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ABSTRACT 

In a dynamic CT, the acquired projections are corrupted due to strong dynamic nature of the object, for example: lungs, 
heart etc. In this paper, we present fan-beam reconstruction algorithm without position-dependent backprojection 
weight which compensates for the time-dependent translational, uniform scaling and rotational deformations occurring 
in the object of interest during the data acquisition process. We shall also compare the computational cost of the pro-
posed reconstruction algorithm with the existing one which has position-dependent weight. To accomplish the objective 
listed above, we first formulate admissibility conditions on deformations that is required to exactly reconstruct the ob-
ject from acquired sequential deformed projections and then derive the reconstruction algorithm to compensate the 
above listed deformations satisfying the admissibility conditions. For this, 2-D time-dependent deformation model is 
incorporated in the fan-beam FBP reconstruction algorithm with no backprojection weight, assuming the motion pa-
rameters being known. Finally the proposed reconstruction algorithm is evaluated with the motion corrupted projection 
data simulated on the computer. 
 
Keywords: Fan-Beam Reconstruction Algorithm; Hilbert Filter; Virtual Acquisition Geometry; Equiangular Detector 

Geometry; Rotational; Uniform Scaling and Translational Deformation; Position Dependent 
Back-Projection Weight 

1. Introduction 

The object of interest being imaged may be dynamic in 
nature, hence it is very important to develop algorithms 
and techniques to compensate the motion artefacts in 
tomographic imaging. There are several techniques and 
algorithms developed to tackle the challenges posed by 
the dynamic nature of the object such as heart, lungs, etc. 
One straightforward approach would be to minimize or 
limit the data acquisition time using ultra fast scaffolds. 
But in practice, dedicated softwares must be imple- 
mented for good results. Different techniques have been 
developed for compensation of motion artefacts, namely, 
1) Gating method by Kachelriess et al. and Flohr et al. 
[1,2]. 2) Integrating motion models in reconstruction 

process using algebraic and analytical formulations [3-6]. 
3) Reconstruction method for general type of motion 
with moderate amplitude [7,8]. 4) Method to correct the 
sinogram through simple motion models as global trans- 
lations, magnifications or rotations [9]. 5) Reconstruction 
formula for compensation of translation and magnifica- 
tion [8]. 

Roux et al. [10] have proposed a new frame-work, 
wherein the real object, at a particular time, is mapped to 
a reference object at reference time through some trans- 
formation, thus giving rise to a virtual acquisition ge- 
ometry. The key point to observe is that, the value of the 
Radon transform of the reference object, in the virtual 
geometry, at reference time is linked to the Radon trans- 
form of the transformed object, at a particular time. Thus 
giving rise to the image reconstruction formula from de-  *Corresponding author. 
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formed projections; involving parameters of the virtual 
acquisition geometry but the aforementioned reconstruc- 
tion formula is convoyed with a position-dependent back- 
projection weight. Since large amount of data needs be 
processed in dynamic studies, the implementation of the 
FBP formula for dynamic CT proposed by Roux et al. 
[10] will consume more time than it’s counterpart (static 
case). The solution to eliminate the position-dependent 
back-projection weight in the fan-beam FBP formula, 
proposed by Noo. et al. [11] inspired by [12] in a static 
2-D CT was given in [13]. In this paper, we reduce the 
computational cost of the fan-beam FBP reconstruction 
formula for a 2-D dynamic CT proposed by Roux. et al., 
by eliminating the position-dependent back-projection 
weight, by choosing the weighting function similar to the 
one proposed in [13] for compensating time-dependent 
rotational, uniform scaling and translational deformations. 
By uniform scaling, we mean that the scaling transfor- 
mation scales the object with the same magnitude along 
both the orthogonal reference co-ordinates. Thus for the 
above mentioned deformations, our formula will con- 
sume less time than the one proposed by Roux et al., due 
to the elimination of computationally expensive back- 
projection weight. 

