
Int. J. Communications, Network and System Sciences, 2011, 4, 111-121
doi:10.4236/ijcns.2011.42014 Published Online February 2011 (http://www.SciRP.org/journal/ijcns)

Copyright © 2011 SciRes. IJCNS

A Novel Symbolic Algorithm for Maximum Weighted
Matching in Bipartite Graphs*

Tianlong Gu, Liang Chang, Zhoubo Xu
School of Computer Science and Technology, Guilin University of Electronic Technology, Guilin, China

E-mail: gu@guet.edu.cn
Received December 2, 2010; revised January 17, 2011; accepted January 20, 2011

Abstract

The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimiza-
tion problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or alge-
braic decision diagram (ADD) or variants thereof provides canonical forms to represent and manipulate
Boolean functions and pseudo-Boolean functions efficiently. ADD and OBDD-based symbolic algorithms
give improved results for large-scale combinatorial optimization problems by searching nodes and edges im-
plicitly. We present novel symbolic ADD formulation and algorithm for maximum weighted matching in
bipartite graphs. The symbolic algorithm implements the Hungarian algorithm in the context of ADD and
OBDD formulation and manipulations. It begins by setting feasible labelings of nodes and then iterates
through a sequence of phases. Each phase is divided into two stages. The first stage is building equality bi-
partite graphs, and the second one is finding maximum cardinality matching in equality bipartite graph. The
second stage iterates through the following steps: greedily searching initial matching, building layered net-
work, backward traversing node-disjoint augmenting paths, updating cardinality matching and building re-
sidual network. The symbolic algorithm does not require explicit enumeration of the nodes and edges, and
therefore can handle many complex executions in each step. Simulation experiments indicate that symbolic
algorithm is competitive with traditional algorithms.

Keywords: Bipartite Graphs, Weighted Matching, Symbolic Algorithm, Algebraic Decision Diagram (ADD),

Ordered Binary Decision Diagram (OBDD)

1. Introduction

The matching problems find their applications in many
settings where we often wish to find the proper way to
pair objects or people together to achieve some desired
goal. The matching problems are classified into maxi-
mum cardinality matching in bipartite graphs, maximum
cardinality matching in general graphs, maximum weighted
matching in bipartite graphs, and maximum weighted
matching in general graphs [1,2]. The first is looking for
a matching with the maximum edges, in which nodes are
partitioned into boys and girls, and an edge can only join
a boy and a girl; The second is the asexual case, where
an edge joins two persons; In the third, we still have
nodes representing boys and girls, but each edge has a
weight associated with it. Our goal is to find a matching

with the maximum total weight. This is the well-known
assignment problem of assigning people to jobs and
maximizing the profit; The fourth is obtained from the
first one by making it harder in both ways.

Formally, a bipartite graph is a graph  ,G U V E 
in which U V  , U V n  , and E U V 
E m . A matching in G is a subset of edges, M E ,

such that each node in is an endpoint of at most
one edge in M. The cardinality

U V
M of a matching M is

the number of edges in M. A matching which contains a
maximum number of edges is called the maximum-car-
dinality matching. A weighted bipartite graph is a graph

 , ,V E WG U 

e E

, where (non-negative
real number) is a weight function, by which each edge

:W E  R

 is associated with a weight . The weight of a
matching M is the sum of the weights of edges in the

w e
*This work was supported in part by National Natural Science Founda-
tion of China (60963010, 60903079) and Key Natural Science Founda-
tion of Guangxi Province (0832006Z).

matching, i.e.,   e M
w M w e


   . Maximum weighted

matching problem in bipartite graphs is finding a match-

mailto:gu@guet.edu.cn

T. L. GU ET AL. 112



ing with the maximum weight or a maximum-cardinality
matching with the maximum weight. In this paper, we
consider the latter case. The classical Hungarian method
was invented by Kuhn [3], which solves maximum
weighted matching problems in strongly polynomial time
of . It was revised by Munkres, and
has been known since as the Hungarian algorithm or the
Kuhn-Munkres algorithm (KMA) [1,4]. Under the as-
sumption of integer weights in the range

O logn m n n

 ,C C , Ga-
bow and Tarjan used cost scaling and blocking flow tech-
niques to obtain an   O l time algorithm

[5]. Algorithms with the same running time bound based
on the push-relabel method were developed by Goldberg,
Plotkin, Vaidya, Orlin and Ahuja [6,7]. Goldberg and
Kennedy implemented the scaling push-relabel method
in the context of assignment problems, known as cost
scaling algorithm (CSA) [8], which is very competitive
for practical use.

