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ABSTRACT 
Actual software development processes define the different steps developers have to perform during a development 
project. Usually these development steps are not described independently from each other—a more or less formal flow 
of development step is an essential part of the development process definition. In practice, we observe that often the 
process definitions are hardly used and very seldom “lived”. One reason is that the predefined general process flow does 
not reflect the specific constraints of the individual project. For that reasons we claim to get rid of the process flow 
definition as part of the development process. Instead we describe in this paper an approach to smartly assist developers 
in software process execution. The approach observes the developer’s actions and predicts his next development step 
based on the project process history. Therefore we apply machine learning resp. sequence learning approaches based on 
a general rule based process model and its semantics. Finally we show two evaluations of the presented approach: The 
data of the first is derived from a synthetic scenario. The second evaluation is based on real project data of an industrial 
enterprise. 
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1. Introduction 
Customers are placing growing demands on the software 
industry. They are looking for more complex products 
and at the same time that are easier to use, have higher 
quality, and are faster produced and shipped. The conti- 
nuous increase in size and functionality of those software 
systems [1] has now made them among the most com- 
plex man-made systems ever devised [2]. 

Following a statement of Boehm [3], the ability of any 
industry enterprise to survive the rough market condi- 
tions will depend more and more on software and hence 
the capabilities to deliver in time, budget and quality re- 
quired software. For that reasons over the years, a variety 
of software process models have been designed to struc- 
ture, describe and prescribe the software systems con- 
struction process. 

These models range from generic ones, like the water- 
fall model or the spiral model, to detailed models defin- 
ing not only major activities and their order of execution 
but also proposing specific notations and techniques of 
application, like for instance RUP or V-Modell XT—also 
called as rich process models. In the last decade agile  

process models, like Scrum or Kanban, have become 
more and more popular. 

Independently what kind of process model you apply, 
it can only strengthen your software development capa- 
bilities as long as you apply it correctly. But, there is 
huge gap between the defined and the applied develop- 
ment process [4-7]. As shown in [4-7] one reason for this 
discrepancy is that a predefined, even organization spe- 
cific adapted, development process model cannot reflect 
the specific constraints of the individual project. Tom 
DeMarco even mentioned about the nature of process 
models and methodologies in [8]. It doesn’t reside in a 
fat book, but rather it is inside the heads of people carry- 
ing out the work. 

Consequently following this idea, we describe in this 
paper an approach to smartly assist developers in soft- 
ware development process application. The basic idea is 
to observe the developer’s actions and thereby collect the 
development process knowledge inside the heads of 
people carrying out the work. Hence the project process 
history provides the process knowledge for our approach. 
Based on this process knowledge we predict the next de- 
velopment step. Therefore we apply machine learning 
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resp. sequence learning approaches based on a general 
rule based process model and its semantics. 

The rest of the paper is structured as follows: Section 2 
contains a shore overview of the related work in the area 
of software process languages and sequence learning. In 
Section 3 we present an overview of our software process 
description language. Our approach for a smart devel- 
opment process enactment based on context sensitive 
sequence prediction is shown in Section 4. In the follow- 
ing Section 5 we show two evaluations of the presented 
approach: The data of the first is derived from a synthetic 
scenario. The second evaluation is based on real project 
data of an industrial enterprise. A short conclusion in 
Section 6 rounds the paper up. 

2. Basic Terms, Related Work and 
Objectives 

As already mentioned the goal of software processes is to 
help us to successfully develop and deliver (complex) 
software systems. A software process is a set of activities 
in a project which is executed to develop and produce the 
desired software system. A software process description 
is a textual representation of a software process. To ela- 
borate software process description in a well-defined 
manner we use software process description language. 
Using software process description languages has many 
advantages: The clear defined syntax and semantics ena- 
ble a tool-based interpretation. Thus, controlling, plan- 
ning, and coordination of software projects can be (se- 
mi-)automated. 

Various software process description languages have 
been developed. A good overview of software process 
languages provides surveys like [9-13]. We distinguish 
between three different language paradigms: rule based 
languages (pre-/postconditions), net based languages (pe- 
tri nets, state machines), or imperative languages (based 
on programming languages). In addition there are lan- 
guages using multiple paradigms. 

