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ABSTRACT 

To solve computationally expensive problems, multiple processor SoCs (MPSoCs) are frequently used. Mapping of 
applications to MPSoC architectures and scheduling of tasks are key problems in system level design of embedded sys- 
tems. In this paper, a cluster slack optimization algorithm is described, in which the tasks in a cluster are simultaneously 
mapped and scheduled for heterogeneous MPSoC architectures. In our approach, the tasks are iteratively clustered and 
each cluster is optimized by using the branch and bound technique to capitalize on slack distribution. The proposed 
static task mapping and scheduling method is applied to pipelined data stream processing as well as for batch process- 
ing. In pipelined processing, the tradeoff between throughput and memory cost can be exploited by adjusting a weight- 
ing parameter. Furthermore, an energy-aware task mapping and scheduling algorithm based on our cluster slack opti- 
mization is developed. Experimental results show improvement in latency, throughput and energy.  
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1. Introduction 

As many systems in communication and multi-media be- 
come more and more complex and require a large amount 
of computation, a single processor can’t frequently sat-
isfy the performance criteria. Since designing a high per-
formance custom integrated circuit requires great cost 
and a long design period, using multiple processors (or 
multi-cores) is increasingly seen as an alternative ap-
proach. However, mapping of applications to MPSoC ar- 
chitectures and scheduling of tasks are key problems in 
high-level design of embedded systems. 

System performance or throughput can be improved 
by using parallel processing or pipelining. In parallel pro- 
cessing, multiple functions can be executed in parallel or 
a single function can be executed for multiple data sets. 
In pipelining, consecutive data streams are processed 
with overlaps in processing time for larger throughput. 
Data streams of audio and video signals should be proc- 
essed within appropriate interval between consecutive 
inputs to provide the correct information for users. The 
most important factor to decide the performance of a pi- 
peline is the interval between the consecutive inputs, and 

this interval can be fixed or varied. A small interval means 
a higher throughput. 

Mapping and scheduling problems for multiple proc- 
essors belong to the class of NP-hard problems [1]. Re- 
search has been carried out in solving task mapping and 
scheduling problems. Different tools and models have 
been developed to address the problems above.  

The branch and bound algorithm can be used to map 
an application to architecture so that the total execution 
time is minimized. This algorithm checks all possible 
cases of assignments of n tasks to m processors leading 
to huge search space and minimizes the search area by 
using bounding procedure to reach an optimum solution 
in less time [2]. However, due to the worst-case expo-
nential complexity, this method can only be used for 
“small” sized problems. 

2. Related Works 

Mapping and scheduling problems for multi processors 
belong to the class of NP-hard problems [1]. We consider 
Problem Model like the one described in [2] where n 
tasks are to be allocated to m heterogeneous processing 
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elements (PEs). The mapping has to be found under con- 
straints where all tasks are assigned to PEs and every 
task is assigned to only one PE. The task scheduling 
problem is the problem of assigning the order of tasks in 
the system to optimize the overall performance for the 
given application.  

A very popular heuristic method to schedule tasks is 
list scheduling [3]. Tasks are scheduled from a prespeci- 
fied list and the task with the highest priority is re- 
moved from the priority list and then scheduled, one by 
one.  

For scheduling heterogeneous processing elements, the 
Heterogeneous Earliest Finish Time (HEFT) algorithm [4] 
is used. This algorithm uses upward rank value which 
represents the longest path from each task to set the pri- 
ority of each task. The task list is ordered by decreasing 
value of upward rank. Based on this list, tasks are sched- 
uled onto the processors that have the earliest finish time. 
Another scheduling algorithm based on list scheduling is 
the Critical-Path-On a Processor (CPOP) algorithm [4]. 
In contrast to the HEFT algorithm, this algorithm uses 
upward ranking and downward ranking to set the priority 
of each task. The downward ranking is computed by 
adding the average execution time of the task and maxi- 
mum downward rank value of the predecessors. The task 
with highest priority is selected for execution. If the se- 
lected task is on a critical path, then it is scheduled for 
the critical path processor. A critical processor is one that 
minimizes the cumulative computation cost of the tasks 
on the critical path. Otherwise, the task is assigned to the 
processor which has the minimum execution finish time 
of the task. 

