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ABSTRACT 

Inference for the mean of a normal distribution with known coefficient of variation is of special theoretical interest be- 
cause the model belongs to the curved exponential family with a scalar parameter of interest and a two-dimensional 
minimal sufficient statistic. Therefore, standard inferential methods cannot be directly applied to this problem. It is also 
of practical interest because this problem arises naturally in many environmental and agriculture studies. In this paper 
we proposed a modified signed log likelihood ratio method to obtain inference for the normal mean with known coeffi- 
cient of variation. Simulation studies show the remarkable accuracy of the proposed method even for sample size as 
small as 2. Moreover, a new point estimator for the mean can be derived from the proposed method. Simulation studies 
show that new point estimator is more efficient than most of the existing estimators. 
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Ratio Statistic 

1. Introduction 

Normal distribution is one of the most widely known and 
commonly used distributions in statistics. Even in the 
introductory statistics courses, we discussed inference 
about the mean of a normal distribution. Usually we as- 
sume that the population mean and the population stan- 
dard deviation are unrelated parameters. However, in 
many physical and biological applications the population 
standard deviation is often found to be proportional to the 
mean. That is, the mean and standard deviation are re- 
lated. The ratio of the standard deviation to the mean is 
defined as the coefficient of variation (CV) in statistics. 
The focus of this paper is to make inference on the nor- 
mal mean using the extra information on the CV. 

In practice, this problem arises more frequently than 
we might anticipate. For example, in environmental stud- 
ies, inference about the mean of the pollutant is of special 
interest. And in those studies, the standard deviation of a 
pollutant is often assumed to be directly related to the 
mean of the pollutant (Niwitpong [1]). In agricultural 
studies, it is customary to conduct multi-location trials. 
From the results of a few locations, the CV can be calcu- 

lated and subsequently used as a known value for study- 
ing the mean of the experiment conducted in a new loca- 
tion (Bhat and Rao [2]). Brazauskas and Ghorai [3] also 
give examples of this problem emerging from biological 
and medical experiments. From the theoretical point of 
view, estimating a normal mean with known CV is also 
an interesting problem because it has a scalar parameter 
but a two-dimensional minimal sufficient statistic. In 
other words, we have a curved exponential family model, 
and standard inferential methods cannot be directly ap- 
plied (see Efron [4]). 

In literature, many authors have studied point estima- 
tion of a normal mean with known CV. For example, a 
consistent estimator was obtained by Searls [5] based on 
truncation of extreme observations. Khan [6] derived the 
best unbiased estimator with minimum variance. Gleser 
and Healy [7] obtained the uniformly minimum risk es- 
timator when the loss function is the squared error. Sen 
[8] proposed a simple and consistent estimator but the 
proposed estimator is biased. Guo and Pal [9] worked out 
an estimator based on the scaled quadratic loss function. 
Chaturvedi and Tomer [10] extended the method in 
Singh [11] and proposed a three-stage procedure and an 



Y. J. FU  ET  AL. 46 

accelerated sequential procedure to estimate the normal 
mean. By various ways of combining the minimal suffi- 
cient statistic, Anis [12] proposed three simple but biased 
estimators. And most recently, Srisodaphol and Tongmol 
[13] suggested that the estimator based on jackknife 
technique is preferred as it has the smallest mean square 
error. 

Despite the large literature devoted to point estimation, 
very few literature is available for interval estimation and 
hypothesis test for the normal mean with known CV. 
Hinkley [14] derived two locally most powerful test for 
right alternatives based on an ancillary statistic. Bhat and 
Rao [2] examined the likelihood ratio test and the Wald 
test. Niwitpong [1] proposed two confidence interval for 
the normal mean based on the work of Searls [5]. 

In this paper, we extended the approach of Bhat and 
Rao [2] and proposed the modified signed log-likelihood 
ratio test for the normal mean with known CV. The pro- 
posed method is known to have third-order accuracy. 
Moreover, a new estimator is obtained from the modified 
signed log-likelihood ratio statistic. 

The rest of the paper is organized as follows. In Sec- 
tion 2, the modified signed log-likelihood ratio method is 
reviewed. Application of the method to the normal mean 
with know CV problem is presented in Section 3. Simu- 
lation results to illustrate the accuracy of the proposed 
method are given in Section 4. The overall conclusions 
are summarized in Section 5. 

