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ABSTRACT 

In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant 
observations considering the use of stable distributions for the response in place of the usual normality assumption. It is 
well known that, in general, there is no closed form for the probability density function of stable distributions. However, 
under a Bayesian approach, the use of a latent or auxiliary random variable gives some simplification to obtain any pos-
terior distribution when related to stable distributions. To show the usefulness of the computational aspects, the meth-
odology is applied to two examples: one is related to a standard linear regression model with an explanatory variable 
and the other is related to a simulated data set assuming a 23 factorial experiment. Posterior summaries of interest are 
obtained using MCMC (Markov Chain Monte Carlo) methods and the OpenBugs software. 
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1. Introduction 

A wide class of distributions that encompass the Gaus-
sian distribution is given by the class of stable distribu-
tions. This large class defines location-scale families that 
are closed under convolution. The Gaussian distribution 
is a special case of this distribution family (see for in-
stance, [1]), described by four parameters , ,    and 
 . The  0, 2 

2
 parameter defines the “fatness of the 

tails”. When   , this class reduces to Gaussian dis-
tributions. The  1,1 

0
 is the skewness parameter 

and for    one has symmetric distributions. The loca-
tion and scale parameters are, respectively,  ,     
and  0,   (see [2]). 

Stable distributions are usually denoted by  , ,S    . 
If a random variable  ~ , ,SX     , then 

  ~ ,0,
X

SZ  1
 





 

follows a standardized stable distribution (see [3] and 
[4]). 

A great difficulty associated to stable distributions 
 , ,S    , is that in general there is no simple closed 

form for their probability density functions. However, it 
is known that the probability density functions of stable 
distributions are continuous ([5,6]) and unimodal ([7,8]). 
Also the support of all stable distributions is given in 
 ,   , except for 1   and 1   when the sup-
port is  ,0  for 1   and  for 0, 1    
(see [9]). 

The characteristic function  of a stable distribu-
tion is given by, 
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where i 1  and sign (.) function is given by 
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It is important to point out that if   , the variance 
is infinite and the mean of the stable distribution does not *Corresponding author. 
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exist. 
Although this class of distributions is a good alterna-

tive for data modeling in different areas, we usually have 
difficulties to obtain estimates under a classical inference 
approach due to the lack of closed form expressions for 
their probability density functions. One possibility in 
applications is to get the probability density function 
from the inversion formula (see, for example [10]), 

   i1 2π e Ф dtxf x t t
 


  ,         (1.2) 

where  is the characteristic function. In applica-
tions, we need use numerical methods to solve the inte-
gral in (1.2), usually taking a great computational time. 

 Ф t

An alternative is the use of Bayesian methods. How-
ever, the computational cost can be further high to get the 
posterior summaries of interest. A good alternative is to 
use latent or artificial variables that could improve the 
simulation computation of samples of the joint posterior 
distributions of interest (see, for example [11,12]). 

In this way, a Bayesian analysis of stable distributions 
was introduced by [1] using Markov Chain Monte Carlo 
(MCMC) methods and latent variables (see also, [13]). 
The use of Bayesian methods with MCMC simulation 
can have great flexibility by considering latent variables 
where samples of latent variables are simulated in each 
step of the Gibbs or Metropolis-Hastings algorithms(see 
for example [14,15]). 

Considering a latent or an auxiliary variable, [1] proved 
a theorem that is useful to simulate samples of the joint 
posterior distribution for the parameters , ,    and  . 
This theorem establishes that a stable distribution for a 
random variable Z defined in  ,   is obtained as the 
marginal of a bivariate distribution for the random vari-
able Z itself and an auxiliary random variable Y. This 
variable Y is defined in the interval  ,0.5, a 

0,Z 



, when 

 ,0Z    , and in , when . The   , ,0a  .5

quantity ,a   is given by 

,
, ,

π

b
a  
  

                  (1.3) 

where  ,

π
min ,2 .

2
b       

The joint probability density function for random vari-
ables Z and Y is given by 
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and 
δ

σ
Z

X



, for 0.   

