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ABSTRACT 

A novel nanoscale plasmonic filter consisting of two coupled metal-insulator-metal (MIM) waveguides is introduced. 
The new structure functionality is verified by numerical simulations in different configurations of the filter. The im-
pedance variation characteristic named as split mode ring resonancy is achieved by partially narrowing or expanding the 
waveguide diameter. The main parameters of the filter are evaluated by using the parameters of an implemented type of 
ring resonator. Moreover, modal analysis for Surface Plasmon Polariton (SPP) propagation is performed while changing 
the main spatial parameters of the device. 
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1. Introduction 

Plasmonics and integrated optical devices play an im-
portant role in routing, switching and controlling of light 
in the various fields of modern optical communication 
and networks [1]. Plasmonic waveguides transfer the 
electromagnetic waves coupled to surface collective os-
cillations of free electrons on a metal, called Surface 
Plasmon Polaritons (SPPs). The SPP waves are bound to 
and propagate along metal-dielectric-metal interfaces [2]. 
The light confinement below the diffraction limit is the 
main identity of plasmonic waveguide making them dif-
ferent from other types of optical waveguides such as 
photonic crystals, optical fibers, etc. Furthermore, the 
introduction of deep-submicron technologies in elec- 
tronic engineering leads to a revolution in optoelectronic 
circuits [3]. Various structures such as nano-particle plas- 
mon waveguides [4-6], Domino plasmon waveguide [7], 
grooves and wedges [8-10] and Metal-Insulator-Metal 
waveguides (MIM) [11,12], are introduced by transport- 
ing SPPs. In addition to the fabrication simplicity, high 
degree of SPP confinement and compact size have made 
MIM geometry the most attractive among other nano- 
sclae waveguides [13]. Different types of plasmonic fil- 
ters such as tooth shaped subwavelength, and add-drop 
topologies are introduced and analyzed by numerical  

methods such as Finite-Difference Time-Domain (FDTD) 
[14,15]. It has been shown that the transmission spectra 
of an asymmetrical multiple teeth-shaped structure can 
present a narrow band pass filter [16]. Moreover, ring 
resonator filters generate opposite phase standing waves 
using optical cavities, to be used as a suppressor of some 
targeted wavelengths in the transmission spectrum [17]. 
Depending on the position of cavities relative to the main 
MIM guiding structure, it is possible to achieve band 
pass (two MIM waveguides coupled to each other by a 
circular ring resonator) or band stop filters (laterally cou- 
pling ring resonator to an MIM waveguide) [18]. One of 
the most interesting applications of MIM waveguides 
that have been the subject of many recent papers is the 
construction of integrated plasmonic optical filters by 
cavity waveguide coupling [19,20]. Coupled Mode The- 
ory [21] and numerical methods [22] are used for the 
analysis of such structures. Optical filters, as one of the 
building blocks of integrated optical circuits, are recently 
introduced in different geometries such as bidirectional 
wave coupler based on Bragg Gratings [21,22], bidirec- 
tional splitter in different angles of incident light [23], 
plasmonic splitter based on the MIM waveguide with 
periodic grooves [24] and wavelength de-multiplexer 
based on MIM plasmonic nano-capillary resonators [25]. 
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The introduced structures suffer from some limitations 
such as huge dimension for splitting functionality [21,22, 
24], insulation lack between output ports [23], low trans- 
mittance [21-24], power leakage [21-23], and maximum 
fanout of two for splitter channels [21-24]. An annular 
ring being able to support multi-modes, should gratify 
the boundary conditions. Coupling and perturbation me- 
thods are used for the resonant mode excitation [23]. 

In this paper, a novel nanoscale plasmonic filter is in-
troduced while its functionality is verified by numerical 
simulations in different configurations. Next section de-
scribes the dispersion relation for the introduced filter. 
While the theoretical model is presented in Section 3, 
Section 4 describes the transmission spectrum results. 

2. Dispersion Relation and Effective  
Refractive Index of MIM Waveguides 

Figure 1 shows a MIM waveguide, where each metal/ 
dielectric interface allows SPPs with a TM mode to 
propagate along x direction. It is shown that whenever 
the separating space between two interfaces is compara-
ble to the decay lengths of SPPs in the dielectric region, 
the SPPs get coupled to each other and confined in the 
dielectric region between two metals [1]. The field analy-
sis inside the dielectric space between two metals could 
be achieved using Maxwell’s equations: 
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in which β is the propagation constant of the MIM  

waveguide and 2 2
1k   0k  is the wave vector nor-  

mal to the propagation direction and k0 is the propagation 
constant of free space. Using boundary conditions and 
the field components in the metal region, the dispersion 
relation of MIM waveguide structure could be calculated 
by: 
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where indices 1 and 2 denote the dielectric and metal 
layers, respectively. Silver is regarded as the metal in this 
paper, and Drude-Lorentz model with five poles is used 
for dielectric constant determination [25]: 
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Figure 1. Schematic representation of an MIM structure 
with two semi-infinite metal slabs of permittivity ε2 sur- 
rounding a dielectric layer of thickness h and permittivity 
ε1. 
 