ogn m nC

Finding maximum weighted matching in bipartite
graphs is one of typical combinatorial optimization pro-
blems, where the size of graphs is a significant and often
prohibitive difficulty. This phenomenon is known as
combinatorial state explosion, resulting in that large
graphs cannot be stored and operated on even the largest
contemporary computers. In recent years, implicitly
symbolic representation and manipulation technique,
called as symbolic graph algorithm or symbolic algorithm
[9,10], has emerged in order to combat or ease combina-
torial state explosion. Typically, ordered binary decision
diagram (OBDD) or algebraic decision diagram (ADD)
or variants thereof are used to represent the discrete ob-
jects. Efficient symbolic algorithms have been devised
for hardware verification, model checking, testing and
optimization of circuits [9-13]. Hachtel and Somenzi
developed OBDD-based symbolic algorithm for maxi-
mum flow in 0-1 networks that can be applied to very
large graphs (more than 1036 edges) [14]. Bahar et al.
present Algebraic Decision Diagram (ADD) to support
algebraic and arithmetic operations on the general ob-
jects, and develop the symbolic algorithms for matrix
multiplication, all-pair shortest path and timing analysis
of combinational circuits [15]. Gu and Xu presented the
symbolic ADD (Algebraic Decision Diagram) formula-
tion and algorithms for maximum flow problems in gen-
eral networks [16]. Symbolic algorithms appear to be a
promising way to improve the computation of large-scale
combinatorial optimization problems through encoding
and searching nodes and edges implicitly. Our contribu-
tion is to present the symbolic algorithm for maximum
weighted matching in bipartite graphs.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some backgrounds regarding maxi-
mum weighted matching in weighted bipartite graphs;

Section 3 presents the symbolic formulations for weighted
bipartite graphs and maximum weighted matching prob-
lems; In Section 4, we give the symbolic formulations
for weighted bipartite graphs and maximum weighted
matching problems; Section 5 presents the symbolic
ADD algorithm; In Section 6, some experimental results
and analysis are provided; The last section gives some
conclusions.

2. Backgrounds

A bipartite graph  ,G U V E  is a graph whose node
set can be partitioned into two non-empty disjoint groups
U and V such that every edge of the graph is incident on
at most one node from each group. A matching M of G is
a subset of edge set E such that no two elements of M are
incident to the same node. A perfect matching is a
matching M in which every node is adjacent to some
edge in M. We refer to the edges in M as matched edge,
and edges not in M as unmatched or free edges. We also
refer to a node w as matched node with respect to a
matching M if there is an edge in M incident to node w,
and it is called free or unmatched otherwise. For a
matched node u the unique node v connected to u by a
matching edge is called the mate of u. The cardinality
M of a matching M is the number of edges in M. A

matching which contains a maximum number of edges is
called a maximum-cardinality matching.

A simple path p in G is called an alternating path with
respect to the matching M if the edges in p are alternately
in M and not in M. We refer to an alternating path as an
even alternating path if it contains an even number of
edges and an odd alternating path if it contains an odd
number of edges. An odd alternating path with respect to
a matching M is called as an augmenting path if the first
node and last node in the path p are unmatched or free.

This particular structure of bipartite graphs can be
used in developing the algorithms. We can direct all un-
matched edges from U to V and all matched edges from
V to U, and refer to the directed bipartite graph
 ,U V E as a residual network with respect to bipar-
tite graph G and matching M. On the directed view, the
existence of an augmenting path is then tantamount to
the existence of a path from a free node in U to a free
node in V. Also, augmenting by a path p is trivial. One
simply reverses the direction of all edges on the path.
Observe that this correctly records that the endpoints of p
are now matched and that M is replaced by  M E p .

Property 1 If p is an augmenting path with respect to a
matching M, then     M E p M E p    E p

M is also a matching of cardinality |M| + 1. Moreover,
in the matching  M E p , all the matched nodes in M
remain matched, and two additional nodes, namely the

Copyright © 2011 SciRes. IJCNS

T. L. GU ET AL. 113

first and last nodes of p, are matched.

Property 2 If 1 2M M holds for two matchings
M1 and M2 of G, then there are  2 1d M M  aug-
menting paths with respect to M1 in G, and the paths are
node-disjoint.

Property 2 guarantees the existence of many augment-
ing paths when current matching is still far from optimal-
ity, and suggests organizing many node-disjoint aug-
menting paths in each execution. In this regard, layered
networks are usually constructed. In a layered network
the nodes of a graph are partitioned into layers according
to their distance with respect to the starting layer, i.e., a
node w belongs to layer k if there is a path from the
starting layer to w consisting of k edges and there is no
path with fewer edges. For any edge in a layered network
the distance of the target node is at most one more than
the distance of the source node. The construction of the
layered network begins by putting all free nodes in U
into the zeroth layer, and then proceeds by breadth-first
search. The first layer is completed that contains free
nodes in V, and the second layer contains free nodes in U
and so on. Only edges that connect different layers can
be contained in shortest augmenting paths, and the lay-
ered network contains all augmenting paths of shortest
length.

A weighted bipartite graph is a graph  , ,G U V E W 

e E

,
where (non-negative real number) is a
weight function, by which each edge is associ-
ated with a weight The weight of a matching M is
the sum of the weights of edges in the matching, i.e.,

e M
. A maximum weighted matching is

a perfect matching with the maximum weight.