From the bivariate density (1.4), [1] showed the mar-
ginal distribution for the random variable Z is stable 
S (  , 0, 1) distributed. Usually, the computational costs 
to obtain posterior summaries of interest using MCMC 
methods are high for this class of models, which could 
give some limitations for practical applications. One 
problem can be the simulation algorithm convergence. In 
this paper, we propose the use of the popular free avail-
able software to obtain the posterior summaries of inter-
est: the OpenBUGS software. 

The paper is organized as follows: in Section 2, we in-
troduce linear regression models assuming a stable dis-
tribution; in Section 3, we introduce a Bayesian analysis 
for linear regression models assuming a stable distribu-
tion; in Section 4, we present two examples to illustrate 
the proposed methodology; finally, in Section 5, we pre-
sent some concluding remarks. 

2. Linear Regression Models Assuming a 
Stable Distribution 

Consider a random variable X related to a controlled 
variable v given by the linear relationship, 

0 1i ix d d v i   ,             (2.1) 

for 1, 2, ,i n  , where, 
1) The random variable iX  represents the response 

for the i-th unit associated with an experimental value of 
the independent or explanatory variable vi assumed as a 
fixed value. In this way, xi is an observation of Xi. 

2) The variables 1 2, , , n    are considered as com-
ponents of unknown errors as unobserved random vari-
ables. Assume that these random variables i  are inde-
pendent and identically distributed with normal distribu-
tion  20,N  . 

3) The parameters d0 and d1 are unknown. 
From the above assumptions, we have normality for 

the responses, that is, 

 2
0 1~iX N d d v ;i  .         (2.2) 

In this way Xi has a normal distribution with mean 

0 1 id d v  and common variance 2 . 
Usually we get estimators for the regression parame-

ters using minimum squares approach or standard maxi-
mum likelihood methods (see for example, [16,17]).  

Standard generalization for the linear model (2.1) is 
given in presence of k independent or explanatory vari-
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ables, that is, a multiple linear regression model, given 
by, 

0 1 1 2 2i i i k kix d d v d v d v i      .     (2.3) 

From the normality assumption for the error i in (2.3), 
the random variable Xi has a normal distribution with 
mean  and variance 0 1 1 2 2i i k kid d v d v d v    2 . 

In practical work, in all applications we need to check 
if the above assumptions are verified. In this way, we 
consider graphical approaches to verify if the residuals of 
the model satisfy the above assumptions. 

In presence of outliers or discordant observations we 
could have great effects on the obtained estimators for the 
regression model given by (2.3) which could invalidate 
the obtained inferences. In this way, we could use non- 
parametric regression models or to assume more robust 
probability distributions for the data. One possibility is to 
assume that the random variable X in (2.3) or (2.1) have a 
stable distribution  , ,S    . 

3. A Bayesian Analysis for Linear 
Regression Models Assuming a Stable 
Distribution 

In this section, let us assume that the response xi in the 
linear regression model (2.3) for , have a stable 
distribution 

1, ,i   n
 , ,iiX S    , that is, 

 ~ ,0,i
iZ

X
S




 1  

and where the location parameter i  of the stable dis-
tribution is related to the explanatory variables by a linear 
relation given by, 

0 1 1 2 2i i iv v k kv i         .       (3.1) 

Assuming a joint prior distribution for α, β, d and δ, 
where  0 1 2, , , , kd d d d d   given by  0 , , ,d    , 
[1] shows that the joint posterior distribution for parame-
ters α, β, d and δ, is given by, 
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where 
1

 





, i i
i

x
z







, for , 1, ,i n    0,2 ,  

 1,1    and  0,   ;  1 2, , , nx xx x  and 

1 2 , , , ny yy y are respectively, the observed and 
non-observed data vectors. Observe that the bivariate 
distribution in expression (3.2) is given in terms of ix  

and the latent variables , and not in terms of i and i  
(there is the Jacobian 

iy
1

z y
   multiplied by the right-hand- 

side of expression (1.4)).  
Observe that when 2   we have 2   and 

, 0b   . In this case we have a Gaussian distribution with 
mean equals to δ and variance equals to 22 . 