11.6012 THz is the damping constant. Table 1 summa- 
rizes the main values for dielectric constant calculation, 
i.e. ωn resonant frequencies of silver, damping constants 
γn , and oscillator strength fn [25].  

3. Theoretical Model 

The Local Split Resonant (LSR) mode of a circular ring 
resonator and its effects on the transmission spectra is 
investigated in this paper theoretically and numerically.  

Figure 2 presents the LSR mode excitation using dif-
ferent impedances on the ring resonator. The coupling 
separation distance Δ is 10 nm and the device length l is 
set to 1 µm. 

The input and output MIM waveguides are coupled by 
means of a LSR ring resonator made out of two sectors 
with different impedances. Sector (I) with inside and 
outside radius of a0 and b0, and r0 as the average 

 0 0 0 2r a b  , has a higher characteristic impedance 
in compare with sector (II) with inside, outside and av-
erage radius as ai, bi and   2i i ir a b  , respectively. 
Solving the wave equation in cylindrical coordinates, 
field distribution in region (I) can be written as: 
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where, 0πp   for 0– π 2 π 2  , and n is the 
nth roots of Bessel functions of the ξth order which has 
infinite discrete roots, and ir

 I
r a   and 1, 2,3,p   . 

In these equations ,
I

nk  and ,
II
v nk  are the wave numbers 

in region (I) and region (II), respectively. Furthermore,  
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Table 1. Silver values for evaluating Drude-Lorentz model. 

fn γn (THz) ωn (THz) n 

7.9247 939.62 197.3 1 

0.5013 109.22 1083.5 2 

0.0133 15.71 1979.1 3 

0.8266 221.49 4392.5 4 

1.1133 584.91 9812.1 5 

 

 
(a) 

 
(b) 

Figure 2. (a) Schematic of the split mode circular ring re-
sonator with an increasing sector between −φ0/2 and φ0/2, (b) 
Schematic of the split mode circular ring resonator with a 
decreasing sector between −φ0/2 and φ0/2. 
 
field distribution for region (II) can be calculated from: 
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where,  0π πv q    for 0π 2 3π 2  , 
 and m is the mth roots of Bessel functions 

of the vth order. Jv and Yv represent the first kind and 
second kind Bessel function of order v, respectively. Us-
ing boundary condition at ρ = ai and ρ = bi in region (II), 
and either one of ρ = a0 or ρ = b0 for region (I), one ob-
tains: 

1, 2,3, ,q  

     
0 0

i i

III II
m rz z

a a

j jE E
 

    
    

 


 
 

     
0 0

i i

III II
m rz z

b b

j jE E
 

    
    

 


 
 

and 
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In addition, using the continuity of tangential compo-
nents of the magnetic fields at φ = φ0/2 and φ = φ0/2, it 
can be found that 
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In conclusion, the characteristic equation is obtained 
being useful for mode calculation in sector (I). 
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Similarly, characteristic equation for sector (II) can be 
found as: 
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It should be noted that n = 0 and m = 0 are not ac-
ceptable for all of these equations because of existence of 
second order Bessel functions in the equations. In fact, 
each of these sectors follows its individual characteristic 
equation to illustrate encompass modes in any wave-
length. However, instead of using TMv.m and TMξ.n for 
each sector, it is preferred to use one notation to specify 
modes of the whole ring structure which is made of two 
sectors with different radial widths. Hence, in this study 

,
.

n
v mTM   is defined to show the split mode ring resonator 

in which, the upper index refers to the mode of the ma-
nipulated sector, with angular width of φ0, and the lower 
index refers to the mode of the main shape, with angular 
width of π  φ0 for 0π 2 3π 2  . Using a unique 
notation is applicable when both TMv.m and TMξ.n exist. If 
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one of these modes does not exist, we cannot use this 
notation and it is essential to use another one. For exam-
ple, in this study, if there is no propagating mode inside 
region (II) or region (I),  

.
I
nTM  and  

.
II

v mTM , are only 
used respectively. However, it should be noted that, these 
resonant modes build a local resonance inside the ma-
nipulated sectors and other resonant modes which cannot 
satisfy the local resonant condition, are lost due to scat-
tering inside the manipulated regions. For example, con-
sidering φ0 = π/6, it is anticipated that only the ξ = 6p 
(integer multiples of sixth) mode maintains the resonant 
condition and other modes split. 

