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Abstract 
 
The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimiza-
tion problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or alge-
braic decision diagram (ADD) or variants thereof provides canonical forms to represent and manipulate 
Boolean functions and pseudo-Boolean functions efficiently. ADD and OBDD-based symbolic algorithms 
give improved results for large-scale combinatorial optimization problems by searching nodes and edges im-
plicitly. We present novel symbolic ADD formulation and algorithm for maximum weighted matching in 
bipartite graphs. The symbolic algorithm implements the Hungarian algorithm in the context of ADD and 
OBDD formulation and manipulations. It begins by setting feasible labelings of nodes and then iterates 
through a sequence of phases. Each phase is divided into two stages. The first stage is building equality bi-
partite graphs, and the second one is finding maximum cardinality matching in equality bipartite graph. The 
second stage iterates through the following steps: greedily searching initial matching, building layered net-
work, backward traversing node-disjoint augmenting paths, updating cardinality matching and building re-
sidual network. The symbolic algorithm does not require explicit enumeration of the nodes and edges, and 
therefore can handle many complex executions in each step. Simulation experiments indicate that symbolic 
algorithm is competitive with traditional algorithms. 
 
Keywords: Bipartite Graphs, Weighted Matching, Symbolic Algorithm, Algebraic Decision Diagram (ADD), 

Ordered Binary Decision Diagram (OBDD) 

1. Introduction 
 
The matching problems find their applications in many 
settings where we often wish to find the proper way to 
pair objects or people together to achieve some desired 
goal. The matching problems are classified into maxi-
mum cardinality matching in bipartite graphs, maximum 
cardinality matching in general graphs, maximum weighted 
matching in bipartite graphs, and maximum weighted 
matching in general graphs [1,2]. The first is looking for 
a matching with the maximum edges, in which nodes are 
partitioned into boys and girls, and an edge can only join 
a boy and a girl; The second is the asexual case, where 
an edge joins two persons; In the third, we still have 
nodes representing boys and girls, but each edge has a 
weight associated with it. Our goal is to find a matching 

with the maximum total weight. This is the well-known 
assignment problem of assigning people to jobs and 
maximizing the profit; The fourth is obtained from the 
first one by making it harder in both ways. 

Formally, a bipartite graph is a graph  ,G U V E   
in which U V  , U V n  ,  and E U V 
E m . A matching in G is a subset of edges, M E , 

such that each node in  is an endpoint of at most 
one edge in M. The cardinality 

U V
M  of a matching M is 

the number of edges in M. A matching which contains a 
maximum number of edges is called the maximum-car- 
dinality matching. A weighted bipartite graph is a graph 

 , ,V E WG U 

e E

, where  (non-negative 
real number) is a weight function, by which each edge 

:W E  R

  is associated with a weight . The weight of a 
matching M is the sum of the weights of edges in the 

w e
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matching, i.e.,   e M
w M w e


   . Maximum weighted 

matching problem in bipartite graphs is finding a match-
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

ing with the maximum weight or a maximum-cardinality 
matching with the maximum weight. In this paper, we 
consider the latter case. The classical Hungarian method 
was invented by Kuhn [3], which solves maximum 
weighted matching problems in strongly polynomial time 
of . It was revised by Munkres, and 
has been known since as the Hungarian algorithm or the 
Kuhn-Munkres algorithm (KMA) [1,4]. Under the as-
sumption of integer weights in the range 

O logn m n n

 ,C C , Ga-
bow and Tarjan used cost scaling and blocking flow tech-
niques to obtain an   O l  time algorithm 

[5]. Algorithms with the same running time bound based 
on the push-relabel method were developed by Goldberg, 
Plotkin, Vaidya, Orlin and Ahuja [6,7]. Goldberg and 
Kennedy implemented the scaling push-relabel method 
in the context of assignment problems, known as cost 
scaling algorithm (CSA) [8], which is very competitive 
for practical use. 