For a Bayesian analysis of the proposed model, we 
assume uniform  b,U a  priors for ,  and     where 
the hyperparameters a and b are assumed to be known in 
each application following the restrictions  0,2  ,  

 1,1    and  0,   . We also assume Normal  

 ,N a b
, ,d d

2  prior distributions for the regression parame-
ters 0 1 2  considering known hyperparameter 
values a and b2. We further assume independence among 
all parameters. 

, , kd d

In the simulation algorithm to obtain a Gibbs sample for 
the random quantities α, β, d and δ, having the joint pos-
terior distribution (3.2), we assume a uniform 
 0.5,0.5U 

Y
 prior distribution for the latent random 

quantities i  for 1,i , .n   Observe that, in this case, 
we are assuming  , ,   0 0a b  . With this choice of 
priors, we use standard available software packages like 
OpenBugs (see [18]) which gives great simplification to 
obtain the simulated Gibbs samples for the joint posterior 
distribution of interest. 

From expression (3.2), the joint posterior probability 
distribution for , , ,d    and  1 2, , n,y yy y  is 
given by, 

 
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


(3.3) 

where   and  , .t   are respectively defined in (1.4)  

and (1.5) and  ih y  is a  density function, 
for 

 0.5,0.5 U
1, ,i n  . 

Since we are using the OpenBugs software to simulate 
samples for the joint posterior distribution we do not 
present here all full conditional distributions needed for 
the Gibbs sampling algorithm. This software only requires 
the data distribution and prior distributions of the inter-
ested random quantities. 

This gives great computational simplification for de-
termining posterior summaries of interest as shown in the 
applications as follows. 

In these applications we illustrate the proposed meth-
odology to real and simulated data sets, in special, 
showing the robustness of the model in presence of out-
liers. 
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4. Some Applications 

4.1. An Example with a Simple Linear 
Regression Model 

In Table 1, we have a data set related to an industrial 
experiment, where x denotes the response and v denotes 
an explanatory variable associated to each response (n = 
15 observations). 

From a preliminary data analysis, we see that a linear 
regression model (2.1) is suitable for the data set. The 
estimated regression straight line obtained by minimum 
squares estimates and using the software MINITAB ver-
sion 16 is given by 0.603 0.0444i ix v   where the 
regression parameter d1 is statistically different of zero 
(p-value < 0.05). From standard residuals plots we verify 
that the required assumptions (normality of the residuals 
and constancy of the variance are verified). 

Under a Bayesian approach, we have in Table 2, the 
posterior summaries of interest assuming the linear re-
gression model defined by (3.1) with a stable distribution 
for the response and the OpenBugs software assuming the 
following prior distributions: ,  ~ 0, 2U  ~ 1,U  0 , 

,  ~ 0,3U  0 ~ 0,1d N
 0.5,U 

1, 2, ,i  

 and 1 . We also 
assume a uniform  distribution for the la-
tent variable Yi, . We simulated 800,000 
Gibbs samples, with a “burn-in-sample” of 300,000 sam-
ples discarded to eliminate the effects of the initial values 
in the iterative simulation process and taking a final sam- 
ple of size 1,000 (every 500th sample chosen from the 

~d N
0.5

5

0,1

1

 
Table 1. An industrial experiment data set. 

Row x v 

1 1.2 19 

2 1.5 15 

3 1.5 35 

4 3.3 52 

5 2.5 35 

6 2.1 33 

7 2.5 30 

8 3.2 57 

9 2.8 49 

10 1.5 26 

11 2.2 45 

12 2.2 39 

13 1.9 25 

14 1.8 40 

15 2.8 40 

Table 2. Posterior summaries (linear regression). 

