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ABSTRACT 

A memristor-based fractional order circuit derived from Chua’s topology is presented. The dynamic properties of this 
circuit such as phase trajectories, time evolution characteristics of state variables are analyzed through the approxima- 
tion method of fractional order operator. In addition, it clearly describes the relationships between the impedance varia- 
tion of the memristor and the varying mobility of the doped region of the memristor in different circuit parameters. Fi- 
nally, a periodic memristor-based system driven by another chaotic memristor-based fractional order system is syn- 
chronized to chaotic state via the linear error feedback technique.  
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1. Introduction 

Since professor Chua predicted the fourth basic element 
“memristor” [1], it took until 2008 for the element to be 
demonstrated its existence [2]. A memristor device in 
nanotechnology based on TiO2 thin film was imple- 
mented in Hewlett-Packard (HP) labs, followed by sev- 
eral other materials and methods [3-5]. And this kind of 
device may be expected to reform the future computers 
by using it in place of random access memory (RAM). 
After this landmark work [2], the increasing researches in 
this topic from many perspectives such as the nonlinear 
dynamics and chaotic circuit based on memristor, de- 
layed switching in memristor and memristive systems, 
memristive neural networks are emerged in [6-10]. How- 
ever, only a few papers involving the memrisor-based 
fractional order system have been reported so far, and the 
research on synchronization of fractional order memris- 
tive system is even less. For example, a fractional order 
Chua’s circuit with a memristor and a negative conduc- 
tance have been studied in [11], and the synchronization 
based on memristor but limited to integer-order system 
has been investigated in [12] due to its potential applica- 
tions in secure communication. In this paper a new mem- 
ristor-based fractional order system is investigated. Fur- 
thermore, it clearly shows the detailed variation of the 

memristor’s impedance as time goes. Most importantly, 
the synchronization of memristor-based fractional order 
systems is achieved between two systems with different 
nonlinear dynamic properties originally.  

The rest of the paper is organized as follows: in Sec- 
tion 2, a memristor-based fractional order system model 
is depicted. In Section 3, some illustrative examples and 
numerical simulation results are presented. Finally, the 
conclusion is drawn in Section 4. 

2. Model 

Memristor is a nonlinear element. It shows the v-i rela- 
tionship following Ohm’s law, and the equivalent resis- 
tance in HP memristor [10] is depicted by:   

    1ON OFFR H R H D R H D      .     (1) 

where H  denotes the internal state variable (the width 
of doped area in the memristor), and D  denotes the 
whole thickness of the memristor,  is the equiva- 
lent resistance of the memristor with respect to the inter- 
nal variable.   

R H 

In Figure 1, the model is derived from the topology of 
modified Chua’s circuit, where  denotes the con- 
ductance of a negative resistor, and 

G
LR  is a positive 

linear resistor. 
The dynamic in the circuit of Figure 1 is expressed by  *Corresponding author. 
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Figure 1. Schematic of a memristor-based circuit. 
 
the following state equation as Equation (2): 
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where R1(H1), R2(H2) denote the equivalent resistances 
of memristors M1, M2, respectively. And  1S H D , 
 2S H D  are the window functions. There are different 

definitions about the window functions, such as the 
Strukov and collegues’ method [2], the Joglekar and 
Wolf’s method [13] and the Biolek and colleagues’ 
method [14]. We take the third one in this paper [14] (see 
Equation (3)).   

    2
1S H D H D U i         (3) 

where  is a step function.  U 
This paper aims at studying the memristor-based frac-

tional order system. By one of the famous definitions of 
fractional order differential equations—Riemann Liou- 
ville (RL) definition [15], the fractional operater is de- 
scribed as Equation (4):  
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Then Equation (2) based on Figure 1 should be ex- 
tended to the situation of fractional order system.   
Let 
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the memristor-based fractional order system is trans- 
formed into a dimensionless form (5):   
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   (5) 

where the internal state variables h1, h2 of the memristor 
are still postulated as integer order differential equations.  

3. Numerical Simulations 

In this section, by using the approximation of fractional 
operator [16], we work out the solution of the fractional 
order differential Equation (5) in MATLAB. Figure 2 
shows the chaotic dynamic characteristics of the system, 
where Figure 2(a) denotes the three-dimensional (3D) 
phase trace in x1-x2-x3 space of the fractional order sys-
tem, Figure 2(b) denotes the 2D phase plots of the state 
variable x3 vs. x2, Figure 2(c) denotes the time evolution 
curve of state variable x1, Figure 2(d) is the phase plot of 
the state variable x1 vs. h1. We take the common values 
for some parameters in all the following simulations: the 
initial condition    10 20 30, , 0.01,  0.01,  0.01x x x   and 

the initial position of the boundary of memristors 

   0.9910 20, 0.01,h h  , the fractional order  = 0.9, RON 

= 100, v = 10−10, g = −0.0019.   
In Figure 2, the other parameters are: C1 = 0.02, C2 = 

0.01, L = 1800, r = 1425, ROFF = 15,000.  
 