Rule based languages have loosely coupled steps, which 
are flexibly combinable. The advantage is that develop- 
ers can execute the step in their own manner. The disad- 
vantage is that there exists no tool support during process. 
Thus, there is a lower benefit for the developer during 
process execution. 

Imperative and net based languages implement the 
step order directly. The step order corresponds to a gen- 
erally valid order. Hereby, a tool based process execution 
is possible. The problem is that the order of the steps 
defined in the process description does not reflect the de- 
veloper’s working method. 

For that reason our claim is to define a process de- 
scription language which prevents these disadvantages in 
a way that 

A) the development process model does not prescribe 
the order of development steps the developer has to ex- 
ecute 

B) the process enactment environment guides the de- 
veloper during process execution by context sensitive re- 
commending the next development steps. 

Therefore we adapt sequence prediction approaches, 
which are a subgroup of machine learning approaches, to 
process enactment environments. Hartmann and Schrei- 
ber describe different sequence prediction algorithms in 
[14]. The sequence prediction technique which is adopt- 
ed in this paper is based on Davison/Hirsh [15] and Ja- 
cobs/Blockeel [16]. 

3. Overview of the Process Description 
Language 

In this section we present a short overview of the con- 
cepts of our process modeling language. This language 
contains only elements which are needed to assist the 
user during process enactment. The language does not 
contain other elements like phases or roles although these 
concepts could be easily added. We have designed a pro- 
cess language based on pre-/postcondition. One key ele- 
ment in our language is a step which is an activity during 
process enactment. For example there are existing steps 
like “Map requirement to Component” or “Specify Com- 
ponent”. 

Every step has pre- and postconditions, that describe if 
the user can start or stop the step execution. Furthermore, 
steps can contain a set of contexts. This can be an execu- 
tion context which is a subset of the product model (e.g. 
all classes within component c are in one execution con- 
text) or a “parameter” which describes a certain situation. 
This can be for example the implementation language, 
the used case tool, framework, the project, and so on. 
The number of step types is fix at project execution time; 
the number of context instances can vary (e.g. if a new 
product is added to the product model, one or more ex- 
ecution context instances are created corresponding to 
the process description). A more detailed description of 
our language can be found here [17-19]. 

4. Smart Development Process Enactment 
Based on Context Sensitive Sequence 
Prediction 

For user (developer) assistance we have developed an 
approach to predict the next step the user wants to start. 
Our approach observes the last couple of started steps 
(and corresponding contexts) and tries to build a database 
where identified sequences are stored. 

As already mentioned our work is based on the work 
of Davison/Hirsh [15] and Jacobs/Blockeel [16] which 
will be presented in more detail in the next subsection. 
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4.1. Overview of the Underlying Work 
IPAM is the work of Davison/Hirsh and addresses the 
prediction of UNIX commands. The approach imple- 
ments a first order markov model, so the prediction which 
is made is based on the last observed element. IPAM 
stores unconditional and conditional probabilities in a da- 
tabase. After each observation the entries of the database 
are updated as follows:  

( ) ( ) ( )P x yαP x y 1α′ = ⋅ + −  for x = current observation 
and y = last observation. The entries with x ≠ current 
observation are updated with: ( ) ( )P x yαP x y′ = ⋅ . α  
is a parameter between 0 and 1. Davison/Hirsh recom-
mend a value of α0.8≈ . 

The work of Jacobs/Blockeel is based on IPAM but 
implements a higher order markov model. If 1 0y y x  
was observed and the prediction for x was correct (e.g. 

( )2 1 0P x y y y  has highest probability) new entries are 
stored to the database. Let C be the set of suffixes of 

1 0y y…  with ( )P a c 0, for all c C> ∈ . Let l be longest 
Suffix of 1 0y y x…  with ( )P a l 0> . The following new 
entries are stored to the database:  
P(z | c x) P(z | l), for all c C and z= ∈ ∈  observed ele- 
ments. 