ogn m nC

Finding maximum weighted matching in bipartite 
graphs is one of typical combinatorial optimization pro- 
blems, where the size of graphs is a significant and often 
prohibitive difficulty. This phenomenon is known as 
combinatorial state explosion, resulting in that large 
graphs cannot be stored and operated on even the largest 
contemporary computers. In recent years, implicitly 
symbolic representation and manipulation technique, 
called as symbolic graph algorithm or symbolic algorithm 
[9,10], has emerged in order to combat or ease combina-
torial state explosion. Typically, ordered binary decision 
diagram (OBDD) or algebraic decision diagram (ADD) 
or variants thereof are used to represent the discrete ob-
jects. Efficient symbolic algorithms have been devised 
for hardware verification, model checking, testing and 
optimization of circuits [9-13]. Hachtel and Somenzi 
developed OBDD-based symbolic algorithm for maxi-
mum flow in 0-1 networks that can be applied to very 
large graphs (more than 1036 edges) [14]. Bahar et al. 
present Algebraic Decision Diagram (ADD) to support 
algebraic and arithmetic operations on the general ob-
jects, and develop the symbolic algorithms for matrix 
multiplication, all-pair shortest path and timing analysis 
of combinational circuits [15]. Gu and Xu presented the 
symbolic ADD (Algebraic Decision Diagram) formula-
tion and algorithms for maximum flow problems in gen-
eral networks [16]. Symbolic algorithms appear to be a 
promising way to improve the computation of large-scale 
combinatorial optimization problems through encoding 
and searching nodes and edges implicitly. Our contribu-
tion is to present the symbolic algorithm for maximum 
weighted matching in bipartite graphs. 

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some backgrounds regarding maxi-
mum weighted matching in weighted bipartite graphs; 

Section 3 presents the symbolic formulations for weighted 
bipartite graphs and maximum weighted matching prob-
lems; In Section 4, we give the symbolic formulations 
for weighted bipartite graphs and maximum weighted 
matching problems; Section 5 presents the symbolic 
ADD algorithm; In Section 6, some experimental results 
and analysis are provided; The last section gives some 
conclusions. 
 
2. Backgrounds 
 
A bipartite graph  ,G U V E   is a graph whose node 
set can be partitioned into two non-empty disjoint groups 
U and V such that every edge of the graph is incident on 
at most one node from each group. A matching M of G is 
a subset of edge set E such that no two elements of M are 
incident to the same node. A perfect matching is a 
matching M in which every node is adjacent to some 
edge in M. We refer to the edges in M as matched edge, 
and edges not in M as unmatched or free edges. We also 
refer to a node w as matched node with respect to a 
matching M if there is an edge in M incident to node w, 
and it is called free or unmatched otherwise. For a 
matched node u the unique node v connected to u by a 
matching edge is called the mate of u. The cardinality 
M  of a matching M is the number of edges in M. A 

matching which contains a maximum number of edges is 
called a maximum-cardinality matching. 

A simple path p in G is called an alternating path with 
respect to the matching M if the edges in p are alternately 
in M and not in M. We refer to an alternating path as an 
even alternating path if it contains an even number of 
edges and an odd alternating path if it contains an odd 
number of edges. An odd alternating path with respect to 
a matching M is called as an augmenting path if the first 
node and last node in the path p are unmatched or free. 

This particular structure of bipartite graphs can be 
used in developing the algorithms. We can direct all un-
matched edges from U to V and all matched edges from 
V to U, and refer to the directed bipartite graph 
 ,U V E  as a residual network with respect to bipar-
tite graph G and matching M. On the directed view, the 
existence of an augmenting path is then tantamount to 
the existence of a path from a free node in U to a free 
node in V. Also, augmenting by a path p is trivial. One 
simply reverses the direction of all edges on the path. 
Observe that this correctly records that the endpoints of p 
are now matched and that M is replaced by  M E p . 

Property 1 If p is an augmenting path with respect to a 
matching M, then     M E p M E p    E p  

M  is also a matching of cardinality |M| + 1. Moreover, 
in the matching  M E p , all the matched nodes in M 
remain matched, and two additional nodes, namely the 
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first and last nodes of p, are matched. 

Property 2 If 1 2M M  holds for two matchings 
M1 and M2 of G, then there are  2 1d M M   aug-
menting paths with respect to M1 in G, and the paths are 
node-disjoint. 