4. Plasmonic Filter with a LSR Circular 
Ring Resonator 

4.1. Typical Band-Pass Filter with a Circular 
Ring Resonator 

Figure 3 shows a typical plasmonic band-pass filter by 
the means of a circular ring resonator consisted of two 
MIM waveguides coupled together by a circular ring 
resonator [14]. The main parameters are Δ, a, b, r and h 
describing the coupling separation and the ring resonator, 
inside, outside and the average radius of the ring resona-
tor, and the MIM waveguides width, respectively. In this 
investigation, in order to have fundamental mode (TM0), 
h is considered to be 50 nm; to achieve a definitive sub- 
wavelength structure. In such structures it is essential to 
monitor the input signal (T1), the output signal (T2), ana-
lyzing the power in the frequency domain to reach trans-
mission coefficient, defined as output power divided into 
input power, T = Pout/Pin. Figure 3 shows the transmis-
sion spectrum of a typical circular ring resonator with Δ 
= 10 nm, a = 100 nm, b = 150 nm as the main property 
of the filter. 

The filter is placed in a length of L = 1 µm. It can be 
seen from Figure 3(b) that there exist two resonant peaks, 
related to two different resonant modes with the wave-
lengths of λ1 = 1162 nm for the first mode, and λ2 = 602 
nm for the second mode. Considering ri and ro as the 
inside and outside radius of the ring resonator, respec-
tively, it is shown that these modes can be computed us-
ing the following equation [23]: 
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in which  r rk c    is the wave number, 
 0 01c   , εr and μr are light speed in free space, 

relative permittivity and permeability, respectively. It can 
be shown that the effective refraction index of a MIM 
structure can be computed as [1]: 
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(a) 

 
(b) 

Figure 3. (a) Schematic of a typical plasmonic MIM band- 
pass filter using a circular ring resonator, (b) The transmis-
sion spectrum of a typical plasmonic MIM band-pass filter 
using a circular ring resonator. 
 

The transmission simulation of the filter is calculated 
using 2D FDTD and is shown in Figure 3(b). In these 
simulations, it is assumed that the size of each uniform 
Yee cell of the structure in x and z-directions are Δx = Δz 
= 2 nm. The computation domain of this structure is a 
conventional perfectly matched layer (CPML) absorbing 
boundary condition. 

4.2. Adjustable Plasmonic Filter Using a Split 
Mode Ring Resonator 

This section investigates the effect of using a split mode 
ring resonator on the main modal characteristics. In fact, 
the split mode resonator is made out of two or more 
changed impedance circular sectors on the circular ring. 
Due to impedance changing, a local resonant boundary 
condition is created which can reserve or split the differ-
ent mode’s energy. It is assumed for simplicity that the 
constant coupling distance Δ, was setting as that in the 
investigated structure (see Figure 2). 

In order to study the effect of the position of the ma-
nipulated sector on the transmission spectrum of the ring 
resonator filter, one can obser e Figure 4 in which φ0 is  v  
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4. (a) The transmission spectrum of the split mode ring resonator plasmonic filter for even values of m in an decreas-
ing split sector with a0 = 110 nm, b0 = 140nm, constant φ0 = π/3 and alternating φ1, (b) The transmission spectrum of the split 
mode ring resonator plasmonic filter for odd values of m in an decreasing split sector with a0 = 110 nm, b0 = 140 nm, constant 
φ0 = π/3 and alternating φ1, (c) The transmission spectrum of the split mode ring resonator plasmonic filter for some odd val-
ues of m in an increasing split sector with a0 = 90 nm, b0 = 160 nm, constant φ0 = π/3 and alternating φ1, (d) The transmission 
spectrum of the split mode ring resonator plasmonic filter for even values of m in an increasing split sector with a0 = 90 nm, 
b0 = 160 nm,constant φ0 = π/3 and alternating φ1. 
 
constant and φ1 is varying relative to the x-axis, as the 
port’s main axis. In this study in order to investigate the 
manipulated position dependency of the sector, it is as-
sumed that φ1 = mπ/12, . Figure 4(c) 
shows that in the expanded sector case (for example a0 = 
90 nm and b0 = 160 nm) and for odd m numbers, the 
transmission spectrum amplitude for all modes are in-
creased by approaching φ1 to 5π/12. In addition, this fig-
ure shows that for the sector which is placed nearby the 
ports, the first mode disappears and two new resonant 
modes are created in return and a valley appears. The 
valleys become deeper by decreasing the distance of sec-
tor expansion to the ports. 