4.2. Our Approach 
The central part of our approach is the LookupDB which 

stores the experience data Figure 1 (middle box). Each 
of the elements of the LookupDB stores, among other 
things, a condition (cond), a step prediction, and a proba- 
bility (P). This describes the probability (P) that the next 
step (prediction) will be started, given the occurrence of 
the step sequence cond. For example: An element of 
LookupDB can store the condition 1→2→3. When the 
steps 1→2→3 are observed, the probability that step 1 
will be started is 0,9. Further, for each element in the 
condition sequence a set of relevant context probabilities 
are stored. Those are these contexts which were observed 
in the past. 

For prediction (see Figure 1, right) of the next step all 
relevant elements of LookupDB are taken and for each of 
these elements an “actual probability” is calculated. Here, 
our approach considers the learned context relevance in 
LookupDB and the actual observed contexts in the cor- 
responding window. 

After prediction and after observation our algorithm 
learns this observation by updating the conditional prob- 
abilities and context relevance of all matching elements 
in the LookupDB (see Figure 1, left). In the following 
out approach is specified in a more detailed way. 
First, let us define some relevant elements of our meta 
model (see [17-19]): 

(1) Let S be index set which represents the set of Steps 
(2) Let C be index set which represents the set of  

 

 
Figure 1. Overview of the approach. 

Step:                   1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 ?
ExcutionContext (IN):   4 5 6 4 5 6 7 8 9 7 8 9 4 5 6 7 8 9 4 5 6 4 ?
ExecutionContext (OUT): 3 3 3 4 4 4 3 3 3 4 4 4 5 5 5 6 5 6 4 4 3 4  
Kontext x:              ...................
Kontext y:              ...................
....

LookupDBLearning

After each observation:
For all elements in LookupDB which
condition (Cond) matches to the last 
observed steps (without last step –
this will be learned) and the Prediction
matches to the last observed step:
1. Update P:

P=alpha*P+(1-alpha) (see [22])
2. Update Context relevance:

For each Index i:
For each line j (e.g. IN, OUT, …):

let a  be the actual context
observation in [i,j]

update context relevance
K[a]=#observed a‘s in [i,j] / 

#observed contexts in [i,j]
(this is the probability of a) 

3. Update Context prediction:
Let c be the execution context to learn
(IN of the last observed step).

Let l be a list of elements
[Index:x,line] where c is observed
in actual context observation

For all l: Update w:
w=alpha*w+(1-alpha)

4. If last prediction was correct:
Add new elements to LookupDB (see [23]
for the algorithm)

Prediction
Let L be a list of (copied) elements
of LookupDB which Cond matches to the
last observed steps (L contains copies
of LookupDB – changes do not modify
LookupDB)
For all l ∈ L:
1. For each Index i:

For each line j (e.g. IN, OUT):
let x be the actual context
observation in [i,j]

delete all K[y] in the
Context relevance with y!=x 
in [i,j], e.g.:

2. Calcutales overall context 
relevance:
ocr=arithmetic mean of all K[*] in 

the Context relevance of l
3. Calculate P_actual = P * ocr
Predict the l with the highest 
P_actual.

-2
K4=0,6

K4=0,5
…

-1
K5=0,3

K4=0,4
…

0
K6=0,3

K4=0,5
…

Index
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…

Index: -2 -1  0
IN:     4  5  6
OUT:    4  4  3

e.g. i=-2, j=IN: actual context
observation in [i,j] c = 4 

Index:  -2 -1  0
Cond :   1  2  3  Prediction: 1
P = 0,9 

Context relevance:

Context prediction:
[Index:0,IN]        w = 0,9
[Index:0,OUT]       w = 0,2
[Index:0,Kontext x] w = 0,2
[Index:1,IN]        w = …
…
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the user



Smart Development Process Enactment Based on Context Sensitive Sequence Prediction 

Open Access                                                                                            JCC 

35 

 
Contexts 

(3) Let CC be index set which represents the set of 
Context Classifications. 