Property 2 guarantees the existence of many augment-
ing paths when current matching is still far from optimal-
ity, and suggests organizing many node-disjoint aug-
menting paths in each execution. In this regard, layered 
networks are usually constructed. In a layered network 
the nodes of a graph are partitioned into layers according 
to their distance with respect to the starting layer, i.e., a 
node w belongs to layer k if there is a path from the 
starting layer to w consisting of k edges and there is no 
path with fewer edges. For any edge in a layered network 
the distance of the target node is at most one more than 
the distance of the source node. The construction of the 
layered network begins by putting all free nodes in U 
into the zeroth layer, and then proceeds by breadth-first 
search. The first layer is completed that contains free 
nodes in V, and the second layer contains free nodes in U 
and so on. Only edges that connect different layers can 
be contained in shortest augmenting paths, and the lay-
ered network contains all augmenting paths of shortest 
length. 

A weighted bipartite graph is a graph  , ,G U V E W 

e E

, 
where  (non-negative real number) is a 
weight function, by which each edge  is associ-
ated with a weight  The weight of a matching M is 
the sum of the weights of edges in the matching, i.e., 

e M
. A maximum weighted matching is 

a perfect matching with the maximum weight. 

:W E R

w e


 

 w e .

 w M

In a weighted bipartite graph , a 
node labeling is defined by the labeling function 

, and a feasible labeling is one such that  

 , ,G U V E W  

l

:l U V R 

     , , ,l u l v w u v u U v V            (1) 

With respect to a feasible labeling l, the equality bi-
partite graph is referred as  

 ,lG U V E                (2) 

where 

        , ,lE u v E l u l v w u v         (3) 

Property 3 (Kuhn-Munkres theorem) If l is feasible 
and M is a perfect matching in El then M is a maximum 
weight matching. 

The Kuhn-Munkres theorem transforms the problem 
from an optimization problem of finding a maximum 
weight matching into a combinatorial one of finding a 
perfect matching. Thus, the Hungarian algorithm is de-
vised by starting with any feasible labeling l and some 
matching M in El. and repeating the following while M is 

not perfect: 
1) Find an augmenting path for M in El; 
2) If no augmenting path exists, improve l to l  such 

that E El l  ; Go to 1). 
Note that in each step of the loop we will either be in-

creasing the size of M or El so this process must termi-
nate. Furthermore, when the process terminates, M will 
be a perfect matching in El for some feasible labeling l. 
Hence, M will be a maximum weight matching. 
 
3. Symbolic Formulation 
 
An ordered binary decision diagram (OBDD) [6,7] pro-
vides compact, canonical and efficiently manipulative 
representation for Boolean functions. The OBDD for a 
non-constant Boolean function f is a directed acyclic 
graph  ,G V E . It includes sink or terminal nodes ‘0’ 
and ‘1’, which represent constant Boolean functions 0 
and 1. These nodes have no descendants. All other nodes 
v V  include a labeled variable , and have two 
out-going edges of then and else cofactors drawn as solid 
and dash lines. The nodes are in one-to-one correspon-
dence with Boolean functions. The function 

 l v

 f v  of a 

node v V  is specified as   else
l v f v l v f v     , 

where “” and “+” denote Boolean conjunction and dis-
junction respectively, and 

then
 and  f v  f v

else
 are 

the functions of the then and else children. The root node 
of an OBDD represents the function f. The variables in 
an OBDD are ordered, i.e., if v is a descendant of u, 
which means  ,u v E , then , and all the 
paths in the OBDD keep the same variable ordering.  

 l u  l v

Given a Boolean function and any assignments to its 
variables, the function value is determined by tracing a 
path from the function node to a terminal node following 
the appropriate branches. The branches depend on the 
variable value of the assignments, and the function value 
under the assignments is determined by its path’s termi-
nal or sink node. 

For example, Figure 1 shows the binary tree and the 
OBDD for Boolean function 1 3 2 3f x x x x    , where 

1 2 3x x x  . It is obvious that the OBDD is a directed 
acyclic graph, and stores the same information in a more 
compact way. We trace the path , and 
reach the sink node 0. Thus, the value of Boolean func-
tion 1 3 2 3f x x x x     of variable assignment (0,1,0) is 0. 