We follow the sequential approach listed below to ad- 
dress the issues raised in the paper. 1) Admissibility con- 
dition to reconstruct the object from the projections ac- 
quired during it’s deformation (affine). 2) Reconstruction 
formula for a dynamic CT, compensating the time-de- 
pendent affine deformation. 3) Incorporating the tech- 
niques in the above formula to eliminate back-projection 
weight. 4) Simulating the idea presented in the paper. 

2. Theory 

Consider an object having strong dynamic nature and 
thus it deforms as a function of time during the data ac- 
quisition process. Let the object be denoted as tf  at 
time  and 0t f  at time 0 , where 0  is the reference 
time, where the object is assumed to be stationery. t

t t
  

be the transformation that maps the real object at par-
ticular time  to the reference time 0t  as shown in 
Figure 1. Therefore t  transforms the object from “real 
state” to “reference state”. 

t


    0tf f x x


 



                (1) 
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Thus, each real X-ray path on the evolving object is 
associated with a virtual X-ray path on the reference 
object, giving rise to a virtual acquisition geometry. 
Since affine transformations preserve intersection, each  

 

Figure 1. Fan-beam geometry: transformation of dynamic 
object projections to reference object projections (Courtesy: 
Roux et al. [10]). 
 
fan beam projection is transformed into another fan beam 
projection. 

In a fan beam geometry, the parameter   uniquely 
determines one set of projection and also gives an 
understanding of the source location. Since   is varied 
with respect to time  for acquiring all the projections, 
therefore  can be replaced with 

t
t   [10]. Mathemati- 

cally, 

   
0

, dg l  


  a l          (2) 

 ,g    be the dynamic fan-beam projection data 
collected with a circular scan trajectory given by  

   T

0 0cos sinR R  a   for a dynamic object f   

where  is the radius of the source trajectory. 0R l   
and 1 S  where  is the set of unit vectors in . 1S 2

2.1. Admissibility Conditions on the Deformation  
for Fan-Beam Case 

Roux et al. have proposed a derivation of admissibility 
conditions based on generalization of Hamaker et al. [14] 
to get a relation between the Hilbert Transform of the 
acquired fan-beam data and the Hilbert transform of the 
reference object projections. The result is given below: 

 
 


0

T1
, ,

det
OH H

s

p s g A
A  
 


 


a n

n n     (3) 

where OH  is the Hilbert Filtered Parallel beam Pro- 
jections of a ray perpendicular to n and the distance of s 
from the origin along n, thus Hilbert transform is in the 
direction of n whereas 

p

Hg


 is the Hilbert filtered fan- 
beam projections along the direction TA  and n  0 a  
is the virtual source trajectory given by:  

    0   a a . 
On modification of the condition stated by Noo et al. 

[11] (Noo’s formula will be briefed in the next section) 
for static case, the following admissibility condition is 
deduced for the dynamic CT: Region of interest (ROI) in  
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a dynamic object can be successfully reconstructed if all 
lines passing through the neighborhood of ROI intersects 
the virtual trajectory  0 a  [10]. 

2.2. Fan-Beam Reconstruction Formula Based  
on Hilbert Filtering 

A new class of algorithm based on Hilbert FBP (HFBP) 
has been derived [11] from the relation given in [14] for 
equi-angular static fan-beam projections, which is given 
by 

 

 
   

 0

0 0

2

0 0 0 ,

1 1
d  ,  ,

2
m
F

f

w g
  

    







 

x

x

x a

 (4) 

where 

      , d  sin   ,
m

m

m m
F Hg h g





,     
 

  
     
   

(5) 



 is the angle characterizing the ray that diverges from 

0 a  and contains , the projection data is charac- 
terized by 

0x
  and   

   , ,mg g   ,             (6) 

  and  are defined through parametrization with 
respect to 

n
  and   

cos sin and sin cos ,u v u v      e e n e e  (7) 