To address the past observed steps we need an index 
set I: 

(4) Let I be index set [ n, ,0]− … . 
The function observation returns the observed step at 

the index i, where i = 0 means the last observation, i = -1 
the last but one observation, et cetera (see Figure 1 top 
right): 

(5) :s DEFobservation I S= →  
Furthermore, we need a function which returns the ob- 

served context at index i and at the Context Classification 
cc: 

(6) ( )2 : DEFobservation I CC C= × →  
In the example in Figure 1, observation 2(0,IN) re- 

turns 6. 

4.3. LookupDB 

We define our LookupDB: 
(7) Let : {0,1,2, }DEFLOOKUPDB = …  be Index Set 
Each element of LOOKUPDB represents an element of 

the LookupDB. Every element of our LookupDB has a 
condition cond. We define  

(8) : { }DEFCOND LOOKUPDB I S= × ×  
COND  is the set of all step sequences of elements of 

the LookupDB. For example: The following elements 
exist for the LookupDB element shown in Figure 1: 
(69,−2,1), (69,−1,0), and (69,0,3) where 69 is the ID of 
the shown LookupDB element. Let ldb LOOKUPDB∈ ; 

,ldb icond  describes the step of ldbat position i. 
(9) : { }DEFLENCOND LOOKUPDB= ×  
Is the set that describes the length of the condition de-

fined in (8). The following element exists for the Loo-
kupDB element described above: (69,3). The condition 
length is 3. Let ldb LOOKUPDB∈ ; ldblenCond  de-
scribes the condition length of ldb. 

The set PREDICTION  describes the predicted step 
of the element of the LookupDB: 

(10) : { }DEFPREDICTION LOOKUPDB S= × . 
(11) [ ]: { 0,1 }DEFP LOOKUPDB= →  defines the pro- 

bability of the element of the LookupDB that the pre- 
dicted step occurs. For the element in Figure 1 (69,1)  

PREDICTION∈  and (69,0.9) P∈ . For easy handling 
ldbp  describes the probability of the LookupDB element 

ldb. Theset CONTEXTWEIGHT describes a weight for 
each context classification (Figure 1: the lines of the 
table, e.g. IN, OUT), index (Figure 1: rows of the table) 
and context (number in the fields of the table) for each 
element of the LookupDB: 

(12) 
{ }

CONTEXTWEIGHT
LOOKUPDB CC I C∈ × × × × × 

 

The following elements describe the example in Fig- 
ure 1 at index 1, CC=IN:  
(69, , 1, 5,3,10)IN K CONTEXTWEIGHT− ∈ ; (3/10) de- 
fines the probability that the context K5 at position IN 
and index-1 is relevant. 

Now, we define a function that returns 1 if a specified 
entry of LookupDB corresponds to the last observed 
steps: 

(1) ( ) { }: 0,1DEFmatch LOOKUPDB= × →  

( )
( )

[ ]
,

,

1 if
: for all ,0

0 otherwise

ldb q s

ldb

match ldb offset

cond observation q offset

q lenCond

 = −


= ∈ −



 

Anymore, we define the following function that finds a 
specific element from the set CONTEXTWEIGHT: 

(2) : DEFgetCW LOOKUPDB CC I C
CONTEXTWEIGHT

= × × ×
→

 

( ), , , :getCW ldb cc i c cw=  with 
cw CONTEXTWEIGHT∈  and 

, ,  cw cw cw cwid ldb cc cc i i and c c= = = =  

4.4. Prediction 
For prediction we define the following functions: 

(3) [ ]( ) [ ]: { 0,1 } 0,1DEFgetAMC I CC C= × × × →  

( ){( , , , )} : with :
arithmetic mean of all ( is threshold)
getAMC i cc c w amc amc

w θ θ
= =

>
.  

(4) ( ): { [0,1] }DEFf LOOKUPDB I CC C= → × × ×  

( ) ( ){ } [ ]
( )

( )

: , , , with ,0 and

: 2 , for all and and

: /  ( , ) : , , ,

ldbf ldb i cc c w i lenCond c

observation i cc i cc w

x y with x y getCW ldb cc i c

= ∈ −

=

= =

 

The function f takes an entry of LOOKUPDB and re- 
turns a set of elements (index,cc,c,w). w corresponds to 
the context weight of ldb for each index i and cc in ldb 
and for the corresponding c found in the observation. 