A set is a non-order collection of elements with any 
specified properties. A set is perhaps the most funda-
mental mathematical abstraction and can be seen as a 
generic concept to build various representations of dis-
crete objects. We can convert a set S to an OBDD by 
encoding the elements of S with a length-n binary num- 
ber, where  2logn S   

. The encoded element in S 

corresponds to a vector of binary variables  1, , nx x x  . 
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(a) Binary tree                 (b) OBDD 

Figure 1. OBDD for Boolean function f = x1x3 + x2x3. 
 
Thus, a set S can be formulated by the following Boolean 
characteristic function: 

  1 2S s ss S
f x sn 


             (4) 

where sk  is the appearance of variable xk correspond-
ing to k bit code of the s-th element of set S. Set opera-
tions can be reduced to the operations on Boolean char-
acteristic functions as follows: 

union of sets:            A B A Bf x f x f x    

intersection of sets:      A B A B f x f x f x    

difference of sets:         A B A Bf x f x f x
   

A relation is a set of ordered pairs. Given a relation R 
from A to B, we can formulate the relation as an OBDD 
by encoding the elements of A with a length-n binary 
number and the elements of B with a length-m binary  

number, where  2logn    A  and  2logm B    . 

The encoded element in A corresponds to a vector of 
binary variables  1, , n x x x  , and the encoded ele-
ment in B to a vector of binary variables  1, , m y y y  . 
Therefore, a pair (a, b) in R can be formulated by the 
following Boolean characteristic function: 

    1 2 1 2, , a a an b b bma bf x y                  (5) 

where ak  is the appearance of variable kx  corre-
sponding to k bit code of element , and ika A   the 
appearance of variable  corresponding to k bit code 
of element . If , then 

ky
1ik b B x ik kx  , else 

ik kx  . Similarly, If , then 1iky  ik ky  , else 

ik ky  . The relation R can be formulated as: 

 

   

11 12 1 11 12 1

1 2 1 2

1 2 1 2

,R n

k k kn k k km

r r rn r r rm

k ik k jki j

f X Y m     
     
     

 

        

        

       

    

 
 
 




  (6) 

where ik  is the appearance of variable xk correspond-
ing to k bit code of the i-th element of set A, and ik the 
appearance of variable yk corresponding to k bit code of 
the j-th element of set B. If , then 1ikx  ik kx  , else 

ik kx  . Similarly, If , then 1iky  ik ky  , else 

ik ky  . 
These characteristic functions are of Boolean func-

tions, and can be compactly represented by OBDDs. For 
example, the characteristic functions of set  ,c,da,bA   
and set  1,5,7B   are derived by encoding  a 000 , 

 b 001 ,  c 01 0 , d = [011],  1 , 100  5 101  
and  7 110 : 

 A 1 2 3 1 2 31 2 3 3 1 2f x x x x x x x x x    x x x x             

 B 1 2 3 1 21 2 3 3f x x x x x x x xx x            

  1 2 3 3 1 2 2 3

1 2 3 3 1 2

x x x x x x x x

x x x x x x

  1 2

1 2

x x x

x x

  3 1

3

x x

x

 A Bf       

     

  

  

  


 

The characteristic function of relation R = {(a,1), (a,5), 
(b,1), (b,7), (c,1), (c,5), (d,7)} is derived by encoding 

 a 00 ,  b 01 ,  c  10 , d  11 ,  1 00 ,  5 01  
and  7  10 : 

 R 1 2 1 2 1 2 2

1 2 1 1 2 2

1 2 1

1 2

2 1 2

2

1 2 1

1 2 1

f x x x y y y y yx x x x y

x x y y y y

x x y y

x x y x x y

                  

          
   
       

The OBDDs for these characteristic functions are 
shown in Figure 2. 

An algebraic decision diagram (ADD) [12] is a variant 
of OBDD, representing pseudo-Boolean functions 

 : 0,1
n

f C , where S is the finite carrier of the alge-
braic structure. The only difference of an ADD from an 
ODD is that each terminal node of an ADD represents 
constant function corresponding to the finite carrier. 
When the finite carrier is set to , an ADD is 
reduced to an OBDD. For example, 1 2 1 2

0,C  1
2f x x  y y , 

where 1 2 1 2x x y y   . Figure 3 shows the complete 
binary tree and the ADD for f. We can also see that the 
ADD for f is a directed acyclic graph that stores the same 
information in a more compact way. 