Similarly, Performance Effective Task Scheduling (PETS) 
algorithm [5] consists of three stages, Level sorting, Task 
prioritization, and Processor selection. In Level sorting, 
each task is sorted at each level in order to group the 
tasks. Because of this, tasks in the same level could be 
executed in parallel. In Task prioritization, the priority of 
each task is computed by using average computation cost, 
data transfer cost, and highest rank of the predecessors. 
In Processor selection, task is assigned to the processor 
which gives the minimum finish time. Compared to the 
Heft and CPOP algorithm, PETS algorithm shows good 
performance. 

The force-directed scheduling algorithm [6] prioritizes 
and schedules the subtasks based on the resource utilize- 
tion probability in each step. Recently, other techniques, 
such as simulated evolution based method [7], were re- 
ported. The genetic algorithm [8,9] is a widely re- 
searched random search technique. This algorithm exe- 
cutes in generations, producing better solutions using 
crossover and mutation operators. In the genetic algo- 
rithm, candidate solutions are represented by sequences 
of symbols called chromosomes. Evolutionary algori- 

thms (EAs) operate on a population of potential solu- 
tions, applying the principle of survival of the fittest to 
produce successively better approximations to a solution. 
At each generation of the EAs, a new set of approxima- 
tions is created by the process of selecting individuals 
according to their level of fitness in the problem domain 
and reproducing them using variation operators. This 
process may lead to the evolution of populations of indi- 
viduals that are better suited to their environment than 
the individuals from which they were created, just as in 
natural adaptation. EAs are characterized by the repre- 
sentation of the individual, the evaluation function rep- 
resenting the fitness level of the individuals, and the 
population dynamics such as population size, variation 
operators, parent selection, reproduction and inheritance, 
survival competition method, etc. To have a good bal- 
ance between exploration and exploitation, those com- 
ponents should be designed properly [10].  

Like all other EAs, a quantum-inspired evolutionary 
algorithm (QEA) also consists of the representation of 
individuals, the evaluation function, and the population 
dynamics. The only difference is that it uses quantum bits 
as probabilistic representation for individuals instead of 
binary representation of genes [7]. 

In [11], energy aware scheduling that uses task order- 
ing and voltage scaling in an integrated manner is pre- 
sented, and the voltage level instead of the speed level 
was considered in the cost function for each processor. 
Dynamic voltage scaling (DVS) is one of the most pow- 
erful techniques to reduce energy consumption [12,13]. 
All these methods are heuristic approaches. 

3. Mapping and Scheduling for Batch 
Processing Systems 

By using the branch and bound algorithm [2], one can 
obtain an optimum solution for “small” mapping prob- 
lems. However, one cannot afford run-time (CPU time) 
for large problems due to the exponential worst case 
run-time. To solve the complex mapping problems in a 
reasonable time, we propose a cluster slack optimization 
algorithm. In this algorithm, we divide all tasks in a task 
flow graph by a given number of clusters. Each cluster is 
optimized to find a best solution capitalizing on the slack 
distribution. The algorithm to minimize the execution 
(finish) time can be written as in Algorithm 1. 

The cluster slack optimization algorithm consists of 
five major steps, which are initialization, As Late As 
Possible (ALAP) scheduling, making clusters, cluster 
selection, and slack optimization for the selected cluster.  

In the initialization step, we find an initial solution by 
using a greedy list scheduling method. In the ALAP 
scheduling step, we reschedule all tasks by using ALAP 
scheduling to maximize the slacks in the optimization 
zone to capitalize the slacks during optimization. By  
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Algorithm 1. Cluster slack optimization algorithm for 
task mapping and scheduling. 

Input : task flow graph, execution time table, processors 
Output : mapped and scheduled tasks 

 
Find an initial greedy solution; 

while ( solution can be improved ) do 
ALAP scheduling for slack maximization; 
Make clusters; 
while ( not completed ) do 

       Select a cluster to optimize; 
       Find the task optimization zone for the selected 

cluster; 
       Optimize the tasks in the selected cluster within 

the task optimization zone; 
end 

end 
Output the solution; 
 
clustering the given tasks into several clusters in making 
cluster step, only a small number of tasks in a cluster are 
remapped and re-scheduled, and thus the run-time can be 
controlled by adjusting the cluster size. In the cluster 
selection step, an un-processed task cluster is selected in 
order of execution start times. In the optimization step, 
we optimally remap and reschedule the tasks in the se- 
lected cluster within the task optimization zone. The task 
optimization zone is defined by two boundaries called 
floor and ceiling. When the optimization of the current 
cluster is finished, the floor and the ceiling will be up- 
dated and thus the task optimization zone is moved. The 
optimization is repeated when the new solution is better 
than the previous best solution.  