The function getAMC takes a set of elements (in-
dex,cc,c,w) and returns the arithmetic mean of all w. ge-
tAMC(f(ldb))returns a “parameter” that the element of the 
LookupDB (and the learned context weights inside) cor-
responds to the observed contexts. 

The function getActualP takes an entry of LOO-
KUPDB and calculates an actual P weight dependent on 
ldb and the actual observation (this weight is used to se-
lect the best entry of LOOKUPDB for prediction): 

(5) [ ]: 0,1DEFgetActualP LOOKUPDB= →  
( ) ( )( ): }ldbgetActualP ldb getAMC f ldb p= ∗  

Now, we can describe the function to predict the next 
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step: 
(6) : ( )DEFmakeprediction Pow LOOKUPDB S= →  

( ) : )makeprediction ldb s with=   
( ) ( ): for maximals prediction ldb getActualP ldb=  

To predict the next step we call the function make pre-
diction with a set of all elements ldb of LookupDB with 
match(ldb,0) = 1. 

4.5. Learning 
To update the LookupDB, the following steps are done 
(note: (0)sobservation  is the step a prediction we made 
and we want to learn): 

If there exists no ldb LOOKUPDB∈  with  
( ,1)ldb LENCOND∈  and  
(( ,0), ( 1))ldb observation COND− ∈  and  
( , (0))sldb observation PREDICTION∈  a new entry is 
added to the LookupDB (the entry with the shortest 
cond): 

(19) 
: { } { }

{ } { } { }
{ } { }

{ } { } { }

DEFaddEntry LOOKUPDB COND
LENCOND PREDICTION P

LOOKUPDB COND
LENCOND PREDICTION P

= ×
× × ×
→ ×
× × ×

 

0 0, 0 0 0

1 1 1 1 1

( , , , ) :
( , , , ,
addEntry ldb cond lc pre p
ldb cond lc pre p

=
  

with: 

• 1 0 1 0 1 0

1 0 1 0

\ , \ , \
, \ , \ )

ldb ldb cond cond lc lc
pre pre p p

= ∅ = ∅ =

∅ = ∅ = ∅
 

• 0 1 0 1 0

1 0 1 0 1

1 , 1 ,

1 , 1 , 1

ldb ldb cond cond lc

lc pre pre p p

+ = + = +

= + = + =
 

• 0 1andn ldb n ldb∉ ∈  

• 
0 1

( ,0, ( 1))
and (( ,0), ( 1))

n observation
cond n observation cond

− ∉
− ∈

 

• 0 1( ,1) and( ,1)n lc n lc∉ ∈  

• 
0 1

( , (0))
and( , (0))

s

s

n observation
pre n observation pre

∉

∈
 

• 0 1( ,1 ) and( ,1 )n p n pα α− ∉ − ∈  
Let LDB LOOKUPDB⊆ : 

{ |LDB ldb LOOKUPDB= ∈  
( )

( )
,1

1 ( , 0 ) }.s

match ldb

and l observation PREDICTION= ∈
 

For each element ldb LDB∈  the following steps are 
done: 

(20) { }: { }with :DEFupdateP P LOOKUPDB P= × →  
( ) ( ) ( )

( )( )
0 1 0

1 1 0

, : , , ,

, * 1 andp \{(ldb,pp)}

updateP p ldb p with ldb pp p ldb pp

p and ldb pp pα α

= ∈ ∉

+ − ∈ =
 

1{( , * (1 ))}p elb ppα α+ −  (see [15]) 

(21)  
{ }: DEFupdateContextweight CONTEXTWEIGHT=  

{ }LOOKUPDB CONTEXTWEIGHT× →  
( )0 1, : withupdateContextweight cw el cw=  

• For all ( ) 0, , , , ,ldb cc i c x y cw∈  with  
1( , , , , , )ldb el ldb cc i c x y cw≠ ⇒ ∈  