:W E R

w e


 

 w e .

 w M

In a weighted bipartite graph , a
node labeling is defined by the labeling function

, and a feasible labeling is one such that

 , ,G U V E W  

l

:l U V R 

     , , ,l u l v w u v u U v V     (1)

With respect to a feasible labeling l, the equality bi-
partite graph is referred as

 ,lG U V E  (2)

where

        , ,lE u v E l u l v w u v    (3)

Property 3 (Kuhn-Munkres theorem) If l is feasible
and M is a perfect matching in El then M is a maximum
weight matching.

The Kuhn-Munkres theorem transforms the problem
from an optimization problem of finding a maximum
weight matching into a combinatorial one of finding a
perfect matching. Thus, the Hungarian algorithm is de-
vised by starting with any feasible labeling l and some
matching M in El. and repeating the following while M is

not perfect:
1) Find an augmenting path for M in El;
2) If no augmenting path exists, improve l to l such

that E El l  ; Go to 1).
Note that in each step of the loop we will either be in-

creasing the size of M or El so this process must termi-
nate. Furthermore, when the process terminates, M will
be a perfect matching in El for some feasible labeling l.
Hence, M will be a maximum weight matching.

3. Symbolic Formulation

An ordered binary decision diagram (OBDD) [6,7] pro-
vides compact, canonical and efficiently manipulative
representation for Boolean functions. The OBDD for a
non-constant Boolean function f is a directed acyclic
graph  ,G V E . It includes sink or terminal nodes ‘0’
and ‘1’, which represent constant Boolean functions 0
and 1. These nodes have no descendants. All other nodes
v V include a labeled variable , and have two
out-going edges of then and else cofactors drawn as solid
and dash lines. The nodes are in one-to-one correspon-
dence with Boolean functions. The function

 l v

 f v of a

node v V is specified as   else
l v f v l v f v     ,

where “” and “+” denote Boolean conjunction and dis-
junction respectively, and

then
 and  f v  f v

else
 are

the functions of the then and else children. The root node
of an OBDD represents the function f. The variables in
an OBDD are ordered, i.e., if v is a descendant of u,
which means  ,u v E , then , and all the
paths in the OBDD keep the same variable ordering.

 l u  l v

Given a Boolean function and any assignments to its
variables, the function value is determined by tracing a
path from the function node to a terminal node following
the appropriate branches. The branches depend on the
variable value of the assignments, and the function value
under the assignments is determined by its path’s termi-
nal or sink node.

For example, Figure 1 shows the binary tree and the
OBDD for Boolean function 1 3 2 3f x x x x    , where

1 2 3x x x  . It is obvious that the OBDD is a directed
acyclic graph, and stores the same information in a more
compact way. We trace the path , and
reach the sink node 0. Thus, the value of Boolean func-
tion 1 3 2 3f x x x x    of variable assignment (0,1,0) is 0.

A set is a non-order collection of elements with any
specified properties. A set is perhaps the most funda-
mental mathematical abstraction and can be seen as a
generic concept to build various representations of dis-
crete objects. We can convert a set S to an OBDD by
encoding the elements of S with a length-n binary num-
ber, where  2logn S   

. The encoded element in S

corresponds to a vector of binary variables  1, , nx x x  .

Copyright © 2011 SciRes. IJCNS

T. L. GU ET AL. 114

(a) Binary tree (b) OBDD

Figure 1. OBDD for Boolean function f = x1x3 + x2x3.

Thus, a set S can be formulated by the following Boolean
characteristic function:

  1 2S s ss S
f x sn 


     (4)

where sk is the appearance of variable xk correspond-
ing to k bit code of the s-th element of set S. Set opera-
tions can be reduced to the operations on Boolean char-
acteristic functions as follows:

union of sets:      A B A Bf x f x f x  

intersection of sets:     A B A B f x f x f x  

difference of sets:       A B A Bf x f x f x
 

A relation is a set of ordered pairs. Given a relation R
from A to B, we can formulate the relation as an OBDD
by encoding the elements of A with a length-n binary
number and the elements of B with a length-m binary

number, where  2logn    A and  2logm B    .

The encoded element in A corresponds to a vector of
binary variables  1, , n x x x  , and the encoded ele-
ment in B to a vector of binary variables  1, , m y y y  .
Therefore, a pair (a, b) in R can be formulated by the
following Boolean characteristic function:

    1 2 1 2, , a a an b b bma bf x y               (5)

where ak is the appearance of variable kx corre-
sponding to k bit code of element , and ika A  the
appearance of variable corresponding to k bit code
of element . If , then

ky
1ik b B x ik kx  , else

ik kx  . Similarly, If , then 1iky  ik ky  , else

ik ky  . The relation R can be formulated as:

 

   

11 12 1 11 12 1

1 2 1 2

1 2 1 2

,R n

k k kn k k km

r r rn r r rm

k ik k jki j

f X Y m     
     
     

 

        

        

       

    

 
 
 