Figure 1 shows an example from [5], in which 10 

tasks are to be mapped to 3 heterogeneous processors. 
Figure 1(a) shows the task flow graph and Figure 1(b) 
shows the execution time table from [5]. For example, 
the execution of task T1 by processor P1 takes 14 cycles. 
The communication time to transfer the output of task 1 
to the input of task 2 takes 18 cycles as shown by the 
edge weight. Different processors may take different 
number of cycles to finish a given task. Figures 1(c)-(e) 
show the scheduling results by using the HEFT, CPOP 
and PETS algorithm respectively [5]. The produced solu- 
tions use 80, 86, and 79 cycles, respectively. 

Now we explain our method by using the same exam- 
ple. Figure 2(a) shows the initial solution by using 
greedy list scheduling and Figure 2(b) shows the solu- 
tion after the ALAP scheduling step. The produced initial 
solution used 82 cycles.  

After the ALAP scheduling step, all tasks are clustered 
in the order of execution start time, and each cluster is 
re-mapped and re-scheduled. We perform the branch and 
bound by evaluating the slacks of all possible mappings 
and schedules for tasks in the current cluster. The object- 
tive of slack optimization is to maximize the minimum 
slack for each processor. Slack optimization tries to 
achieve a near global optimum solution by solving itera- 
tive local optimization problems. Figure 3 shows an ex- 
ample process of slack calculation. Let STi be starting 
time of task i and FTi be finishing time of task i. Let Ca,b 
be communication time from na to nb and Ei,j be execu- 
tion time of task i on processor j. Since na, ni, and nd are 
executed on P1, the communication times Ca,i and Ci,d 
can be 0. Now, we define the slack when the task ni is 
mapped to P1, as follows.  
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The goal of the optimization is to remap/re-schedule to 

maximize the slack, since the minimum slack of all out- 
put tasks in the current cluster is the gain of the optimi- 
zation. In other words, the latency can be reduced by the 
minimum slack. 

Figure 4 shows the process of our algorithm for the 
example shown in Figure 1. After ALAP scheduling, all 
tasks are clustered to form 3 clusters as shown in Figure 
4(a). In this case, 1st_cluster = {n1, n2, n4, n5}, 
2nd_cluster = {n3, n6, n7}, and 3rd_cluster = {n8, n9, 
n10}. Figures 4(b)-(d) show optimized results after op-
timization of each cluster. In Figure 4(b), the slacks of 
each processor are 13, 19, and 7 cycles, respectively. So 
we can reduce 7 cycles after the 1st cluster optimization. 
In Figure 4(c), there is no change during the 2nd cluster 
optimization. In the same way, we can reduce 1 cycle 
after the 3rd cluster optimization. Finally, the solution is 

reduced to 74 cycles, and 8 cycles are reduced when 
compared to the initial solution. This is really the opti- 
mum solution, as verified by using the branch and bound 
algorithm. Compared to the three previous algorithms 
shown in Figure 1, our new iterative slack optimization 
algorithm produced a significantly better solution (the 
latency has been reduced to 74 cycles from 79 cycles or 
more), which is the optimum solution in this case.  

4. Mapping and Scheduling of Pipelined 
Systems for Data Stream Processing 

4.1. Throughput Increase by Pipelining 

Figure 5(a) shows the task flow graph with 15 tasks, and 
Figure 5(b) shows the execution time table for three 
processors (P1, P2, P3). For example, execution of task 
T1 by processor P1 takes 5 cycles. The edge weights  
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Figure 1. An example and scheduling results. (a) Task flow 
graph; (b) Execution time table; (c) The HEFT algorithm 
[4]; (d) The CPOP algorithm [4] (e) The PETS algorithm 
[5]. 
 