2. Review of the Modified Signed Log  
Likelihood Ratio Method 

Suppose we have a statistical model  ; f x   for a 
response  with nx p   that takes the exponen- 
tial family model form: 

   
           T

1 1 2 2; exp
h y f x u y u y    

  
   

(1.1) 

where the canonical parameter       T T
1 2,       

in p  is one-to-one transformation of  , and 

     T T
1 2,u y u y u y   in p  is a minimal sufficient 

statistic. Let  1  
 2

 be the scalar parameter of in- 
terest and     is a vector of nuisance parameters. 
Hence, the log-likelihood function is 

     , log ;f x .       

Fraser, Reid and Wu [15] approximated the p-value 
function of   with third order accuracy by 

      * * 1
log

r
p r r r

r Q
 


      

 


     (1.2) 

where  is the cumulative distribution of the stan- 

dard normal distribution, 

 

        1 2
ˆ ˆˆsgn 2r r          

    (1.3) 
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are the signed log-likelihood ratio statistic, and a stan- 
dardized maximum likelihood departure calculated in the 
canonical parameter scale, respectively. Here  

 T
Tˆ ˆˆ ,    is the overall maximum likelihood esti- 

mate of   satisfying 
 

ˆ

0,











 and  T
Tˆ ˆ,     

is the constrained maximum likelihood estimate of   

for a fixed   satisfying 
 

ˆ

0.
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 Moreover, 
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is the observed information matrix evaluated at ̂  and 
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is the nuisance observed information matrix evaluated at 

̂ . In Equation (1.2),  is the modified signed log- 
likelihood ratio statistic as defined in Barndorff-Nielsen 
[16,17]. It is important to note that  is invariant to 
reparameterization, whereas  is not and has to be cal- 
culated in the canonical parameter scale. A  1 100%  

terval for 

*r

r
Q

confidence in   is 

  *
2: r z    

where 2z  is the   th1 2 100  percentile of the stan- 
dard normal distribution. 

Fraser, Reid and Wong [18] considered the gamma 
mean problem where the parameter of interest   is not 
a component of the canonical parameter. In this case, the 
modified signed log-likelihood ratio method can still be 
applied with r  given in (1.3) because it is invariant to 
reparameterization, and  has to be re-calculated in the 
canonical parameter scale and it takes the form 

Q

   
   

     
ˆ ˆ

ˆsign
ˆ ˆvar

Q Q




   
  

   


  


   (1.5) 

where 
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with 

 
 
 

 
ˆ

ˆ







 
   
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            (1.7) 

is a rotated coordinate of     that agrees with     
at ̂ . Let     and     be the derivatives of 
    with respect to   and  , respectively,  ˆ   

is the row of 1
    that corresponds to  , and  

 ˆ   is the Euclidean distance of the vector  1
  .  

Then by change of variable from   to  , we have 

     T T

2
ˆ ˆ ˆj j  
   
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  

and 

         TT

1
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

  

For a model that does not belong to an exponential 
family, Fraser and Reid [19] proposed a systematic 
method to obtain the locally defined canonical parameter 
   . Their method is to, first, obtain the ancillary 

direction  by V

   

 

1

T

ˆ,

, ,

x

z x z x
V

x

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


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       (1.8) 

where  is an n-dimensional pivotal quantity. 
Then the locally defined canonical parameter is defined 
as: 

 ,z x 

   T d
.

d
V

x


  


              (1.9) 

Thus, the modified signed log-likelihood ratio statistic 
method can be applied to obtain the p-value function of 
 , and confidence interval for  . Fraser and Reid 
(1995) showed that the method maintained third order 
accuracy. 

3. Main Results 

We studied the modified signed log-likelihood ratio test 
to the normal mean with known CV problem. The main 
results are as follows. Let  1, , n x x x   be a random 
sample from a normal distribution with mean   and 
variance . Without loss of generality, we follow the 
set up in Srisodaphol and Tongmol [13] that the coe-  

2

fficient of variation 0c



   is known. The log likeli- 

hood function is 

  1 2
2 2

log ,
2

nt nt
n

c c
 

2 
            (1.10) 

where    2
1 2 1 1
, ,

n n

i ii i
t t x n x n

 
    is a minimal  

sufficient statistic. This belongs to the curved exponen- 
tial family as defined in Efron [4] with a two-dimen- 
sional minimal sufficient statistic but only a scalar para- 
meter. Classical statistical methods cannot be directly ap- 
plied to obtain the p-value function of  . 