 (6)

where ik is the appearance of variable xk correspond-
ing to k bit code of the i-th element of set A, and ik the
appearance of variable yk corresponding to k bit code of
the j-th element of set B. If , then 1ikx  ik kx  , else

ik kx  . Similarly, If , then 1iky  ik ky  , else

ik ky  .
These characteristic functions are of Boolean func-

tions, and can be compactly represented by OBDDs. For
example, the characteristic functions of set  ,c,da,bA 
and set  1,5,7B  are derived by encoding  a 000 ,

 b 001 ,  c 01 0 , d = [011],  1 , 100  5 101
and  7 110 :

 A 1 2 3 1 2 31 2 3 3 1 2f x x x x x x x x x    x x x x           

 B 1 2 3 1 21 2 3 3f x x x x x x x xx x          

  1 2 3 3 1 2 2 3

1 2 3 3 1 2

x x x x x x x x

x x x x x x

  1 2

1 2

x x x

x x

  3 1

3

x x

x

 A Bf       

     

  

  

  



The characteristic function of relation R = {(a,1), (a,5),
(b,1), (b,7), (c,1), (c,5), (d,7)} is derived by encoding

 a 00 ,  b 01 ,  c  10 , d  11 ,  1 00 ,  5 01
and  7  10 :

 R 1 2 1 2 1 2 2

1 2 1 1 2 2

1 2 1

1 2

2 1 2

2

1 2 1

1 2 1

f x x x y y y y yx x x x y

x x y y y y

x x y y

x x y x x y

                  

          
   
     

The OBDDs for these characteristic functions are
shown in Figure 2.

An algebraic decision diagram (ADD) [12] is a variant
of OBDD, representing pseudo-Boolean functions

 : 0,1
n

f C , where S is the finite carrier of the alge-
braic structure. The only difference of an ADD from an
ODD is that each terminal node of an ADD represents
constant function corresponding to the finite carrier.
When the finite carrier is set to , an ADD is
reduced to an OBDD. For example, 1 2 1 2

0,C  1
2f x x  y y ,

where 1 2 1 2x x y y   . Figure 3 shows the complete
binary tree and the ADD for f. We can also see that the
ADD for f is a directed acyclic graph that stores the same
information in a more compact way.

ADDs are a natural symbolic representation of matri-
ces since every r  s matrix W can be represented by a
pseudo-Boolean function fW(x, x):

Figure 2. OBDD formulation of sets and relation.

Copyright © 2011 SciRes. IJCNS

T. L. GU ET AL. 115

(a) Binary tree

(b) ADD

Figure 3. ADD for pseudo-Boolean function f = x1x2+2x3x4.

 

   

W 11 11 12 1 11 12 1

1 2 1 2

1 2 1 2

ij1,2, , 1,2, ,

1,2, , 1,2, ,

, n m

ij i i in j j jm

rs r r rn s s sm

i r j s

k n ik l m jl

f x y w

w

w

w

     
     

     

 
 

 

         

         

        



   

  

 

 
 
 




 (7)

where ij is the element at the i-th row and the i-th
column in matrix W;

w

ik is the appearance of variable

kx corresponding to k bit code of i , and  2logn   r

il the appearance of variable yk corresponding to l bit

code of j . If , then  2logm s   1ikx  ik kx  , else

ik kx  . Similarly, If ，then 1iky  ik ky  , else

ik ky  .
For example, the following 4  4 matrix

6 6 3 3

2 0 2 2
W =

4 4 3 0

2 2 3 3

 
 
 
 
 
 

can be represented symbolically by encoding row num-
ber as 00,01,10 and 11, and column number as 00,01,10
and 11. Its pseudo-Boolean function fW(x,y) can be de-
rived from Equation (7):

 W 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1

1 2 1

, 6 6 3

3 2 2

2 4 4

3 2 2

3

The ADD for this matrix is drawn in Figure 4.
Given a weighted bipartite graph ,

we can encode the nodes of G with a length-n binary
 , ,G U V E W 

number, where  2 2max log , logn U V        , and rep-

resent the nodes in U as a vector of binary variables
 1, , nx x x  , and the nodes in V as a vector of binary

variables  1, , ny y y . The edge  ,u n be for-
mulated by a binary vector    1 1, , , , , ,n n

v E ca
x y x x y y   ,

where x = encoded    1, , nx and y = encoded u x 
   y1 are the binary encodi
v respectively. In terms of Equations (4) (6) and (7), the
Boolean or pseudo-Boolean characteristic functions of its
elements can be developed, and denoted by s(x), t(y), E(x,
y) and W(x, y) for node set U, node set V, edge set E and
weight function W respectively.

