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ABSTRACT 

In the present paper, we answer the question: for 0 1   fixed, what are the greatest value  p   and the least 

value  q   such that the double inequality          , , 1 ,p q ,J a b A a b G a b J a b      holds for all  

with ? where for , the one-parameter mean 

, 0a b 

a b p R  ,pJ a b  ,, arithmetic mean A a b

 
 

 and geometric mean 

 of two positive real numbers  and  are defined by G a ab, b
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1. Introduction 

For , the one-parameter mean p R  ,pJ a b , arithme- 
tic mean  , A a b  and geometric mean  of two 
positive real numbers  and b  are defined by 

 ,G a b
a
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  and  ,G a b ab , respectively. 

It is well-known that the one-parameter mean is con- 
tinuous and strictly increasing with respect to p R  for 
fixed  with ,a b  0 a b . Many means are special 
cases of the one-parameter mean, for example:  

   1 , ,J a b A a b is the arithmetic mean,  

   1 2 , ,J a b He a b  is the Heronian mean,  

   1 2 , ,J a b G a b   is the geometric mean, and  

   2 , ,J a b H a b   is the harmonic mean. 

The one-parameter mean  ,p J a b  and its inequaliti- 
es have been studied intensively, see [1-6]. 

The purpose of this paper is to answer the question: for 
0 1  , what are the greatest value  p   and the 
least value  q   such that the double inequality 

        , , 1 , ,p qJ a b A a b G a b   
, 0a b  a b

J a b  holds 
for all  with  ? 
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2. Main Result 

The main result of this paper is the following theorem. 
Theorem 2.1. Let 0 1  . Then for any  

with , we have 
, 0a b 

a b
1)  

        3 1

2 2

, , 1 , ,J a b A a b G a b J a b 


 


     for 

2

3
  , 

2)  

        3 1

2 2

, , 1 , ,J a b A a b G a b J a b 


 


     for 

2
0,

3
   

 
,  

3)  

        3 1

2 2

, , 1 , ,J a b A a b G a b J a b 


  


     for 

2
,1

3
   

 
. 

The numbers 
3 1

2

 
 and 

2




 in 2) and 3) are  

optimal. 
In order to prove Theorem 2.1, we need a preliminary 

lemma. 
Lemma 2.1. For , one has 1t 
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(2) follows from (3)-(6). 
Proof of Theorem 2.1. Without loss of generality we 

assume  and take a b 1.t  We first consider 

the case 
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where 

      3 2 2 2 1 1h t p p t p ,           (14) 

 3
1

lim 3 2 1,
t

h t p


             (15) 

.   3 2 2h t p p            

We shall distinguish between two cases. 

Case 1. 

   (16) 
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2
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 . The left-hand side inequality of 2) 

for 
1

3

 

   follows from Lemma 2.1 because in this case 
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