Stable distribution (SAV = 4.496) 

Parameter Mean Standard Deviation 95% Credible Interval

α 1,716 0.2123 (1.2380, 1.9890) 

β −0.6183 0.2391 (−0.9881, −0.07191)

δ 0.2931 0.06375 (0.1960, 0.446) 

d0 0.5431 0.3559 (−0.1981, 1.2270) 

d1 0.04602 0.009251 (0.02831, 0.06521) 

Normal distribution (SAV = 4.504) 

Parameter Mean Standard Deviation 95% Credible Interval

d0 0.4802 0.4927 (−0.56587, 1.4230) 

d1 0.04747 0.01312 (0.02132, 0.07369) 

ζ 0.4949 0.1709 (0.2119, 0.8834) 

 
500,000 samples). Convergence of the Gibbs sampling 
algorithm was monitored from standard trace plots of the 
simulated samples. 

In Table 2, we also have the sum of absolute values 
between (SAV) the observed and fitted values, given by, 

   1
observed fitted mean

n

i
abs i iSAV


      (4.1) 

In Table 2, we also have the posterior summaries of the 
regression model (2.1) assuming a normal  20,N 

 
dis- 

tribution for the error and the following priors for the para- 
meters of the model:  21 ~ 0,3U  ,  0 ~d N 0,1  
and  1 ~ 0,1d N . In this case, we simulated 55,000 
Gibbs samples taking a “burn-in-sample” of size 5,000 
using the OpenBugs software. From the results of Table 
2, we observe similar results assuming normality or a 
stable distribution for the data. In this case, we conclude 
that we do not need to assume a stable distribution for the 
data, since the results are very similar assuming usual 
normality for the errors and the computational cost using 
stable distributions is very high. 

In Figure 1, we have the plots of observed, fitted means 
considering both models versus samples. From the plots 
of Figure 1, we observe similar fit of both models (linear 
regression model assuming normality or a stable distri-
bution). Observe that we have SAV = 4.496 assuming a 
stable distribution and SAV = 4.504 assuming a normal 
distribution, that is, very close results. 

Now let us consider the presence of an outlier or dis-
cordant response (considered as a measure error) replac-
ing the 15th response (2.8) in Table 1 by the value 8.0 
(denoted as outlier 1). In Table 3, we have the obtained 
posterior summaries assuming the same priors and simu-
lation procedure assumed for the results of Table 2. In 
Figure 2, we have the plots of observed, fitted means  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stable Mean 1.42 1.23 2.15 2.94 2.15 2.06 1.92 3.17 2.80 1.74 2.61 2.34 1.69 2.38 2.38

x 1.2 1.5 1.5 3.3 2.5 2.1 2.5 3.2 2.8 1.5 2.2 2.2 1.9 1.8 2.8

Normal Mean 1.38 1.19 2.14 2.95 2.14 2.05 1.90 3.19 2.81 1.71 2.62 2.33 1.67 2.38 2.38

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
‐D
at
a

Scatterplot Stable Mean; x vs Order

 

Figure 1. Plots of observed, fitted means considering both 
models versus samples. 
 

Table 3. Posterior summaries (example 1, with outlier 1). 

Stable distribution (SAV = 4.623) 

Parameter Mean Standard Deviation 95% Credible Interval

α 1,373 0.2195 (1.0580, 1.8430) 

β −0.5726 0.2703 (−0.9821, −0.04255)

δ 0.3221 0.08016 (0.2004, 0.4856) 

d0 0.4797 0.3461 (−0.3483,1.0400) 

d1 0.0465 0.009595 (0.02922,0.07010) 

Normal distribution (SAV = 6.394) 

Parameter Mean Standard Deviation 95% Credible Interval

d0 0.2408 0.7866 (−1.3100,1.8200) 

d1 0.06316 0.02246 (0.0201,0.1061) 