ADDs are a natural symbolic representation of matri-
ces since every r  s matrix W can be represented by a 
pseudo-Boolean function fW(x, x): 
 

 

Figure 2. OBDD formulation of sets and relation. 
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(a) Binary tree 

 

(b) ADD 

Figure 3. ADD for pseudo-Boolean function f = x1x2+2x3x4. 
 

 

   

W 11 11 12 1 11 12 1

1 2 1 2

1 2 1 2

ij1,2, , 1,2, ,

1,2, , 1,2, ,

, n m

ij i i in j j jm

rs r r rn s s sm

i r j s

k n ik l m jl

f x y w

w

w

w

     
     

     

 
 

 

         

         

        



   

  

 

 
 
 




 (7) 

where ij  is the element at the i-th row and the i-th 
column in matrix W; 

w

ik  is the appearance of variable  

kx  corresponding to k bit code of i , and  2logn   r

il  the appearance of variable yk corresponding to l bit 

code of j . If , then  2logm s   1ikx  ik kx  , else 

ik kx  . Similarly, If ，then 1iky  ik ky  , else 

ik ky  . 
For example, the following 4  4 matrix 

6 6 3 3

2 0 2 2
W = 

4 4 3 0

2 2 3 3

 
 
 
 
 
 

 

can be represented symbolically by encoding row num-
ber as 00,01,10 and 11, and column number as 00,01,10 
and 11. Its pseudo-Boolean function fW(x,y) can be de-
rived from Equation (7): 

 W 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1

1 2 1

, 6 6 3

3 2 2

2 4 4

3 2 2

3

The ADD for this matrix is drawn in Figure 4. 
Given a weighted bipartite graph , 

we can encode the nodes of G with a length-n binary 
 , ,G U V E W 

number, where  2 2max log , logn U V        , and rep- 

resent the nodes in U as a vector of binary variables 
 1, , nx x x  , and the nodes in V as a vector of binary 

variables  1, , ny y y .  The edge  ,u n be for- 
mulated by a binary vector    1 1, , , , , ,n n

v E  ca
x y x x y y   , 

where x = encoded    1, , nx  and y = encoded u x  
   y1  are the binary encodi  
v respectively. In terms of Equations (4) (6) and (7), the 
Boolean or pseudo-Boolean characteristic functions of its 
elements can be developed, and denoted by s(x), t(y), E(x, 
y) and W(x, y) for node set U, node set V, edge set E and 
weight function W respectively. 

1,        

, , nv y  ng of node u and

    ,  

0 ,               otherwise              

x en coded u u U
s x  


 


       (8) 

     (9)    1,           ,  

0 ,               otherwise              

y encoded v v V
t y

 
 


 

 
     

,

1, , , ,

0, otherwise

E x y

x encoded u y encoded v u v E



  



 (10) 

 
        
,

, , , , ,

0, otherwise

W x y

w u v x encoded u y encoded v u v E



   



 

(11) 

For example, Figure 5 illustrates a weighted bip
gr

erty of OBDDs or ADDs is that 
th

artite 
aph, whose weight function or edge weights are speci-

fied in the weight matrix. Nodes in U can be encoded by 
(00, 01, 10, 11) and nodes in V can be encoded by (00, 
01, 10, 11). In terms of Equations (10) and (11), OBDD 
for E(x, y) and ADD for W(x, y) are developed and 
shown in Figure 5. 

An important prop
ey are a canonical representation of Boolean functions 

or pseudo-Boolean functions. Canonicity means that for 
a Boolean function or pseudo-Boolean function f and 
 

 

2

2

2

f x y x x y y x x y y x x y y

x x y y x x y y x x y y

x x y y x x y y x x y y

x x y y x x y y x x y y

x x y

                    

                
              

               
    2 1 2 1 23y x x y y    


   

Figure 4. Representing a matrix by ADD. 
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






 








Figure 5. Symbolic representation of a weighted bipartit

ariable ordering , there is a unique OBDDs or ADDs, 

ipartite graph
or

          (12) 

subject to: 



e 
graph. 
 
v
and vice versa. It is more important that many operations 
of Boolean functions or pseudo-Boolean functions can be 
implemented efficiently through graphical manipulations 
of OBDDs or ADDs. 