1,

, , nv y  ng of node u and

    ,

0 , otherwise

x en coded u u U
s x  




 (8)

 (9)    1, ,

0 , otherwise

y encoded v v V
t y

 
 


 
     

,

1, , , ,

0, otherwise

E x y

x encoded u y encoded v u v E



  



 (10)

 
        
,

, , , , ,

0, otherwise

W x y

w u v x encoded u y encoded v u v E



   



(11)

For example, Figure 5 illustrates a weighted bip
gr

erty of OBDDs or ADDs is that
th

artite
aph, whose weight function or edge weights are speci-

fied in the weight matrix. Nodes in U can be encoded by
(00, 01, 10, 11) and nodes in V can be encoded by (00,
01, 10, 11). In terms of Equations (10) and (11), OBDD
for E(x, y) and ADD for W(x, y) are developed and
shown in Figure 5.

An important prop
ey are a canonical representation of Boolean functions

or pseudo-Boolean functions. Canonicity means that for
a Boolean function or pseudo-Boolean function f and

2

2

2

f x y x x y y x x y y x x y y

x x y y x x y y x x y y

x x y y x x y y x x y y

x x y y x x y y x x y y

x x y

                    

                
              

               
    2 1 2 1 23y x x y y    


 

Figure 4. Representing a matrix by ADD.

Copyright © 2011 SciRes. IJCNS

T. L. GU ET AL. 116















Figure 5. Symbolic representation of a weighted bipartit

ariable ordering , there is a unique OBDDs or ADDs,

ipartite graph
or

 (12)

subject to:



e
graph.

v
and vice versa. It is more important that many operations
of Boolean functions or pseudo-Boolean functions can be
implemented efficiently through graphical manipulations
of OBDDs or ADDs.

Given a weighted b  , ,G U V E W 
), E(x,y), W(x,y)), its symbolic formulation (s(x), t(y

finding the maximum weighted matching M(X, Y) in bi-
partite graphs is formulated as follows:
max:

   
 , 0,1

, ,
nx y

W x y M x y




   
 

  
 

   
 

   

0,1 0,1

0,1

, ,

, 1

, ,

n n

n

y y

x

M x y s x M y x t y

M x y t y

M x y E x y

 



  

 









 (13)

iven the symbolic representation (s(x),t(y),E(x,y),W(x,y))

 Hungarian
al

.1. Building Equality Bipartite Graphs

iven a weighted bipartite graph with a feasible labeling

4. Symbolic ADD Algorithm

G

of a weighted bipartite graph  ,G U V E  , the pseu-
do-code of the symbolic ADD alg maximum
weighted matching is presented in Figure 6.

The symbolic algorithm implements the

orithm for

gorithm in the context of ADD and OBDD formulation
and manipulations. It begins by setting feasible labelings
of nodes and then iterates through a sequence of phases.
Each phase is divided into two stages. The first stage is
building equality bipartite graphs, and the second one is
finding maximum cardinality matching in equality bipar-
tite graphs. The second stage iterates through following
steps: greedily searching initial matching; building lay-
ered network, backward traversing node-disjoint aug-
menting paths, updating cardinality matching and build-
ing residual network. The second stage terminates and
returns the maximum cardinality matching when there
does not exist any augmenting path of equality bipartite
graph. The symbolic algorithm stops and returns the
maximum weighted matching when there does not exist
any augmenting path in weighted bipartite graph.

4

G
l, represented as ((s(x),t(y),E(x,y),W(x,y)), l(x), l(y)), we
define two U V auxiliary matrices: the first one is
developed by ing the vector of l(y) column by col-
umn, and the second one is created by arranging the
vector of l(x)T rank by rank. We denote them by corre-
sponding characteristic functions Al(y)(x,y) and Al(x)(x,y).
The equality bipartite graph is built as follows:

   

 arrang

       
    

     
           

1 , , 0 ;

, 1 , , ;

, ; ,

l y l x

l

l l

temp x y temp x y

E x y temp x y E x y

A x s x E x y B y t y E x y

 

 

   

, , , ,temp x y W x y A x y A x y   ;

 (14)

The equality bipartite graph is represented as (A(x),
B(

date a feasible labeling l, we introduce
th

y), El(x,y)), in which A(x) and B(y) are the disjoint
node sets, and will be utilized to control the progress of
searching direct matching and building layer networks in
the later phases.

In order to up
e neighbor of u U and set 1U U :

    ,N u v V u u v E  ,l lU ,

   1 1l u U lN U N u 

They can be comput nd represented by the follow-
in

ed a
g characteristic functions:

    N x x  
   1 1

, ,l l

l lx X

E y x

N X N x


 
 (15)

Copyright © 2011 SciRes. IJCNS

T. L. GU ET AL.

Copyright © 2011 SciRes. IJCNS

117




Figure 6. Pseudo-code for symbolic algorithm.