ζ 0.4949 0.1709 (0.2119,0.8834) 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stable Mean 1.36 1.18 2.11 2.90 2.11 2.01 1.88 3.13 2.76 1.69 2.57 2.29 1.64 2.34 2.34

x 1.2 1.5 1.5 3.3 2.5 2.1 2.5 3.2 2.8 1.5 2.2 2.2 1.9 1.8 2.4

Normal Mean 1.44 1.19 2.45 3.53 2.45 2.33 2.14 3.84 3.34 1.88 3.08 2.70 1.82 2.77 2.77

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Y
‐D
at
a

Scatterplot of Stable Mean outlier1; x vs Order

 

Figure 2. Plots of observed, fitted means considering both 
models (presence of outlier 1). 

 
considering both models versus samples. From the plots 
of Figure 2, we observe that model with a stable distri-
bution is very robust to the presence of the outlier given 
similar inference results as obtained without the presence 
of the outlier (see results in Table 2). We also observe in 
Table 3, that the estimated regression parameters with 
normal error are strongly affected by the presence of the 
outlier 1. Observe that we have SAV = 4.623 assuming a 
stable distribution (a value very close to the SAV values 
given in Table 2, without the presence of an outlier) and 
SAV = 6.394 assuming a normal distribution. 

Similarly, we have in Table 4 the posterior summaries 
assuming another outlier replacing the 15th response (2.8) 
in Table 1 by the value 50.0 (denoted as outlier 2). In 
Figure 3, we have the plots of observed, fitted means 
considering both models versus samples for this case. 

From the plots of Figure 3, we observe that model with 
a stable distribution is very robust to the presence of out-
liers even considering a large discordant observation 
(outlier 2). We also observe in Table 4, that the estimated 
regression parameters of regression model with normal 
error are strongly affected by the presence of the outlier 2. 
Observe that we have SAV = 4.632 assuming a stable 
distribution (a value very close to the values given in 
Table 2, without the presence of an outlier) and SAV = 
46.083 assuming a normal distribution, that is, with very 
large values of outliers the obtained inferences are greatly 
affected assuming normality for the data. 

4.2. An example with Simulated Data (5 
Replicates of a Factorial 23 Experiment) 

In Table 5, we have 40 responses simulated from a fac-
torial 23 experiment with 5 replicates assuming the 
 

Table 4. Posterior summaries (example 1, with outlier 2). 

Stable distribution, outlier 2 (SAV = 4.632) 

Parameter Mean Standard Deviation 95% Credible Interval

α 1,351 0.1920 (1.0790, 1.7820) 

β −0.5289 0.2733 (−0.9705, −0.0344) 

δ 0.3380 0.09538 (0.1943, 0.5680) 

d0 0.5373 0.3477 (−0.2225, 1.2040) 

d1 0.04513 0.009471 (0.02728, 0.06528) 

Normal distribution, outlier 2(SAV = 46.083) 

Parameter Mean Standard Deviation 95% Credible Interval

d0 0.00849 1.0020 (−1.9710, 1.8500) 

d1 0.1462 0.08654 (−0.02591, 0.3275) 

ζ 0.007598 0.0026 (0.003284, 0.01354)

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stable Mean 1.40 1.21 2.12 2.88 2.12 2.03 1.89 3.11 2.75 1.71 2.57 2.30 1.67 2.34 2.34

x 1.2 1.5 1.5 3.3 2.5 2.1 2.5 3.2 2.8 1.5 2.2 2.2 1.9 1.8 2.8

Normal Mean 2.79 2.20 5.13 7.61 5.13 4.83 4.40 8.34 7.17 3.81 6.59 5.71 3.66 5.86 5.86
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Figure 3. Plots of observed, fitted means considering both 
models (presence of outlier 2). 
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following model, 

0 1 1 2 2 3 3* *i i i ix d d v d v d v ,i     ,      (4.2) 

where d0 = 2, d1 = 1, d2 = 0.5, d3 = 1.8 and i are inde-
pendent and identically distributed errors with a normal 
distribution N (0, 1). 