 ,w    is the redundancy weight and 

  0
0

0 0

, arctan v

uR
 

      

x e
x

x e
         (8) 

where 0  is the point, to be reconstructed, on the ref- 
erence object. 

x

Two unit orthogonal vectors u  and  given in the 
above equation are described as follows:  

e



ve

   T
sin cosv    e


, which is tangent to the 

source trajectory at 0 a
   T

cos sinu

 and  
   e


 , which is opposite to the 

direction of 0 a . 
The Hilbert FBP divergent beam reconstruction algo- 

rithms have spatially more uniform resolution and noise 
performance, and reduced divergent beam artefacts as a  

result of 
 0 0

1

 a x
 backprojection weight instead of 

the 
  2

0 0

1

 a x
 weight in ramp FBP algorithm [15].  

Noise non uniformity is appeared in the reconstructed 
image since ramp FBP algorithm is implemented using 
shift invariant filter [16]. Noise uniformity is achieved  

with shift variant filter [17]. Recently, two fan-beam al- 
gorithms [13,18] with no backprojection weight have 
been derived to address the position or distance depend- 
ent non-uniformity of resolution and noise variance by 
eliminating the backprojection weight. Extension of these 
two algorithms for cone-beam tomography has been 
given in [19]. 

2.3. Fan-Beam Reconstruction Formula with No  
Backprojection Weight 

As discussed earlier, fan-beam FBP reconstruction for-
mula (4) is convoyed with a position dependent weight, 
thus increasing the computational cost of the overall al-
gorithm. The solution to eliminating this weight has been 
given in [13] by choosing a weighting function propor-
tional to the back-projection weight 

 
 0 0

0

,
2 cos

w
R


 




 


x a
           (9) 

and such that 

   , ,c cw w     1            (10) 

where c  represents a complementary source location 
such that  0 a , 0  and x  0 ca  are collinear and 

c  is the angle characterizing the fan-beam ray emanat-
ing from  0 ca  and containing . Thus the value of 
radon transform is same for the rays characterized by 

x

 ,   and  ,c c  . Therefore, by choosing the weight- 
ing function (9), the position dependent back-projection 
weight is eliminated, yielding the below given formula: 

   
2

0 0
00

1 1
d  , .

4 cos
m
Ff g

R
  






 x     (11) 

This is the fan-beam FBP reconstruction algorithm 
with no back-projection weight for equi-angular curved 
detector geometry. 

3. Incorporation of Motion Model in Static  
Fan-Beam FBP Reconstruction Formula 

In this section, we shall brief the readers about the mo-
tion compensation algorithm given in [10] to tackle mo-
tion artefacts arising due to affine deformations during 
the data acquisition process. This formula was derived by 
incorporating motion model or deformation model into 
the fan-beam FBP reconstruction formula given in [11]. 
Since the static formula is convoyed with a position de-
pendent back-projection weight, therefore the affine de-
formation compensation formula for dynamic CT is also 
computationally expensive due to the back-brojection 
weight inhereted from formula given in [11]. We present 
a technique to eliminate this position dependent back- 
projection weight for translational, uniform scaling and 
rotational deformation by choosing the weighting func- 
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tion similar to the one chosen in [13] for the static case. 

3.1. Reconstruction Formula with  
Backprojection Weight: Compensation of  
Affine Deformation 

Let  ,g    be the deformed projection data. A fan- 
beam ray is parametrized by the parameters   and  , 
where   is the angle between a ray of interest and the 
line connecting source position to the origin. With re- 
ference to the dynamic object, the normal of a ray, pass- 
ing through a point to be reconstructed,  is denoted as x
 ,   , where   is the angle of the ray connecting 

source and point to be reconstructed with in the fan: 

v . For each real x-ray, 
diverging from the vertex point, there exist a virtual 
x-ray path given by, 

 , s   in    cosu e  e

 
 

 
 

0

0 0

 
 

  
     

x a x a

x a x a
 

where 
 
 







x a

x a
 is the unit vector along the real x-ray 

path and 
 
 

0 0

0 0








x a

x a
 is the unit vector along the  

virtual x-ray path. 
Consider  T

sin cos     as the normal to the 
virtual ray, joining the source and the point to be 
reconstructed on the reference object. 