Given a weighted b   , ,G U V E W   
), E(x,y), W(x,y)), its symbolic formulation (s(x), t(y  

finding the maximum weighted matching M(X, Y) in bi-
partite graphs is formulated as follows: 
max: 

   
 , 0,1

, ,
nx y

W x y M x y


  

   
 

  
 

   
 

   

0,1 0,1

0,1

, ,

, 1

, ,

n n

n

y y

x

M x y s x M y x t y

M x y t y

M x y E x y

 



  

 





  



  (13) 

iven the symbolic representation (s(x),t(y),E(x,y),W(x,y)) 

 Hungarian 
al

.1. Building Equality Bipartite Graphs 

iven a weighted bipartite graph with a feasible labeling 

 
4. Symbolic ADD Algorithm 
 
G

of a weighted bipartite graph  ,G U V E  , the pseu-
do-code of the symbolic ADD alg maximum 
weighted matching is presented in Figure 6. 

The symbolic algorithm implements the

orithm for 

gorithm in the context of ADD and OBDD formulation 
and manipulations. It begins by setting feasible labelings 
of nodes and then iterates through a sequence of phases. 
Each phase is divided into two stages. The first stage is 
building equality bipartite graphs, and the second one is 
finding maximum cardinality matching in equality bipar-
tite graphs. The second stage iterates through following 
steps: greedily searching initial matching; building lay-
ered network, backward traversing node-disjoint aug-
menting paths, updating cardinality matching and build-
ing residual network. The second stage terminates and 
returns the maximum cardinality matching when there 
does not exist any augmenting path of equality bipartite 
graph. The symbolic algorithm stops and returns the 
maximum weighted matching when there does not exist 
any augmenting path in weighted bipartite graph.  
 
4
 
G
l, represented as ((s(x),t(y),E(x,y),W(x,y)), l(x), l(y)), we 
define two U V  auxiliary matrices: the first one is 
developed by ing the vector of l(y) column by col-
umn, and the second one is created by arranging the 
vector of l(x)T rank by rank. We denote them by corre-
sponding characteristic functions Al(y)(x,y) and Al(x)(x,y). 
The equality bipartite graph is built as follows: 

   

 arrang

       
    

     
           

1 , , 0 ;

, 1 , , ;

, ; ,

l y l x

l

l l

temp x y temp x y

E x y temp x y E x y

A x s x E x y B y t y E x y

 

 

   

, , , ,temp x y W x y A x y A x y   ;

 (14) 

The equality bipartite graph is represented as (A(x), 
B(

date a feasible labeling l, we introduce 
th

y), El(x,y)), in which A(x) and B(y) are the disjoint 
node sets, and will be utilized to control the progress of 
searching direct matching and building layer networks in 
the later phases. 

In order to up
e neighbor of u U  and set 1U U : 

    ,N u v V u u v E  ,l lU , 

   1 1l u U lN U N u   

They can be comput nd represented by the follow-
in

ed a
g characteristic functions: 

    N x x  
   1 1

, ,l l

l lx X

E y x

N X N x


 
           (15) 
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  
  

 

Figure 6. Pseudo-code for symbolic algorithm. 
 

Then, a feasible labeling l is updated by the following 
feasible labeling l: 


  (16) 

4.2. Searching Matching through Proximity 

 
In order to obtain matching directly, we adopt a proximity 
function 
first ar
the nodes to be compared. For every choice of base X,  
returns 1 if the second argument precedes the third one, 

Functions 

        ,α min , ,
ll u S v N S l u l v w u v     

 l s          , , : 0,1 0,1 0,1
n n n

x y z  
gument is the base, and two other argument

0,1 . The 
s are      

 

1

1

                

                       

                    otherwise

l

l l

s U

l s l s s N U

l s

  


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Tw ristic functions are used in the sym-
olic algorithm. The first one, relative proximity heuris-

else return 0. 
o different heu

b
tic function, is  R , ,x y z y x z x     , where 

1

0

2i i
i

x y x y


   . The second is  
n

i


D , ,x y z   

 y z , called as datum proximity heuristic function 
that is a special case of relative proximity heuristic func-
tion independent of the base and simply returns the result 
of testing y z . Both proximity functions can be 
represented by BDDs of size linear in n [14]. 