Since  and 0c  0c



  , therefore   has to be 

positive, and the maximum likelihood estimate of   is 
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with the observed information evaluated at ̂  is 
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The signed log likelihood ratio statistic is 
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To calculate  Q  , we need to first obtain the locally 
defined canonical parameter     which depends on 
the pivotal quantity  ,z  x . In this case, the pivotal 
quantity for the  observation is thi
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and, the locally defined canonical parameter     is 
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Since there is no nuisance parameter involved in this 
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ten thousand Monte Carlo replications are performed. 
For each generated sample, the 95% confidence interval 
for   is calculated. The performance of a method is 
judged using the following criteria: 

problem, simplifying (1.7) and (1.6), we have 

        

and 
 The coverage probability (CP): Proportion of the true 

  falls within the 95% confidence interval;  
         1 2

ˆ ˆ ˆvar .j       


   

 The lower tail error rate (LE): Proportion of the true 
  falls below the lower limit of the 95% confidence 
interval;  

Finally, the maximum likelihood departure in )(  
scale is 

1 2 2 2 2 2
2

ˆ1 1 1 1 1
ˆ ˆ ˆ

n
Q t t

c t c


    

  
     

    
  The upper tail error rate (UE): Proportion of the true 

  falls above the upper limit of the 95% confidence 
interval;  

and thus the p-value function of  ,  p  , can be 
obtained by the modified signed log likelihood ratio 
method. 

 The average bias (AB) 

LE 0.025 UE 0.025
AB .

2

  
  

In addition, we proposed a new estimator of   
which is a by-product of the modified signed log likeli- 
hood ratio method,  *r  . We denote our new esti- 
mator as   which satisfies 

The desired values are 0.95, 0.025, 0.025 and 0, 
respectively. These values reflect the desired properties 
of the accuracy and symmetry of the interval estimates of 
 . Results are recorded in Table 1. The Wald method 
gives unsatisfactory coverage probability. LR gives 
decent coverage probability. Both the Wald method and 
the likelihood ratio method gives asymmetric intervals. 
However, the proposed modified signed log likelihood 
ratio method gives excellent results in all four criteria 
even for this extreme sample size case. Table 2 recorded 
a large sample size case   with 

  * 0.5r    

or equivalently 

 * 0.r    

Although the explicit form of   is not available, it 
can be obtained easily by simple numerical methods. 

100n  5c   and 
10  . In this case, the Wald method still gives decent 

coverage probability but also gives asymmetric intervals. 
Both LR and  give similar coverage probability with 

 having a smaller average bias. Simulation results for 
other combinations of 

*r
*r

 , ,n c   are available upon re- 
quest to authors. 

4. Numerical Studies 

Our first simulation study is to compare the accuracy of 
the confidence intervals obtained from the Wald method 
(Wald) and the likelihood ratio method (LR) as discussed 
in Bhat and Rao [2] and those obtained by the proposed 
method  *r . We consider the extreme case of 2n  . 
For each combinations of 1,10,20c   and 2,5,10  ,  Anis [12] compares the relative efficiency of ten point  
 
Table 1. Comparing the methods proposed in Bhat and Rao [2] and the proposed method using  and various com- 
binations of  and 

n 2
c  . 

 Wald LR *r  

c    CP LE UE AB CP LE UE AB CP LE UE AB 

1 2 0.7784 0.2216 0 0.1108 0.9308 0.0553 0.1390 0.0207 0.9500 0.0231 0.0269 0.0019

 5 0.7680 0.2320 0 0.1160 0.9295 0.0591 0.0114 0.0239 0.9493 0.0279 0.0228 0.0026

 10 0.7728 0.2272 0 0.1136 0.9331 0.0545 0.0124 0.0211 0.9465 0.0265 0.0270 0.0018

10 2 0.7808 0.2192 0 0.1096 0.9357 0.0543 0.0100 0.0222 0.9521 0.0233 0.0246 0.0011

 5 0.7770 0.2230 0 0.1115 0.9361 0.0529 0.0110 0.0210 0.9537 0.0237 0.0226 0.0019

 10 0.7676 0.2324 0 0.1162 0.9274 0.0611 0.0115 0.0248 0.9494 0.0266 0.0240 0.0013

20 2 0.7773 0.2227 0 0.1114 0.9319 0.0539 0.0142 0.0199 0.9502 0.0237 0.0261 0.0012

 5 0.7770 0.2230 0 0.1115 0.9347 0.0537 0.0116 0.0211 0.9509 0.0235 0.0256 0.0011

 10 0.7785 0.2215 0 0.1108 0.9338 0.0529 0.0133 0.0198 0.9499 0.0245 0.0256 0.0006
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estimators of   (denoted as 1 2 10 ) with the 
“standard” estimator 

, , ,T T T
X  and concluded that 6 , which 

is the maximum likelihood estimator, performs best. 
Moreover, 3 , which is easy to compute, is comparable 
to  and . 