With Reference [10], we directly write the following 
relation, 

 
T

,
T

A

A

 

 

 



 .





            (12) 

And the fan-beam reconstruction formula from de-
formed projection data is given by 

 

 
 

   
 0

0

0

0 0

* ,

1 1
d  , ,

2
m
F

f
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

  

    




 
  

x
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x

a x

 

(13) 

where 

    

  

, , ,

, ,

m m
F wH

m
wH

g g

g

 




    


   
 




 

 
 




   (14) 

where, the set  0
 x  is defined as:  

  *
 x 0,π   

 0 0 *  0  x a x  with 

 
 1

1
TA

  
 


  

 
        (15) 

where 

     
     

T

T

. .

. .

v u

u v

A A

A A

 

 

 

 





  
 

e e

e e

 

  ,


     (16) 

and 

      T, det ,m m ang
wH Hg A A g h  

      (17) 

     
sin

ang
Hh


Hh 


          (18) 

where Hh  is the impulse response of Hilbert Filter. 
For static fan-beam case, the virtual trajectory and the 

real trajectory is the same, similarly the reference object 
is the same as dynamic object. Thus , where dA I  dI  
is the Identity matrix. 

3.2. Reconstruction Formula with No  
Backprojection Weight: Compensation for  
Translational, Uniform Scaling and  
Rotational Deformations 

In this section, we use the weighting function (9), and 
eliminate the position dependent back-projection weight 

 0 01 x a  in the image reconstruction formula 
given by Equation (13). The weighting 

    *
*

0

, ,
2 cos

w
R


  






a
x

x
        (19) 

Equations (9), (10), the above Equation (19) is valid as it 
normalizes to one, the contribution from any line through 

 within the FOV. The back projection weight in the 
virtual acquisition geometry is given by: 
x

0 0

1

a x
                (20) 

where 

  0 0and =   a a x x  

0 0and .A A       a a b x x b      (21) 

Substituting the result obtained in Equation (21) to the 
back-projection weight we get, 

    0 0

1 1
.

AA A    

 
   a xa xa b x b

1
 

(22) 

The key point to observe from Equation (22) is that the 
back-projection weight is independent of translational 0  such that,  
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and rotational deformation, it only depends on scaling 
and shearing. The formula (13) compensates for time de- 
pendent affine deformation but is convoyed with a posi- 
tion dependent weight as discussed earlier. Therefore, if 
the object being imaged is subjected to translational or 
rotational deformation or both, then the term   a x  
in the weighting function (19) does not change (i.e.  

   0 0 ), but scaling and shearing 
affects the back-projection weight as suggested by Equa- 
tion (21). We propose to eliminate the position dependent 
back-projection weight for rotational, uniform scaling 
and translational deformations or their combinations. 

   a x a x

Concretely, for a translational deformation, the matrix 
is chosen as 

  1 0

0 1
trA A 

 
   

 
            (23) 

and the b  can be chosen any vector since it does not 
effect the modification process of weighting term (22). In 
case of only rotational deformation, the transformation is 
done with a matrix given by 

  cos sin

sin cos
RA A 

 
 

 
  

 
 .        (24) 

therefore 

    0 0

1 1
RA

 
  a x a xa x

1
 

So, back-projection weight does not change in case of 
rotational deformation. Now we shall discuss about uni-
form scaling wherein the back-projection weight changes. 
For uniform scaling deformation,  scA A    

  0

0
scA




 
   

 .            (25) 

therefore, 

    0 0

1 1
scA


 

  a x a xa x

1
     (26) 

Thus, by employing the weighting function (19) and 
the Equation (26) in Equation (13) we deduce the fol-
lowing fan-beam FBP reconstruction formula: 

     
 

0
0 0

*0 ,0

1 1
, d

2 2 cos
m
F

w
x

f g
R 

  

  
 



 
   x

x  

(27) 

where set  is defined as:  0w
 x

       * 0 *0,π : range , 2w c c k    x


     

where 1,2,3,k    and c is the initial value of  . 