 

Figure 2. (a) Initial solution by using list scheduling; (b) So- 
lution after the ALAP scheduling.  
 
show the data communication times. Different processors 
may take different numbers of cycles to finish a given 
task. 

In batch-mode task parallel execution, the goal is to 
minimize latency. However, continuous data stream 
processing is needed to process audio and video signals. 
Therefore, the most important factor of scheduling for 
data stream processing is to reduce the interval between  

 

Figure 3. Calculation of the slack. 
 
consecutive data inputs for larger throughput. A small 
interval means higher throughput. To reduce data input 
interval (DII), we divide all tasks into several stages and 
use pipelining. For example, three candidate schedule 
positions of task 5 (T5) of the task flow graph shown in 
Figure 5(a) are shown in Figure 6(a) for the batch-mode 
task parallel execution. For pipelined execution, data can 
be processed by forming several stages. When the first 
stage processes i-th input data, the second stage process 
(i-1)-th input data. This pipelined scheduling allows 7 
candidates schedule positions for T5, as shown in Figure 
6(b). 

4.2. Optimization Using a Cost Function 

Usually, the throughput can be increased by increasing 
the number of stages. However, this may increase the 
latency and memory cost. To optimize the trade-off, we 
define the following cost function. 

 Total _ Cost  DII _ cost 1 Memory _ cost     (1) 

DII_cost is inversely proportional to the throughput 
and Memory_cost represents the cost of memory to store 
intermediate data among stages. The Memory_cost can  
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Figure 4. (a) Task clustering after ALAP scheduling; (b) 
Result after 1st cluster optimization; (c) Result after 2nd 
cluster optimization; (d) Result after 3rd cluster optimiza- 
tion.  
 

 
(a)                                (b) 

Figure 5. (a) Task flow graph with 15 tasks; (b) Execution 
time table for 3 processors (P1, P2, P3). 
 
be computed as follows. 


1

Memory_cost
N

i i
i

M S


           (2) 

where N is the number of stages, Mi is the amount of 
memory for i-th stage, and Si is the number of pipeline 
stages to store the data of i-th stage. 

Figure 7 shows the pipelined schedule results of the  

 
(a)                         (b) 

Figure 6. (a) Candidate schedule positions of T5 in batch- 
mode execution; (b) Candidate schedule positions of T5 in 
pipelined execution. 
 
task flow graph given in Figure 5. The clustering results 
are shown in Figures 7(b) and (c) when α = 0.7 and α = 
0.3, respectively. Five stages (A, B, C, D, E) are used 
when α = 0.7 as shown in Figure 7(b) and four stages (A, 
B, C, D) are used when α = 0.3 as shown in Figure 7(c). 
The result of batch processing is shown in Figure 7(d), 
in which the data input interval (DII) is 49. Figure 7(e) 
shows the pipelined schedule using 5 stages with DII of 
34. 

When the number of stages is 5, the latency can be up 
to 5× DII (5 × 34 = 170 cycles), even though one set of 
input data can be processed every 34 cycles. Figure 7(f) 
shows the pipelined schedule using 4 stages with DII of 
37. When the number of stages is 4, the latency can be up 
to 4× DII (4 × 37 = 148 cycles). Memory_cost is 44 and 
28 when α is 0.7 and 0.3, respectively. When α is small 
then the weight of Memory_cost in (1) is large and thus 
memory cost is reduced even though DII can be in- 
creased. This shows that α can be used to optimize the 
trade-off between DII and memory cost. Figure 8 shows 
how the data streams flow through the pipelining stages.  

5. Energy Aware Mapping and Scheduling 

Over the last decade, manufacturers have competed to 
advance the performance of processors by raising the 
clock frequency. However, recent computer systems are 
focused on battery-driven devices such as portable 
handheld devices, sensors, and robots, rather than tradi- 
tional large devices and desktops. Therefore, technical 
issues are miniaturization and low energy consumption. 
Specially, low power is extremely important for many 
real-time embedded systems. To apply our iterative slack 
optimization algorithm for energy aware mapping and 
scheduling, we only need to modify the cost function in 
slack optimization. The modified cost we used is shown 
in (3).The energy-aware cluster slack optimization algo- 
rithm is shown in Figure 9.  