• For all ( ) 0, , , , ,ldb cc i c x y cw∈ with ldb el=  and  
( ) ( )

1 1

2 , , , , , ,
and ( , , , , 1, 1)

c observation i cc ldb cc i c x y
cw ldb cc i c x y cw

= ⇒ ∈

+ + ∈
 

• For all 0( , , , , , )ldb cc i c x y cw∈  with ldb el= and  
( ) ( )

1 1

, , , , ,
and ( , , , , , 1)

sc observation i ldb cc i c x y
cw ldb cc i c x y cw

≠ ⇒ ∉

+ ∈
 

This function updates the probabilities of the context 
information in ldb. 

If the last prediction was correct new entries are added 
to the LookupDB according to the work of Jacobs et al. 
[16]. Let Q LOOKUPDB⊆  be a subset of LOO-
KUPDB with: 

(22) ,: { |DEF q iQ ldb LOOKUPDB cond= ∈  
( )1 for all

,0 }
s

q

observation i i

lenCond

= −

 ∈  
 

Let L LOOKUPDB⊆  be subset of LOOKUPDB 
with: 

(23) ,: { |DEF l iL ldb LOOKUPDB cond= ∈  
( )

[ ]
for all

,0 }
s

ldb

observation i i

lenCond

=

∈
 

Let ll be the element of L with the longest lenCond and 
P(ll)>0. The function update LOOKUPDB is defined as: 

(7) 
{ } { }

{ } { } { } { }
:

{ }) ({ } { }
{ } { } {

})

(

}
{

DEFupdateLOOKUPDB LOOKUPDB Q ll

COND LENCOND PREDICTION P
CONTEXTWEIGHT LOOKUPDB COND
LENCOND PREDICTION P
CONTEXTWEIGHT

= × × ×

× × × ×

→ × ×
× × ×

 

( )0 0 0 0 0 0, , , , , , , :updateLOOKUPDB LDB q l c lc pre p cw =  
( )1 1 1 1 1 1, , , , ,LDB c lc pre p cw  with (see [16]):  

• 0

1 0 1

{0,1, , } and {0,1, , , }
| | | | | |

n LDB n m
LDB with LDB q LDB

… ∈ … … ∈

+ =
 

Let ldiff be 1 0\LDB LDB . For all  
there is an in with :qq q ldiffel lediff∈  

• 
0

1

1

(( , ), ) and(( , 1), )
for all and ;and : (( ,0), (0))
q i s c ldiffel i s

c i s ldiffel oberservation
c

∈ − ∈

∈  

• 0 1( , ) and ( , 1)q l lc ldiffel l lc∈ + ∈  
• 0 1( , ) and ( , ) for allq s pre ldiffel s pre s∈ ∈  
• 0 0 1( , ) and( , 2) and( , 2)q p p ll p p ldiffel p p∈ ∈ ∈  

This function adds new entries to LookupDB by taking 
the entries which have predicted the observation correctly 
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and “extending” the corresponding conditions by adding 
the observation (see [16] for detail). 

5. Evaluation 
5.1. Synthetical Process 
For the evaluation of the approach described in Section 4 
we derived a synthetic project scenario. In this scenario 
the requirements of the system are existent. The goal is to 
develop an architecture (components, classes) and a cor- 
responding implementation. The process description con- 
sists of 4 steps: 1) Identify component, 2) Map require- 
ment to Component, 3) Specify component (refine re- 
quirement), 4) Implement component. 

In the system two types of components exist: a) Com- 
plex/hardware related components. Here, the engineer 
has a prototypical method to develop the component 
(steps 2 - 4 are executed sequentially). b) Components 
which classes have a high coupling. Here, the engineer 
has a broad design method (step1; all steps 2; all steps 3; 
all steps 4). 

For evaluation three sequences of steps (with corres- 
ponding contexts) were build: i) Development of com- 
ponents only of the type a), ii) Development of compo- 
nents only of the type b), and iii) random mix of a) and 
b). 