Then, a feasible labeling l is updated by the following
feasible labeling l:


 (16)

4.2. Searching Matching through Proximity

In order to obtain matching directly, we adopt a proximity
function 
first ar
the nodes to be compared. For every choice of base X, 
returns 1 if the second argument precedes the third one,

Functions

        ,α min , ,
ll u S v N S l u l v w u v   

 l s          , , : 0,1 0,1 0,1
n n n

x y z  
gument is the base, and two other argument

0,1 . The
s are      

 

1

1

 otherwise

l

l l

s U

l s l s s N U

l s

  



T. L. GU ET AL. 118

Tw ristic functions are used in the sym-
olic algorithm. The first one, relative proximity heuris-

else return 0.
o different heu

b
tic function, is  R , ,x y z y x z x     , where

1

0

2i i
i

x y x y


   . The second is  
n

i


D , ,x y z 

 y z , called as datum proximity heuristic function
that is a special case of relative proximity heuristic func-
tion independent of the base and simply returns the result
of testing y z . Both proximity functions can be
represented by BDDs of size linear in n [14].

We obtain a graph (s(direct matching of bipartite x),
t(x), E(x, y)) by the fo n: llowing computatio

   
   
, , ((,) (, ,)) ;Q x y E x y z E x z x z y

, , ((,) (, ,))MP x y Q x y z Q z y y z x  
 (17)

The edges in Q(x,y) form a right-unique relation, i.e.,
there is at most one edge out of each node x. MP(x,y) is a
left-unique subset of Q(x,y), and consists of

  

 the bipartite
graph in Figure 7(a) using relative proximity function
and datum proximity function respectively. Th
imity functions are also applied in finding node-disjoint
au

 edges that
share no end nodes. For example, Figures 7(b) and (c)
show the initial matching (darkened lines) of

e prox-

gmenting paths. We will discuss it below.

4.3. Building Layered Network

On finding the initial matching, we need to build a lay-
ered network so as to obtain node-disjoint augmenting
paths. We initialize layer zero by nodes layer(0) of un-
matched nodes in s(x) and outgoing edges    0 ,U x y of
unmatched edges from layer(0). On odd layer  2 1i  ,

odes layer  2 1i  are target-nodes from edgesn 2U  i 

 (x,y), and outgoing edges  U 

atched edges from layer 
 2 1 ,i y x include the

m 2 1i  . Even layer 2i has
nodes layer(2i) of target-nodes from edges    2 1 ,iU y x
and outgoing edges    

ork. It is

2 ,iU y x of unmatched edges
from layer(2i). A layered network is created by for-
ward-breadth-first traversing residual netw im-
plemented by the following computations:

     
   

       
        

        
         

         

0

2

2 1

2 1

2

, , , ;

0 ;

, 0 , ;

2 1 , ; 0,1, 2,

, 2 1 , ; 0,1, 2

2 , ; 1

, 2 , . 1, 2,

i

i

i

i

P x y E x y M x y

layer A x

U x y layer P x y

layer i x U x y i

U y x layer i M y x i

layer i y U y x i

U x y layer i P x y i






,

, 2,

 



 

   

   

  

  









(18)

4.4. Backward Traversing Node-Disjoint

Augmenting Paths

Once a layered network is constructed, we go through a
series of steps to find node-disjoint augmenting p
Supposed that the top layer of layered network with k = 2l
layers satisfies

aths.

     ,kU x y B y != 0, i.e.,  2 1layer l 
ild node-

m unmatched
   ,l x y :

will have un proceed to bu
disjoint augm ward fro

s dges

matched nodes, we
enting paths back
 ,y x and matched eedge  lRM RP

         
   

Figure 7. Finding direct matching by proximity function.

          
 

21 , , ;

2 ,

l l

l

RM x y U x y B y

x y

 



 
          

            

              

2 1

1 , 1 , , , ;

,

2 , 2 , , , ;

1 , , (,

l l

l

l l

l l l

RM x y z RM x z x z y

RM x y

RM x y z RM z y y z x

RP y x RM x y U y

 



 



RM

              

) ;

2 , 1 , 1 , , , ;

, 2 , 2 , , ,

l l l

l l l

y x

RP y x RP y x z RP y z y z x

RP y x RP y x z RP z x x z y

 

  

  
(19)

Backward breadth-first traversing is implemented by the
following computations (where i = (l – 1), (l – 2),…,2, 1.):

            
   

          
   

          
              
              

              

1 21 , , , ;

2 ,

1 , 1 , , , ;

,

2 , 2 , , , ;

2 , 1 , 1 , , , ;

, 2 , 2 , , ,

i i i

i

i i

i

i i

i i i

i i i

RM x y x RP y x U x y

RM x y

RM x y z RM x z x z y

RM x y

RM x y z RM z y y z x

RP y x RP y x z RP y z y z x

RP y x RP y x z RP z x x z y

  



 



 

  

  

(20)

2 11 , , , ;i i iRP y x y RM x y U y x  

Copyright © 2011 SciRes. IJCNS

T. L. GU ET AL. 119

This process terminates by computing

resulting in node-disjoint

   0 ,RM x y ,

 ,MP x y and  ,RP x y
enting paths

.
Proximity functions guarant gm
are node-disjoint and have the shortest length.

ee that the au

              
   

          
   

          

