ,1 d d .t v t Tb R b R v s    
  

 

From the equation of , we find that the key step is to calculate the three quasi-conditional expecta-   ,BV t T
2 , 1t sa R 






tion ,  and   2 ,1e t Tb R
tE   
 

 2 ,e t Tb R
tE  
 

 2 , 2 , 2 ,1e t s t v t Ta R b R b R
tE    
 . By (5), we show 

    

      

, 0 0
e d e e d d

, 1 e d .

T T sas as at
t T Ht t

T a T s
Ht

R b r b s B t

t T B s
a





 

 

   

  

  



s




 

Further, substituting it into  and by the definition of quasi-martingale and (2) in Theorem 1, 
we show that 

 2 ,1e t Tb R
tE  


                       

                  

d d
2 2 2 2 02 ,

d
2 0

1 , 1 1 e 1 , 1 1 e1

2 21 1 e

2 2 20, 0,

e e e

1 1
e exp 1 , , exp , .

2 2

T Ta T s B s a T s B sH H
tt T

T a T s B sH

b t T b b t T bb R a a
t t

b
a

t T t

E E

E b t T f s T

  



 
 

   

 

          

  

 



        
             

   
f s T  




 

In the above equality, 

                      

           

2 2
d

2 2 20, 0,2 00 20

2 2
2 2 20, 0, 

1 1
, , d , 1 1 e , d 2 2

1 1
, , , d

2 2 0

e e e e

e .

TT a T s B sH T HT TH

HT t

f s T f s T B s f s Tb f s T B sa
t t t

t
f s T f s T f s T B s

E E E 

 

  

 

    

 

             


    

 
 

Similarly, 
 

               

             

         

2 , 2 , 

2 2

2 2
2 0 0

2 2
0

1

1 , 1 e d , 1 e d

1
, , 1 e d 1 e d

1
1 e d 1 e d

e

e e

e e

e e

t T t s

T sa T u a s u
H Ht t

t ta T u a s u
H H

T a T u a s u
H

b R a R
t

b t T B u a t s B u
a a

t

b a
t s T B u B u

a a

b a
B u B

a a
t

E

E

E

  

 


 

   

   

   

  

          
  


  


   

 

 



 
 
 

  
  

 

 
 0 ,

s
H u 

 
  





 

then 

           

                  

             

2 20 0

2 2 20 0

2 02 20 0

1 1 e d 1 e d

1 1 e d 1 e d 1 1 e d

1
, 1 1 e d 1 e d

2

e e

e e e

e e e

T sa T u a s u
H H

s s Ta T u a s u a T u
H H s

s sa T u a s u
H H

b B u a B u
a a

t

b B u a B u b B
a a a

t s

f s Tb B u a B u
a a

t

E

E E

E

 

  

  

   

     

   

    

       

    

 

  

 

 
 

 
 H u 

    
   

 
     

2 2
2, 0,

1
, 

2e ,
T sf s T

 
 

 
  

 


 where 
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           

   

           

2 20 0

20

2 2
2 20, 0, 20

1 1 e d 1 e d

, , d

1 1
, , , , , , d2 2

e e

: e

e e

s sa T u a s u
H H

s
H

ts t H

b B u a
a a

t

g u s T B u

t

g u s T g u s T g u s T B u

E

E

 

 

 

       



 





 
 

 
    

  .

B u

 

Therefore,  

 

                     
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Finally, we substituting the above quasi-conditional expectations into  ,BV t T . We show that (15) holds. 
The pricing formula (14) of bond issued by firm A  can be derived though the similar proving process of 

. Hence, we omit it. The proof is complete.   ,BV t T 

3. CDS’s Pricing 

In this section, we apply the results in section 2 to price CDS related to the zero coupon bond issued by firm A . 
Firm  holds a bond issued by the reference firm C A  with the maturity date . To seek protection against 
the possible loss, firm  buys a default swap with the maturity date 

T
C  1 1  from firm  on condition 

that firm  gives the payments to seller  at a fixed swap rate in time while seller  promises to com-
pensate buyer  for the loss caused by the default of firm 

 T T  T B
C B B

C A  at a certain rate. Each party has the obligation 
to make payments until its own default. The source of credit risk may be from three parties: the issuer of bond, 
the buyer of CDS and the seller of CDS. 

In the following, we discuss a simple situation which only contains the default risk from reference firm A  
and the CDS’s seller . At the same time, to make the calculation convenient, we suppose the recovery rate of 
the bond issued by firm 

B
A  is zero and the notional is 1 dollar. In the event of firm A ’s default, firm  

compensates firm  for 1 dollar if he doesn’t default, otherwise 0 dollar. 
B

C
Now, we give some notations. Denoted the swap rate by a constant  and interest rate by t . Let the default 

times of firm 
c r

A  and  be B A  with the intensity A  and B  with the intensity B  respectively. We 
analyze the values of two legs: contingent leg and premium leg. The time-0 market value of buyer ’s pay-
ments to seller  is  

C
B

1 0 d

0
e d

s
u

T r u
E c s
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the time-0 market value of firm ’s promised payoff in case of firm B A ’s default is 
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Then, in accordance with the arbitrage-free principle, we obtain  
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Theorem 5 Suppose the interest rate  satisfies fractional vasicek interest rate model and the intensities tr
A  and B  satisfy  
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where    10, , 0,BP s V T  are the simple forms of (6) and (14) in Theorem 2 and Theorem 4, and  
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To derive the swap rate of CDS in the looping default framework, we define a firm-specific probability meas-
ure BP  by  
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Substituting the quasi-conditional expectation into the above formula of the swap rate , we deduce (17). c

4. Conclusions 

This paper discusses the pricing problem of defaultable bonds and CDS in the fractional Brownian motion envi-
ronment. In our model, we consider the case that the defaults of the firms are mutually influenced. The default 
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intensity is correlated with the counterparty’s default and the interest rate following fractional Vasicek model, 
which is more realistic. 

In fact, we consider that the source of credit risk may be from the issuer of bond and the seller of CDS. In this 
case, there are also four cases for the defaults of firm A  and firm : B

Case 1. The defaults of firm A  and firm  are mutually independent conditional on the interest rate; B
Case 2. Firm A  is the primary party whose default only depends on the risk-free interest rate (the only 

economy state variable) and the firm  is the secondary party whose default depends on the interest rate and 
the default state of firm 

B
A ; 

Case 3. Firm  is the primary party and the firm B A  is the secondary party;  
Case 4. The defaults of firm A  and firm  are mutually contagious (looping default). B
In this paper, we only discuss the complex case 4 but the other cases are relatively simple which can be con-

sidered as the special situations of case 4. The pricing problem in case 2 has been studied in the other paper. In 
addition, we can try to discuss the more general situations. For example, we can consider the case that the im-
pact of one firm’s default to the other firm’s default is attenuated over time or the relevant recovery rate is sto-
chastic. In a word, the contagious model of credit security is very necessary to be further discussed in the future. 
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