T

T

8 9 10

We mimic the simulation study discussed in Anis [12] 
to compare our proposed estimator, 

,T T T

 , to the ten 

estimators discussed in Anis [12]. As in Anis [12], we 
chose 100  , for each of the combinations of 

     0.0 25 0.25 1 0.5 3c  5 0.05 0.  and , 
ten thousand Monte Carlo replications were performed. 
For each generated sample, we calculated the relative 
efficiency of the estimator with the “standard” estimator 

2,3,15,100n 

X . Results are reported in Table 3. 
 
Table 2. Comparing the methods proposed in Bhat and Rao [2] and the proposed method for the case , n 100 c 5  and 

10 . 

Wald LR *r  

CP LE UE AB CP LE UE AB CP LE UE AB 

0.9424 0.0451 0.0125 0.0163 0.9473 0.0289 0.0238 0.0026 0.9462 0.0256 0.0282 0.0019 

 
Table 3. (a) Relative efficiency of different estimators with respect to X  for n 2 ; (b) Relative efficiency of different esti- 

mators with respect to X  for ; (c) Relative efficiency of different estimators with respect to n 3 X  for n 15 ; (d) 

Relative efficiency of different estimators with respect to X  for n 100 . 

(a) 

CV 1T  2T  3T  4T  5T  6T  7T  8T  9T  10T    

0.05 1.002 0.621 1.004 0.002 1.001 1.005 1.002 1.004 1.004 1.005 1.013 

0.10 1.005 0.683 1.014 0.009 1.010 1.015 1.004 1.013 1.014 1.015 1.020 

0.15 1.012 0.738 1.031 0.019 1.022 1.034 1.009 1.030 1.031 1.034 1.033 

0.20 1.031 0.816 1.063 0.036 1.041 1.069 1.022 1.062 1.063 1.069 1.053 

0.25 1.048 0.843 1.081 0.052 1.049 1.090 1.032 1.080 1.081 1.089 1.090 

0.50 1.264 1.248 1.335 0.216 1.218 1.422 1.115 1.326 1.335 1.389 1.310 

0.75 1.760 1.752 1.765 0.494 1.487 2.027 1.276 1.748 1.765 1.902 1.948 

1.00 2.296 2.436 2.442 0.893 1.915 3.060 1.523 2.409 2.442 2.687 2.433 

1.50 2.287 3.960 4.125 1.974 2.949 5.669 2.177 4.071 4.125 4.557 4.443 

2.00 2.124 5.899 6.534 3.544 4.556 9.501 2.966 6.391 6.534 7.024 7.288 

2.50 1.911 8.390 9.626 5.415 6.370 14.40 4.181 9.467 9.626 10.21 10.95 

3.00 1.876 11.16 13.42 7.912 8.951 20.75 5.438 13.11 13.42 13.97 15.43 

(b) 

CV 1T  2T  3T  4T  5T  6T  7T  8T  9T  10T    

0.05 1.002 0.670 1.006 0.003 1.004 1.006 1.001 1.006 1.006 1.006 1.032 

0.10 1.003 0.729 1.015 0.012 1.013 1.017 1.002 1.014 1.015 1.017 1.041 

0.15 1.008 0.800 1.036 0.028 1.031 1.041 1.006 1.035 1.036 1.040 1.058 

0.20 1.012 0.848 1.058 0.047 1.051 1.064 1.007 1.055 1.058 1.064 1.083 

0.25 1.031 0.917 1.090 0.076 1.072 1.100 1.019 1.088 1.090 1.100 1.115 

0.50 1.244 1.364 1.401 0.308 1.306 1.462 1.092 1.395 1.401 1.445 1.398 

0.75 1.765 1.833 1.833 0.694 1.661 2.041 1.186 1.813 1.833 1.928 1.893 

1.00 2.438 2.358 2.519 1.237 21.99 2.940 1.318 2.481 2.519 2.678 2.628 

1.50 2.321 3.959 4.443 2.789 3.775 5.597 1.694 4.342 4.443 4.665 4.782 

2.00 1.897 6.094 7.248 4.833 5.683 9.201 2.367 7.126 7.248 7.490 7.885 

2.50 1.732 8.799 11.33 7.854 8.939 14.31 3.165 11.12 11.33 11.57 11.87 

3.00 1.630 11.09 14.93 10.98 11.92 19.80 3.996 14.62 14.93 15.08 16.74 
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(c) 