We obtain a graph (s( direct matching of bipartite x), 
t(x), E(x, y) ) by the fo n: llowing computatio

   
   
, , ( ( , ) ( , , )) ;Q x y E x y z E x z x z y

, , ( ( , ) ( , , ))MP x y Q x y z Q z y y z x  
   (17) 

The edges in Q(x,y) form a right-unique relation, i.e., 
there is at most one edge out of each node x. MP(x,y) is a 
left-unique subset of Q(x,y), and consists of

  

 the bipartite 
graph in Figure 7(a) using relative proximity function 
and datum proximity function respectively. Th
imity functions are also applied in finding node-disjoint 
au

 edges that 
share no end nodes. For example, Figures 7(b) and (c) 
show the initial matching (darkened lines) of

e prox-

gmenting paths. We will discuss it below. 
 
4.3. Building Layered Network 
 
On finding the initial matching, we need to build a lay-
ered network so as to obtain node-disjoint augmenting 
paths. We initialize layer zero by nodes layer(0) of un-
matched nodes in s(x) and outgoing edges    0 ,U x y  of 
unmatched edges from layer(0). On odd layer  2 1i  , 

odes layer  2 1i   are target-nodes from edgesn  2U  i   

 (x,y), and outgoing edges  U 

atched edges from layer 
 2 1 ,i y x  include the

m 2 1i  . Even layer 2i  has 
nodes layer(2i) of target-nodes from edges    2 1 ,iU y x  
and outgoing edges    

ork. It is 

2 ,iU y x  of unmatched edges 
from layer(2i). A layered network is created by for-
ward-breadth-first traversing residual netw im-
plemented by the following computations: 
 

 

     
   

       
        

        
         

         

0

2

2 1

2 1

2

, , , ;

0 ;

, 0 , ;

2 1 , ; 0,1, 2,

, 2 1 , ; 0,1, 2

2 , ; 1

, 2 , . 1, 2,

i

i

i

i

P x y E x y M x y

layer A x

U x y layer P x y

layer i x U x y i

U y x layer i M y x i

layer i y U y x i

U x y layer i P x y i






,

, 2,

 



 

   

   

  

  









(18) 

 
4.4. Backward Traversing Node-Disjoint 

Augmenting Paths 
 
Once a layered network is constructed, we go through a 
series of steps to find node-disjoint augmenting p
Supposed that the top layer of layered network with k = 2l 
layers satisfies

aths. 

     ,kU x y B y  != 0, i.e.,  2 1layer l   
ild node- 

m unmatched
   ,l x y : 

will have un proceed to bu
disjoint augm ward fro  

s dges

matched nodes, we 
enting paths back
 ,y x  and matched eedge  lRM RP

         
   

Figure 7. Finding direct matching by proximity function. 

          
 

21 , , ;

2 ,

l l

l

RM x y U x y B y

x y

 



 
          

            

              

2 1

1 , 1 , , , ;

,

2 , 2 , , , ;

1 , , ( ,

l l

l

l l

l l l

RM x y z RM x z x z y

RM x y

RM x y z RM z y y z x

RP y x RM x y U y

 



 



 

RM

              

) ;

2 , 1 , 1 , , , ;

, 2 , 2 , , ,

l l l

l l l

y x

RP y x RP y x z RP y z y z x

RP y x RP y x z RP z x x z y

 

  

  
(19) 

Backward breadth-first traversing is implemented by the 
following computations (where i = (l – 1), (l – 2),…,2, 1.): 

            
   

          
   

          
              
              

              

1 21 , , , ;

2 ,

1 , 1 , , , ;

,

2 , 2 , , , ;

2 , 1 , 1 , , , ;

, 2 , 2 , , ,

i i i

i

i i

i

i i

i i i

i i i

RM x y x RP y x U x y

RM x y

RM x y z RM x z x z y

RM x y

RM x y z RM z y y z x

RP y x RP y x z RP y z y z x

RP y x RP y x z RP z x x z y

  