The estimated regression obtained by minimum 
squares estimates and using the software MINITAB ver-
sion 16 is given by xi = 2.19 + 0.964v1i + 0.828v2i + 
2.08v3i where the regression parameters d1, d2, and d3 are 
statistically different of zero (p-value < 0.05 for all re-
gression parameters). From standard residuals plots we 
verify that the required assumptions (normality of the 
residuals and constancy of the variance are verified). 

Under a Bayesian approach, we have in Table 6, the 
posterior summaries of interest assuming the linear re-
gression model defined by (3.1) with a stable distribution 
for the response and the OpenBugs software assuming the 
following prior distributions: ,  ~ 0, 2U  ~ 1,U  0 , 

 ~ 0,3U ,  0 ~ 0,1d N
0 ~ 0d N

 and ,  
, 2  and 

 10 ~ 2,d N
10

0
 1 ~ 1,1d N  .5, 3 .We 

also assume a uniform U  distribution for the 
latent variable Yi, . We simulated 400,000 
Gibbs samples, with a “burn-in-sample” of 100,000 sam-
ples discarded to eliminate the effects of the initial values 
in the iterative simulation process and taking a final 
sample of size 1,500 (every 200th sample chosen from the 
300,000 samples). Convergence of the Gibbs sampling 
algorithm was monitored from standard trace plots of the 
simulated samples. From the results of Table 6, we ob-
serve that the parameter α has a Monte Carlo estimate for 
the posterior mean for α given by 0.9089, that is, the mean 
of the stable distribution is not defined in this case (α < 1). 

~ 1.5,10d N
 0.5,0.5

15


, ,1, 2i 

In Table 6, we also have the posterior summaries of 
the regression model (4.2) assuming a normal  20,N   
distribution for the error and the following priors for the 
parameters of the model:  0.01,0.0121 ~ Gamma 


, 

where Gamma  denotes a gamma distribution 
with mean 

 ,a b
a b  and variance 2a b ,  2,10000 ~d N , 

 1 ~ 0,100d N ,  and ~ 0,1002d N  3 . 
In this case, we simulated 55,000 Gibbs samples taking a 
“burn-in-sample” of size 5,000 using the OpenBugs 
software. From the results of Table 6, we observe similar 
results for the Bayesian estimates of the regression pa-
rameters assuming normality or a stable distribution for 
the data. 

~ 0,100d N

Now let us assume the presence of an outlier or dis-
cordant response (measure error) replacing the 30th re-
sponse (5.04875) in Table 5, by the value 25.250. In 
Table 7, we have the obtained posterior summaries as-
suming the same priors and simulation procedure assumed 
for the results of Table 6. We observe in Table 7, that the 
estimated regression parameters assuming normal error 
are strongly affected by the presence of the outlier. 

Table 5. A simulated data set. 

Row response v1 v2 v3 

1 −1.39519 −1 −1 −1 

2 −0.39840 −1 −1 −1 

3 −1.51516 −1 −1 −1 

4 −1.63693 −1 −1 −1 

5 −2.52282 −1 −1 −1 

6 1.04163 1 −1 −1 

7 −1.20421 1 −1 −1 

8 1.63848 1 −1 −1 

9 −0.79469 1 −1 
 
−1 

10 −0.66038 1 −1 −1 

11 0.15325 −1 1 −1 

12 −1.44337 −1 1 −1 

13 −0.02142 −1 1 −1 

14 −0.84649 −1 1 −1 

15 −0.02497 −1 1 −1 

16 3.25672 1 1 −1 

17 2.39574 1 1 −1 

18 1.26225 1 1 −1 

19 1.61358 1 1 −1 

20 3.37443 1 1 −1 

21 3.26868 −1 −1 1 

22 4.09273 −1 −1 1 

23 1.14569 −1 −1 1 

24 2.84898 −1 −1 1 

25 2.57364 −1 −1 1 

26 4.43130 1 −1 1 

27 3.45746 1 −1 1 

28 4.88136 1 −1 1 

29 2.98939 1 −1 1 

30 5.04875 1 −1 1 

31 4.54937 −1 1 1 

32 2.58553 −1 1 1 

33 4.18825 −1 1 1 

34 5.12804 −1 1 1 

35 3.82664 −1 1 1 

36 5.12793 1 1 1 

37 7.41328 1 1 1 

38 4.60123 1 1 1 

39 6.52666 1 1 1 

40 6.73205 1 1 1 
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Table 6. Posterior summaries (simulated data). 