0 1 0

0

0 0

0

0 0

1 , , ,

2 ,

1 , 1 , , ,

,

2 , 2 , , ,

RM x y x RP y x U x y

RM x y

RM x y z RM x z x z y

RM x y

RM x y z RM z y y z x

  



 



 

 (21)

,

     

  

, ,
l

i

i

RP x y RP x y

  
0

,
l

i

1i

MP x y y


 

RM x

 
) (22

4.5. Updating Cardinality Matching and
Building Residual Network

Matching is updated by adding unmatched edges  ,MP x y

de-dand deleting matched edges of no
augmenting paths:

  ,RP x y isjoint

       , , , ,M x y M x y MP x y RP x y   (23)

The algorithm is continued by searching residual net-
work repeatedly till there is no augmenting path. A re-
sidual network is symbolically formulated by  A x ,

 and  B y ,  ,P x y  ,M y x :

        
        

, ;

, ;

     , , ,

A x s x y M x y

B x t x x M x y

  

  

P x y E x y M x y 

nce the symbolic algorithm is based

 (24)

Si on ADD and
rtices are

e edge-
ss, the sym

e framework of Kuhn-Munkr
rithm, and we can make a claim that its time co

is

OBDD formulations and operands, edges or ve
enumerated implicitly, and th disjoint paths are
traced in parallel. Neverthele bolic algorithm
is developed in th es algo-

mplexity
   3

max ,O U V .

5. Experimental Results

The symbolic algorithm proposed in this paper has been
implemented in windows 2000 and soft
CUDD [17]. Two groups of experiments
In both cases, CPU time is in second on a P4 1500 MHz
wi

nts, we choose randomly generated graphs with 2500
des and different ranges of edge weights, and our

d to CSA algorithm. The
ure 8.

ware package
are conducted.

th 128 MB of memory.
In the first group of experiments, the symbolic algo-

rithm (SA) is compared with KMA and CSA algorithms
[3]. We choose randomly generated graphs with different
numbers of nodes and edges. Random graphs are very
close to worst cases for symbolic algorithms. The results
are shown in Table 1. In the second group of experi-
me
no
symbolic algorithm is compare
running times are plotted in Fig

Both the symbolic algorithm and traditional algo-
rithms utilize the input of normal weighted bipartite
graph  , ,U V E W . The SA package calls the CUDD
library to create the symbolic formulation (s(x), t(y),
E(x,y), W(x,y)) and implement Kuhn-Munkres algorithm.
The traditional algorithms are implemented using LEDA
package [18].

Both groups of experiments indicate that symbolic al-
gorithm outperforms both KMA and CSA algorithms,
especially on dense and large random graphs. It can also
be observed that the running times of our symbolic algo-
rithm increase as the ranges of edge weights increase.

6. Conclusions

We present an algorithm for finding the maximum wei-
ghted matching in bipartite graphs. The algorithm is
symbolic and does not require explicit enumeration of

Table 1. Comparison of symbolic algorithm with KMA and
CSA algorithms.

nodes
ranges of
edges weight SA (sec) KMA (sec) CSA (sec)

1000 [0, 20] 1.734 2.132 2.012

1000 [0, 50] 1.815 2.512 2.235

2000 [0, 20] 10.324 18.142 14.254

2000 [0, 50]

2000 [0, 100]

11.312 30.154 24.087

13.041 50.074 35.247

2400 [0, 20] 14.354 41.241 34.358

19.326 96.021 72.054

 4 7

 5 1 8

 out out

3000 [0, 150] 19.627 Memory out Memory out

2000 [0, 200] 44.864 70.587 54.145

2000 [0, 300] 48.254 102.031 85.248

2400 [0, 50] 16.578 78.324 56.458

2400 [0, 100]

2400 [0, 200] 35.781 213.012 165.612

2400 [0, 300] 60.354 367.15 268.31

2400 [0, 500] 300.02 575.92 403.24

3000 [0, 50] 18.241 Memory Memory

Copyright © 2011 SciRes. IJCNS

T. L. GU ET AL. 120

Figure 8. Comparison of symbolic algorithm to CSA for
graphs with varying ranges of edge weights.

the nodes and edges of the graphs. The main idea is to
manipulate implicitly sets of edge-disjoint augmen
paths, in which the disjointness is enforced with the
of priority functions. Since all paths in a maximal edge-
disjoint set are traced in parallel, the algorithm can han-
dle much larger graphs than it was previously possibl
should be stressed that algorithms that explicitly enumer-
ate edges or vertices cannot be applied to very large p
lems. We have also shown that the algorithm is competi-
tive with traditional algorithms on dense random graphs.

Several aspects of the work we have presented require
further investigation. We should be able to furthe
prove performance by applying more sophisticated OBDD

 to the a

, No. 5, 1989, pp. 1013-1036. doi:10.1137/
0218069

g, S. A. Plotkin and P. M. Vaidya, “Sub-
allel Algorithms for Matching and Related

-

n Manipulation,” IEEE Transactions on Computer,

ary Decision Diagrams,” ACM Computing Sur-

, pp. 509-516.