Equation (27) gives us the exact image reconstruction 
formula for compensating rotational and translational 

deformation during acquisition of equi-angular fan beam 
projections without any position dependent back-projec- 
tion weight. 

3.3. Salient Features of Proposed Algorithm 

Since the technique involves derivative of the Hilbert 
filtered projection data, we have an advantage in terms of 
noise performance [20,21]. The implementation of modi- 
fied formula exhibits less variance compared to the fan- 
beam algorithm with no backprojection weight since 
more implementation blocks in modified formula. It can 
be mentioned here that the modified formula gives better 
computational efficiency than the unmodified for dy- 
namic case. However, we shall give execution time form 
both algorithm in the simulation section. 

4. Simulation Results 

We simulate projection of low contrast Shep Logan 
phantom by considering the static as well as rotational 
and scaled deformed object. The scan parameters which 
we have used for simulation have been given Table 1. 
We have chosen A  or tA  as diagonal matrix with 
following parameters    11 22a a   

 0.2 0.1sin   . And,  = 0 0.2b  is chosen as 
constant term with respect to time. Figure 2 shows the 
sinogram of original Shep Logan and deformed Shep 
Logan phantom. Firstly, the Shep Logan phantom is re- 
constructed using the fan-beam algorithm with no back- 
projection weight for a static object, which inturn yields 
an exact reconstruction of the Shep Logan Phantom (Fig- 
ure 3(b)). Secondly, we reconstruct the Shep Logan Phan- 
tom from rotationally deformed data using fan-beam al- 
gorithm with no backprojection weight and our presented 
algorithm (Figures 3(c) and (d)). The observations com- 
pletely abide with the theoretical and mathematical for- 
mulations and the Shep Logan phantom is exactly recon- 
structed. It is clearly observed from the Figure 3 that our 
proposed reconstruction algorithm removes the rotational 
motion artefacts. 

4.1. Computational Complexity 

The only difference between the Equations (27) and (13) 
 
Table 1. Fan-beam imaging parameters used in simulations. 

Imaging parameter Value 

Number of pixels 2562 

Object radius 1.0 

Scanning radius 2.4 

Source to detector distance 4.8 

Number of source positions per turn 450 

Number of detectors 460 
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(a)                                          (b) 

Figure 2. Sinogram: (a) Original Shep Logan phantom; (b) Deformed Shep Logan phantom. 
 

  
(a)                                    (b) 

  
(c)                                    (d) 

Figure 3. Reconstruction of low contrast Shepp-Logan phantom, (a) Original phantom; (b) Using fan-beam reconstruction 
algorithm with no backprojection weight from the static data; (c) Reconstruction with deformed data using fan-beam recon- 
struction algorithm with no backprojection weight; (d) Reconstruction with deformed data using modified fan-beam algo- 
ithm with no backprojection weight.  rotation is used for each source position for dynamic projections.   30t  r
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Table 2. Execution time (in seconds). 

Total  Filtering Backprojection 

Roux et al. 68.992 algorithm 0.422 68.57 

Proposed ithm algor 0.46 20.44 21 

 
is ndent  and redundancy weight- the position depe  weight  

ing are replaced by the term 
02 cosR

1

 
. This term can  

be implemented before the b on. Hence, it is 
clearly note that the reconstruction usi

ackprojecti
ng (27) takes less 

ve presented the fan-beam recon-
 with no backprojection weight for
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