1,2,3,m  

The effect of even m numbers is shown in Figure 4(d). 
It is obvious that by approaching the manipulated sector 
to the ports, each of the original first and second resonant 
modes split into two new lateral resonant modes. In addi-
tion, the transmission spectrum for m = 5 is shown in 
Figures 4(c) and (d) to demonstrate the transmission 
spectrum when φ1 gets close to 5π/12 for which, the ma-
nipulated sector is homolographic around y axis. In other 
words, the influence of increasing m on the transmission 
spectrum is a periodic process. Hence, it is essential to 
analyze the transmission spectrum using even/odd m. 

As the center of the sector approaches π/2, the trans-
mission amplitude of the first mode of the splitted modes 
increases and the amplitude of the second mode de-
creases gradually. Finally, for m = 5, for which the sector 

is symmetric around y axis, the transmission amplitude 
takes a resonant peak which is the mean value of the 
neighboring amplitudes. Figure 4(b) illustrates the effect 
of odd m values on the transmission spectrum. It is ob-
vious that, splitting is occurred and a large increase of the 
transmission amplitude is observed for the second reso-
nant mode and for all m values. However, splitting phe-
nomena affects the second resonant mode less severe in 
comparison with the first mode. In addition, according to 
Figure 4(b), it is found that, unlike previous discussion 
for even values of m, the augmenting of φ1 will not end 
in the enhancement of second mode transmission ampli-
tude. Alternating the width of the manipulated sector 
could play an important role on transmission spectrum. 
Figure 5 depicts the transmission spectrum, affected by 
changing φ0 of manipulated sector, respectively. In order 
to study the effects of changing φ0 on transmission spec-
trum, first we consider the narrowing sector case with a0 
= 110 nm, b0 = 140 nm and φ1 = 0 and then we investi-
gate the effect of changing φ0. Moreover, this effect is 
investigated for the case that the sector is symmetric 
around y axis. According to Figure 5(a), the second reso-
nant mode of a typical ring resonator is splitted into two 
different resonant peaks. By enhancing φ0 from 2π/12 to 
π/2, the amplitude of the second peak becomes equal to 
the first peak and finally, as φ0 gets closer to π/2, the first 
peak vanishes gradually and only the second peak with a 
great amplitude remains. In addition, φ0 enhancement    
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(a) 

 
(b) 

Figure 5. (a) The transmission spectrum of the split mode ring resonator plasmonic filter with φ1 constant and changing φ0 
for decreasing sector, (b) The transmission spectrum of the split mode ring resonator plasmonic filter with φ1 constant and 
changing φ0 for increasing sector. 
 
results in reducing the amplitude of the first resonance 
and generating a new quasi-first order resonant mode 
with a less amplitude in compare with the previous one. 

Another parameter which affects the operation of a 
split ring resonator is the changing of the radial width of 
the manipulated sector. Figure 6 depict the transmission 
spectrum in the case that the radial width of the manipu-
lated sector takes different values. 

It is concluded from Figure 6 that augmenting the ra-

dial width of the enhanced sector will end in a red shift 
for the second resonance, which is a significant property 
of integrated nano-optic circuits. In other words, using a 
sector with a small expanded radial width with angular 
width of π/6 and φ1 = 5π/12, it is possible to reach higher 
resonant wavelengths (or more size reduced circuits) 
without the whole structure scaling.  

Figure 7, shows the real (Hy) field profile of the de-
creased split mode ring resonators for three different    
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Figure 6. The transmission spectrum of a split mode ring resonator for an increased sector with φ1 = 5π/12 and 5π/12 < φ0 < 
7π/12, and varying a0 and b0. 
 

 

 

 

Figure 7. (a) The Real (Hy) field profile of the decreased 
split mode ring resonator of φ0 = π/6, φ1 = 5π/12, a0 = 110 
nm and b0 = 140 nm for λ = 476.5 nm, (b) λ = 608.3 nm, (c) λ 
= 1228 nm. 
 
wavelengths. 

5. Conclusion 

A novel nanoscale plasmonic band-pass filter is proposed 
based on MIM waveguide and circular ring resonator. 
The filter is formed by replacing a sector of ring resona- 
tor with a different size part. Two main structures are 
simulated by the filter, named as narrowing parts and 
expanded parts. Splitting the resonant modes, redshift in 
the modes and maximum transmission modulation is 
observed by changing the manipulated duty cycle, its 
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location, and the manipulation thickness.  
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