3/A:1008651924240

23/A:1008699807402

, pp. 799-816. doi:10.101

Pro

the

ting
help [8] A. V. Goldberg and R. Kennedy, “An Efficient Cost

Scaling Algorithm for the Assignment Problem,” Ma-
thematical Programming, Vol. 71, No. 2, 1995, pp. 153

e. It
178. doi:10.1007/BF01585996

[9] R. E. Bryant, “Graph-Based Algorithms for Boolean
Functio

rob-

Vol. 35, No. 8, 1986, pp. 677-691.

r im- veys, Vol. 24, No. 3, 1992, pp. 293-318.

and ADD techniques (e.g., variable ordering, caching).
More important, we should be able to deal with substan-
ially larger graphs. Further enhancementst lgo-

doi:10.1109/TC.1978.1675141

[12] D. Sieling and R. Drechsler, “Reduction of OBDDs in
Linear Time,” Information Processing Letters, Vol. 48,
No. 3, 1993, pp. 139-144. doi:10.1016/0020-0190(93)90
256-9

rithm may come from improved priority functions. We
have chosen path augmentations as the basis of our algo-
rithm. Whether efficient symbolic versions of preflow-
based algorithms can be found remains an interesting
open question. Another open question concerns the com-
plexity of the algorithm. In particular, a characterization
only in terms of worst-case run times is unsatisfactory
for symbolic algorithms. We are also working on ex-
tending our algorithm to general graphs. Moreover, it is
clear that the principles behind the symbolic matching
algorithm can be applied to many other problems in var-
ious areas.

7. References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Network

Flows: Theory, Algorithms, and Applications,” Pearson

Education Inc., Prentice Hall, Englewood Cliffs, 1993.

[2] Z. Galil, “Efficient Algorithm for Finding Maximum
Matching in Graphs,” ACM Computing Surveys, Vol. 18,
No. 1, 1986, pp. 23-37. doi:10.1145/6462.6502

[3] H. W. Kuhn, “The Hungarian Method for Assignment
Problem,” Naval Research Logistics Quarterly, Vol. 2,
No. 1-2, 1955, pp. 83-97. doi:10.1002/nav.3800020109

[4] J. Munkres, “Algorithms for Assignment and Transporta-
tion Problems,” Journal of SIAM, Vol. 5, No. 1, 1957, pp.
32-38.

[5] H. N. Gabow and R. E. Tarjan, “Faster Scaling Algo-
rithms for Network Problems,” SIAM Journal on Com-
puting, Vol. 18

[6] A. V. Goldber
linear Time Par

blems,” Journal of Algorithms, Vol. 14, No. 2, 1993,
pp. 180-213. doi:10.1006/jagm.1993.1009

[7] J. B. Orlin and R. K. Ahuja, “New Scaling Algorithms for
 Assignment and Minimum Cycle Mean Problems,”

Sloan Working Paper 2019-88, Solan School of Man-
agement, Massachusetts Institute of Technology, Cam-
bridge, 1988.

doi:10.1109/TC.1986.
1676819

[10] R. E. Bryant, “Symbolic Boolean Manipulation with Or-
dered Bin

doi:10.1145/13
6035.136043

[11] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans-
actions on Computer, Vol. 27, No. 6, 1978

[13] D. Sieling and I. Wegener, “Graph Driven BDDs: A New
Data Structure for Boolean Functions,” Theoretical Com-
puter Science, Vol. 141, No. 1-2, 1995, pp. 283-310. doi:
10.1016/0304-3975(94)00078-W

[14] G. D. Hachtel and F. Somenzi, “A Symbolic Algorithm
for Maximum Flow in 0-1 Networks,” Formal Methods
in System Design, Vol. 10, No. 2-3, 1997, pp. 207-219.
doi:10.102

[15] R. I. Bahar, E. A. Frohm, C. M. Gaona, et al. “Algebraic
Decision Diagrams and Their Applications,” Formal Meth-
ods in Systems Design, Vol. 10, No. 2-3, 1997, pp. 171-
206. doi:10.10

[16] T. L. Gu and Z. B. Xu, “The Symbolic Algorithms for
Maximum Flow in Networks,” Computers & Operations
Research, Vol. 34, No. 2, 2007

Copyright © 2011 SciRes. IJCNS

http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.1006/jagm.1993.1009
http://dx.doi.org/10.1006/jagm.1993.1009
http://dx.doi.org/10.1006/jagm.1993.1009
http://dx.doi.org/10.1006/jagm.1993.1009
http://dx.doi.org/10.1007/BF01585996
http://dx.doi.org/10.1007/BF01585996
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/136035.136043

T. L. GU ET AL.

Copyright © 2011 SciRes. IJCNS

121

6/j.cor.2005.05.009

[17] F. Somenzi, “CUDD: CU Decision Diagram Package
Release 2.3.1,” 2006. http://vlsi.Colorado.edu/

[18] The LEDA User Manual, 2010. http://www.algorithmic-
solutions.com