CV 1T  2T  3T  4T  5T  6T  7T  8T  9T  10T    

0.05 1.000 0.731 1.006 0.005 1.006 1.006 1.000 1.006 1.006 1.006 1.017 

0.10 1.000 0.803 1.020 0.019 1.020 1.020 1.000 1.019 1.020 1.020 1.029 

0.15 1.003 0.862 1.042 0.041 1.039 1.043 1.002 1.042 1.042 1.043 1.051 

0.20 1.003 0.949 1.080 0.073 1.078 1.082 1.001 1.079 1.080 1.082 1.082 

0.25 1.006 1.022 1.119 0.115 1.116 1.122 1.003 1.117 1.119 1.122 1.123 

0.50 1.069 1.471 1.473 0.454 1.453 1.485 1.020 1.472 1.473 1.484 1.468 

0.75 1.442 2.024 2.093 1.078 2.047 2.119 1.043 2.088 2.093 2.112 2.055 

1.00 2.876 2.628 2.889 1.852 2.830 2.983 1.072 2.872 2.889 2.917 2.887 

1.50 1.521 4.243 5.421 4.218 5.284 5.647 1.152 5.380 5.421 5.442 5.285 

2.00 1.252 6.147 8.895 7.559 8.608 9.375 1.269 8.836 8.895 8.910 8.788 

2.50 1.179 8.285 13.12 11.69 12.64 13.91 1.433 13.07 13.13 13.15 13.21 

3.00 1.151 10.68 17.84 16.24 17.19 18.88 1.574 17.74 17.84 17.82 18.63 

(d) 

CV 1T  2T  3T  4T  5T  6T  7T  8T  9T  10T    

0.05 1.000 0.721 1.004 0.005 1.003 1.004 1.000 1.004 1.004 1.004 1.008 

0.10 1.000 0.813 1.023 0.020 1.023 1.023 1.000 1.023 1.023 1.023 1.023 

0.15 1.000 0.855 1.036 0.043 1.036 1.036 1.000 1.035 1.036 1.036 1.048 

0.20 1.001 0.950 1.077 0.078 1.976 1.077 1.001 1.077 1.077 1.077 1.083 

0.25 1.001 1.047 1.127 1.127 1.127 1.128 1.000 1.127 1.127 1.128 1.128 

0.50 1.008 1.518 1.518 0.493 1.516 1.521 1.002 1.517 1.518 1.520 1.498 

0.75 1.084 2.050 2.142 1.148 2.138 2.147 1.005 2.140 2.142 2.145 2.116 

1.00 2.956 2.652 2.959 1.949 2.938 2.967 1.011 2.957 2.959 2.962 2.979 

1.50 1.090 4.143 5.459 4.463 5.430 5.495 1.021 5.457 5.459 5.466 5.449 

2.00 1.039 5.944 8.785 7.788 8.763 8.860 1.041 8.767 8.785 8.778 8.909 

2.50 1.030 8.047 13.16 12.18 13.11 13.27 1.054 13.14 13.16 13.16 13.36 

3.00 1.025 10.58 18.78 17.80 18.73 18.98 1.086 18.74 18.78 18.76 18.79 

 
From Table 3, we can observe that 6  performs best 

and our proposed estimator 
T

  ranks second. However, 
as shown in the our first simulation study, the inference 
based on the maximum likelihood estimate (the Wald 
method) gives unsatisfactory results. In other words, 
although 6  is most efficient among the estimators 
discussed in this paper, it does not give satisfactory cov- 
erage properties. On the other hand, the point estimate 
based on the modified signed log likelihood ratio statistic 
is, in general, the second most efficient estimator among 
the estimators discussed in this paper, and the cor- 
responding interval estimate has the best coverage prop- 
erties. Thus, the proposed method is the recommended 

T

method. 

5. Discussion 

In this paper, we proposed a modified signed log-like- 
lihood ratio method to obtain inference for the mean 
parameter of a normal distribution when the coefficient 
of variation is known. A by-product of the proposed 
method is the availability of an efficient point estimator 
of the mean. Theoretically, the proposed method has rate 
of convergence  3 2O n  and simulation results show 
the extreme numerical accuracy of the proposed method 
even when the sample size is small. The proposed me- 
thod can be applied to any model to obtain inference for 
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a scalar parameter of interest. 
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