 ECost latency 1 K energy         (3) 
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Figure 7. (a) Task flow graph; (b) Pipeline stage (α = 0.7); (c) Pipeline stage (α = 0.3); (d) Scheduling result for non-pipeline 
system; (e) Scheduling result for pipeline system (α = 0.7); (f) Scheduling result for pipeline system (α = 0.3). 
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Figure 8. Processing procedure of an input data stream. 
 
where β is the weighting factor and K is the scaling con-
stant. 

6. Experimental Results 

We implemented the cluster slack optimization algorithm 
by using the “C” programming language under the Win- 
dows operation system. The experiments were performed 
by using both real applications and randomly generated 
task flow graphs with 20 to 100 tasks. The parallel Gaus- 
sian elimination, LU decomposition [9] and molecular 
dynamics [14] are used as real applications. The tasks are 
mapped and scheduled by our method and by branch and 
bound, HEFT [4], CPOP [4] and PETS [5] algorithms for 
comparisons.  

Table 1 shows the solution comparisons for real ap- 
plications. A base algorithm for comparisons is the 
branch and bound algorithm which can find an optimum 
solution by spending much more time than other algo- 
rithms. 

However, in molecular dynamics applications, we use 
our algorithm as a base algorithm because the branch and 
bound algorithm cannot obtain the solution within 24 
hours.  

Table 2 shows the solution comparisons for the ran- 
domly generated task flow graphs. In experiments, we 
used 5 randomly generated task graphs for each number 
of tasks (# tasks). The results of our algorithm are ob- 
tained by taking up to 20 tasks in a cluster.  

Randomly generated task graphs with 20 to 50 tasks 
are used for experiments in pipelined systems. The re- 
sults are compared with those of a recent method, QEA 
[7]. Table 3 shows DII_cost and Memory cost for QEA 
and our method. In Equation (1), α = 0.7 was used. On  

 

Figure 9. Energy aware cluster optimization algorithm. 
 
the average, our method shows better results. DII_cost is 
improved by 2% and Memory_cost is improved by 23%. 

Table 4 shows tradeoff between DII_cost and Mem- 
ory_cost by changing the weight α. As α gets smaller, 
DII increases and Memory_cost decreases.  

Energy aware mapping and scheduling experiments 
are processed by using randomly generated task flow 
graphs with 20 to 50 tasks. We use three commercial 
processor power models consisting of XScale, PowerPC, 
and DSP [15] for power estimation. The tasks are 
mapped and scheduled by using our method and the re- 
sults are compared with those of Energy Gradient-based 
Multiprocessor Scheduling (EGMS) [11].  

Tables 5 and 6 show the energy consumption compa- 
isons when β is 0.3 and 0.7, respectively. In experi- r 
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Table 1. Solution comparisons for real applications. 

#tasks CPOP HEFT PETS Ours Branch and Bound

Parallel Gaussian elimination (15 tasks) 120.7% 112.2% 109.7% 100% 100% 

LU decomposition (14 tasks) 113.1% 111.9% 103.5% 100% 100% 

Molecular dynamics (40 tasks) 120.4% 117.6% 109.6% 100% N.A. 

 
Table 2. Solution comparisons for randomly generated task flow graphs with 20 to 100 tasks. 

#tasks CPOP HEFT PETS Ours Branch and Bound 

20 94.8 (108%) 91.6 (104.5%) 90.6 (103.4%) 87.6 (100%) 87.6 (100%) 

30 142.8 (111.9%) 137 (107.3%) 132 (103.4%) 127.6 (100%) N.A. 

40 174.6 (114.0%) 169 (110.3%) 163.2 (106.5%) 153.2 (100%) N.A. 

50 196.6 (110.5%) 194.4 (109.3%) 189.6 (106.6%) 177.8 (100%) N.A. 

60 228.6 (113.3%) 226 (112.0%) 221.8 (109.9%) 201.8 (100%) N.A. 

70 245.8 (113.6%) 246 (113.7%) 242.2 (111.9%) 216.4 (100%) N.A. 

80 270.6 (115.0%) 269.4 (114.4%) 267 (113.4%) 235.4 (100%) N.A. 