 

Figure 2. The strange attractor and time evolution of frac- 
tional order memristor-based system (5).  
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Figure 3 shows the phase trajectories of the memris- 
tor-based fractional order system in the various parame- 
ters C1, C2, L, ROFF. And in Figures 3(a)-(d), all the 
phase trajectories show the periodic dynamic properties 
of the system.   

Figure 4 shows the time histories of internal state 
variables h1, h2 of memristors M1, M2, and the impedance 
of the memristor M1, where Figures 4(a), (c), (e) and (g) 
show the variations of the doped regions of two memris- 
tors M1, M2 and Figures 4(b), (d), (f) and (h) show the 
variations of the impedance of memristor M1. For the 
clarity of the figure, only the time varying impedance 
R1(h1) is shown in Figures 4(b), (d), (f), and (h). In ad- 
diton to the above-mentioned common parameters, the 
impedance of memristor exhibits various changing trend 
under different circuit parameters.  

From the simulation results, the memristor-based frac- 
tional order circuit shows different dynamical behaviors 
such as periodic and chaotic properties under different 
parameter conditions.   

4. Synchronization 

In this section, the synchronization between two mem- 
ristor-based fractional order systems is discussed. Usu- 
ally, synchronization is achieved to periodic orbit when 
the systems are originally in different periodic or chaotic 
conditions, sometimes they are synchronized to chaos 
when they are originally in different chaotic conditions. 
But here the drive system is assumed to be system (5) 
with the parameters C1 = 0.02, C2 = 0.01, L = 1800, v = 
10−10, g = −0.0019, r = 1425, RON = 100, ROFF = 15,000, 
and the response system is selected to be system  
 

 

Figure 3. The phase trace of memristor-based fractional 
order system in x − y − z phase space with order  = 0.9, the 
initial values: (x10, x20, x30) = (0.01, 0.01, 0.01) and (h10, h20) 
= (0.01, 0.99), v = 10−10, g = −0.0019, r  = 1425, RON = 100 
(Some transient points are ignored). (a) C1 = 0.01, C2 = 0.01, 
L = 1500, ROFF = 10,000; (b) C1 = 0.03, C2 = 0.01, L = 1800, 
ROFF = 15,000; (c) C1 = 0.02, C2 = 0.01, L = 1500, ROFF = 
15,000; (d) C1 = 0.02, C2 = 0.02, L = 1800, ROFF = 15,000. 

   
(a)                            (b) 

C1 = 0.03, C2 = 0.01, L = 1800, r = 1500, ROFF = 15,000 

   
(c)                            (d) 

C1 = 0.02, C2 = 0.01, L = 1800, r = 1425, ROFF = 15,000 

   
(e)                            (f) 

C1 = 0.02, C2 = 0.01, L = 1800, r = 1500, ROFF = 15,000 

   
(e)                            (f) 

C1 = 0.01, C2 = 0.01, L = 1800, r = 1500, ROFF = 15,000 

Figure. 4 The time histories of doped regions and im- 
pedances of the memristors in fractional order system with 
order  = 0.9, the initial values: (x10, x20, x30) = (0.01, 0.01, 
0.01), and (h10, h20) = (0.01, 0.99).  
 
(5) with the parameters in C1 = 0.03, C2 = 0.01, L = 
1800, v = 10−10, g = −0.0019, r = 1425, RON = 100, 
ROFF = 15,000. That means the drive system is in cha-
otic state (see Figure 5(a)) and the response system 
displays periodic dynamics (see Figure 5(b)) when 
without control. Now the linear feedback control scheme 
is applied between these two systems as described by 
Equation (6). Figures 5(c) and (d) show that these two 
systems are finally synchronized to the chaotic state. 
The largest synchronization errors of three state variables 

 1 1 2 2 3 3
, ,y x y x y xe e e    are less than 0.18, 3 × 10−5, 9 ×  

10−6 while the control gain coefficients k1, k2, k3 are taken  
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Figure 5. The synchronization of two memristor-based frac- 
tional order systems.  
 
the values −40, −30, −10, respectively. And the largest 
synchronization errors are less than 0.035, 5 × 10−7, 8.5 × 
10−7 while k1, k2, k3 are −200, −200, −20, respectively. 
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 (6) 

where h11, h21 are the relative doped widths of two mem- 
ristors for the drive system, and h12, h22 denote the rela-
tive doped width of two memristors for the response sys-
tem, respectively as shown in Figure 6.  

5. Conclusion 

In this paper, a generalized fractional order system model  

 

Figure 6. The synchronization errors of state variables 
between two memristor-based fractional order systems. 
 
with two dispersedly distributed memristors is discussed. 
By varying the parameters of the circuit, different phase 
trajectories and time evolutions of state variables are 
observed. Also, it shows the correspondence between the 
mobility of the doped region and the time-varying im- 
pedance of the memristor in a series of circuit parameters. 
Simulation results verify the rich dynamic characteristics 
of the memristor-based fractional order system. Finally, 
two memristor-based fractional order systems originally 
in obviously different dynamic characteristics are syn- 
chronized. The next work is to study the circuit imple- 
mentation and application in secure communication of 
the memristor-based fractional order system.  
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