Our approach is compared with the algorithm from 
Jacobs/Blockeel [16] which is the underlying sequence 
prediction technique of our approach. The results are 
shown in Figure 2. This figure contains two graphs for 
each scenario: The first (top) describes the total number 
of correct predictions and the second describes the per- 
centage distribution of correct prediction after each step 

(horizontal axis). The Jacobs Blockeel(JB) approach is 
shown in red color and our approach (MD) is shown in 
blue color. 

In all scenarios our approach predicts equal to or better 
than the Jacobs Blockeel algorithm. Remarkable is that in 
scenario 3 (the “real world” scenario) our approach pre- 
dicts the steps substantially better than the JB approach. 
After 2/3 of all steps our algorithm predicts always cor- 
rectly. On the other hand the algorithm of JB “drifts” to 
53% correct predictions. 81% of correct predictions in 
scenario 3 might be an indication that our approach is 
more applicable. 

5.2. Real Project Process 

In addition to the synthetical evaluation (described in 
section V.A) we evaluated our approach with real project 
data from anindustrial enterprise. Are there differences 
between these two evaluations? In the synthetical evalua- 
tion we described a process description using the de- 
scription language presented in Section 3. This is a rule 
based language which is flexibly executable for the en- 
gineer. On this basis, we derived three test data sets and 
evaluated our approach with these data. The evaluation 
of the industrial case study is based on real project data 
with 5.600 individual development steps. The underlying 
process description language of the industrial case study 
was a net based language. Therefore, the process descrip- 
tion (and the enacted process) is more stringent than our 
process used for evaluation in section V.A. 

Like in the synthetically evaluation our approach is 
compared with the approach of Jacobs/Blockeel. The 
results are shown in Figure 3. Again, there are two cate-  

 

 
Figure 2. Results synthetic scenario. 
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Figure 3. Results of the real project evaluation. 

 
gories shown: the first shows the total number of correct 
predictions and the second shows the percentage distri-
bution of correct predictions after each step. Similar to 
the synthetic approach our approach generates more ac-
curate predictions than the Jacobs/Blockeel approach. 

6. Conclusions, Further Work 
Customers are placing growing demands on the software 
industry. The ability of any industry to survive the rough 
market conditions will depend more and more on soft- 
ware and hence the capabilities to deliver in time, budget 
and quality required software. For that reasons over the 
years, a variety of software process models have been 
designed. Software process models can only strengthen 
your software development capabilities as long as you 
apply it correctly. 

But, there is huge gap between the defined and the ap- 
plied development process. One reason is that the prede- 
fined general process flow does not reflect the specific  

constraints of the individual project. For that reasons we 
claim to get rid of the process flow definition as part of 
the development process. Instead we describe in this pa- 
per an approach to smartly assist developers in software 
process execution. 

The basic idea is to observe the developer’s actions 
and thereby collect the development process knowledge 
inside the heads of people carrying out the work. Hence 
the project process history provides the process know- 
ledge for our approach. Based on this process knowledge 
we predict the next development step. We apply a se- 
quence learning approach to predict the next develop- 
ment step with respect to project process knowledge. 

We have evaluated our approach on a synthetic and a 
real world project setting. In both settings our approach 
was able to provide more accurate predictions than clas- 
sical non context sensitive approaches. However the re- 
sulting accuracy of 75% to 90% is not high enough for a 
wide acceptance by developers. However if we present to  
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the developer not only a single development step predic- 
tion but instead presenting the best three predictions— 
similar to Google which presents a result list after a web 
query, the prediction accuracy rate would increase to 
99.9%. Note, this resulting accuracy has been proved in 
the two presented evaluation scenarios. 

Based on such a prediction soundness a process en- 
actment framework could be widely accepted and applied 
by developers. The next step is to set up a broader empi- 
rical experiment to validate the applicability of our pro- 
cess enactment framework. 

Moreover additional research and application direc- 
tions of the presented approach are to support novice de- 
velopers (e.g. developers works in a new project/new 
company) by providing the experience data of other de- 
velopers. Using the experience data (of the developers of 
one or more projects) for organization-wide process im- 
provement (e.g. derive a standard process description of 
the available knowledge) could be another interesting 
direction to follow. 
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