Stable distribution 

Parameter Mean Standard Deviation 95% Credible Interval

α 0.9089 0.06488 (0.7590, 0.9767) 

β −0.7971 0.08412 (−0.9629, −0.6583) 

δ 0.8275 0.07882 (0.7016, 0.9702) 

d0 1.8310 0.0984 (1.6650,2.053) 

d1 1.1000 0.09937 (0.8604,1.2410) 

d2 0.8113 0.05056 (0.7089,0.9084) 

d3 2.0210 0.07688 (1.8700,2.1790) 

Normal distribution 

Parameter Mean Standard Deviation 95% Credible Interval

d0 2.0460 0.1724 (1.7090,2.4090) 

d1 0.8094 0.1804 (0.4643, 1.1670) 

d2 0.6862 0.1810 (0.3318,1.0560) 

d3 2.0220 0.1804 (1.6680,2.3850) 

ζ 0.8654 0.2121 (0.5129,1.3540) 

 
Table 7. Posterior summaries (simulated data in the pres-
ence of an outlier). 

Stable distribution 

Parameter Mean Standard Deviation 95% Credible Interval

α 0.9020 0.05369 (0.7718, 0.9772) 

β −0.8323 0.06828 (−0.9630, -0.6798) 

δ 0.8867 0.07621 (0.7061, 0.9941) 

d0 1.8130 0.08077 (1.6720, 2.006) 

d1 1.1130 0.08735 (0.9105,1.2640) 

d2 0.8002 0.07881 (0.6454, 0.9422) 

d3 2.0430 0.08342 (1.8770, 2.2080) 

Normal distribution 

Parameter Mean Standard Deviation 95% Credible Interval

d0 2.5170 0.5793 (1.3590, 3.6580) 

d1 1.2580 0.5634 (0.2024, 2.322) 

d2 0.1234 0.5635 (−1.040, 1.247) 

d3 2.4880 0.5664 (1.375, 3.605) 

ζ 0.0811 0.0184 (0.0478, 0.1185) 

5. Concluding Remarks 

The presence of outliers or discordant observations is due 
to the measure errors many times. This situation is very 
common in applications of the regression analysis. In the 
presence of these discordant observations, the usual ob-
tained inferences on the regression parameters or in the 

predictions based on minimum squares approach or 
maximum likelihood approach under the usual assump-
tion of normality for the errors and constant variance 
could be greatly affected, which could imply in wrong 
inference results. The use of stable distributions could be a 
good alternative for many applications in the data analysis 
to have robust inference results, since this distribution has 
a great flexibility to fit for the data. With the use of 
Bayesian methods and MCMC simulation algorithms, it is 
possible to get inferences for the model despite of the 
nonexistence of an analytical form for the density function 
as it was showed in this paper. It is important to point out 
that the computational work in the sample simulations for 
the joint posterior distribution of interest can be greatly 
simplified using standard free softwares like the Open-
Bugs software.  

Observe that in general, the appearance of outliers will 
absolutely affect the regression model under standard 
normality assumptions. The ideal results not affected by 
outliers could be obtained using the proposed methodol-
ogy as observed in our applications. These results could 
be of great interest in applications.  

In both examples introduced in Section 4, the use of 
data augmentation techniques (see, for instance, [11]) is 
the key to obtain a good performance for the MCMC 
simulation method for applications using stable distribu-
tions. 

We emphasize that the use of OpenBugs software does 
not require large computational time to get the posterior 
summaries of interest, even when the simulation of a large 
number of Gibbs samples is needed for the algorithm 
convergence. These results could be of great interest for 
researchers and practitioners, when dealing with non- 
Gaussian data, as in the applications presented here. 
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