90 291.6 (113.0%) 289 (112.0%) 287.8 (111.6%) 258 (100%) N.A. 

100 329.8 (111.3%) 328.4 (110.9%) 326.2 (110.1%) 296.2 (100%) N.A. 

Average 219.5 (112.6%) 216.8 (111.2%) 213.4 (109.5%) 194.9 (100%) N.A. 

 
Table 3. DII and memory cost comparisons in pipelined systems. 

DII cost Memory cost 
#tasks 

QEA Ours QEA Ours 

20 425 101.9%) 417 (100%) 8910 (128.7%) 6920 (100%) 

30 831 (101.3%) 820 (100%) 15,353 (122.1%) 12,568 (100%) 

40 1241 (102.8%) 1207 (100%) 19,181 (122.9%) 15,599 (100%) 

50 1616 (102.3%) 1579 (100%) 23,926 (123.1%) 19,434 (100%) 

Total 4113 (102.2%) 4023 (100%) 67,370 (123.6%) 54,521 (100%) 

 
Table 4. Trade off between DII and memory. 

α = 0.7 α = 0.5 α = 0.3 
#tasks 

DII Memory DII Memory DII Memory 

20 417 6920 459 6327 489 5967 

30 820 12,568 907 11,397 967 10,994 

40 1207 15,599 1331 13,151 1481 11,831 

50 1579 19,434 1781 17,924 1861 15,984 

Total 4023 (100%) 54,521 (100%) 4478 (111.3%) 48,799 (89.5%) 4798 (119.3%) 44,776 (82.1%) 
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Table 5. Energy consumption and latency comparisons (β = 0.3). 

Energy consumption Latency 
#tasks 

EGMS Ours EGMS Ours 

20 67.746 (100%) 64.974 (95.9%) 86.8 (100%) 91.2 (105.1%) 

30 95.442 (100%) 90.238 (94.5%) 127.2 (100%) 131.8 (103.6%) 

40 131.246 (100%) 127.344 (97.0%) 153.8 (100%) 161.2 (104.8%) 

50 179.134 (100%) 163.128 (91.1%) 173.2 (100%) 179.4 (103.6%) 

Average 118.392 (100%) 111.421 (94.1%) 135.25 (100%) 140.90 (104.2) 

 
Table 6. Energy consumption and latency comparisons (β = 0.7). 

Energy consumption Latency 
#tasks 

EGMS Ours EGMS Ours 

20 67.746 (100%) 66.464 (98.1 %) 86.8 (100%) 88.2 (101.6%) 

30 95.442 (100%) 93.768 (98.2%) 127.2 (100%) 130.4 (102.5%) 

40 131.246 (100%%) 128.524 (97.9%) 153.8 (100%) 160.4 (104.3%) 

50 179.134 (100%%) 171.642 (95.8%) 173.2 (100%) 176.8 (102.1%) 

Average 118.392 (100%) 115.100 (97.2%) 135.25 (100%) 138.95 (102.7%) 

 
ments, we used 5 randomly generated task graphs for 
each task. 

The results of our algorithm are obtained by taking up 
to 20 tasks in a cluster for simultaneous optimization. 

7. Conclusions 

We developed an effective algorithm to map and sched-
ule tasks simultaneously for heterogeneous processors. 
By partitioning all tasks into several clusters, only a 
small number of tasks in a cluster are re-mapped and re- 
scheduled at the same time. Therefore, the run-time can 
be controlled by adjusting the cluster size and can in- 
crease linearly with the number of tasks. Experimental 
results show that our algorithm can obtain 9.5%, 11.2% 
and 12.6% better solutions compared to PETS, HEFT 
and CPOP algorithms, respectively, in batch-mode sys- 
tems. Furthermore, our method can improve the DII_cost 
by 2% and Memory_cost by 23% when compared to [7] 
in pipelined systems. Finally, energy-aware cluster slack 
optimization results show that our algorithm can effect- 
tively perform the trade-off between the latency and the 
energy consumption.  

The techniques described in this paper can be applied 
to static scheduling for multiple processors, to optimize 
latency, throughput and energy. Future works include 
developing dynamic scheduling techniques, optimization 
for networks on chip and consideration of memory band- 
width.  
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