 



 

  

  

(20) 

2 11 , , , ;i i iRP y x y RM x y U y x  
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This process terminates by computing 

resulting in node-disjoint 

   0 ,RM x y , 

 ,MP x y  and  ,RP x y
enting paths

. 
Proximity functions guarant gm  
are node-disjoint and have the shortest length. 

ee that the au

              
   

          
   

          

0 1 0

0

0 0

0

0 0

1 , , ,

2 ,

1 , 1 , , ,

,

2 , 2 , , ,

RM x y x RP y x U x y

RM x y

RM x y z RM x z x z y

RM x y

RM x y z RM z y y z x

  



 



 

  (21) 

,

     

  

, ,
l

i

i

RP x y RP x y

  
0

,
l

i

1i

MP x y y


 
 

RM x

 
     )      (22

4.5. Updating Cardinality Matching and 
Building Residual Network 

 
Matching is updated by adding unmatched edges  ,MP x y  

de-dand deleting matched edges  of no
augmenting paths: 

  ,RP x y isjoint 

       , , , ,M x y M x y MP x y RP x y       (23) 

The algorithm is continued by searching residual net-
work repeatedly till there is no augmenting path. A re-
sidual network is symbolically formulated by  A x , 

 and  B y ,  ,P x y  ,M y x : 

        
        

, ;

, ;

     , , ,

A x s x y M x y

B x t x x M x y

  

    

P x y E x y M x y 

nce the symbolic algorithm is based 

       (24) 

Si on ADD and 
rtices are

e edge-
ss, the sym

e framework of Kuhn-Munkr
rithm, and we can make a claim that its time co

is

OBDD formulations and operands, edges or ve  
enumerated implicitly, and th disjoint paths are 
traced in parallel. Neverthele bolic algorithm 
is developed in th es algo-

mplexity 
   3

max ,O U V . 

 
5. Experimental Results 
 
The symbolic algorithm proposed in this paper has been 
implemented in windows 2000 and soft
CUDD [17]. Two groups of experiments 
In both cases, CPU time is in second on a P4 1500 MHz 
wi

nts, we choose randomly generated graphs with 2500 
des and different ranges of edge weights, and our 

d to CSA algorithm. The 
ure 8. 

ware package 
are conducted. 

th 128 MB of memory. 
In the first group of experiments, the symbolic algo-

rithm (SA) is compared with KMA and CSA algorithms 
[3]. We choose randomly generated graphs with different 
numbers of nodes and edges. Random graphs are very 
close to worst cases for symbolic algorithms. The results 
are shown in Table 1. In the second group of experi-
me
no
symbolic algorithm is compare
running times are plotted in Fig

Both the symbolic algorithm and traditional algo-
rithms utilize the input of normal weighted bipartite 
graph  , ,U V E W . The SA package calls the CUDD 
library to create the symbolic formulation (s(x), t(y), 
E(x,y), W(x,y)) and implement Kuhn-Munkres algorithm. 
The traditional algorithms are implemented using LEDA 
package [18]. 

Both groups of experiments indicate that symbolic al-
gorithm outperforms both KMA and CSA algorithms, 
especially on dense and large random graphs. It can also 
be observed that the running times of our symbolic algo-
rithm increase as the ranges of edge weights increase. 
 
6. Conclusions 
 
We present an algorithm for finding the maximum wei- 
ghted matching in bipartite graphs. The algorithm is 
symbolic and does not require explicit enumeration of 
 
Table 1. Comparison of symbolic algorithm with KMA and 
CSA algorithms. 

nodes
ranges of 
edges weight SA (sec) KMA (sec) CSA (sec) 

1000 [0, 20] 1.734 2.132 2.012 

1000 [0, 50] 1.815 2.512 2.235 

2000 [0, 20] 10.324 18.142 14.254 

2000 [0, 50] 

2000 [0, 100] 

11.312 30.154 24.087 

13.041 50.074 35.247 

2400 [0, 20] 14.354 41.241 34.358 

19.326 96.021 72.054 

  4 7 

 5 1 8 

 out  out

3000 [0, 150] 19.627 Memory out Memory out

2000 [0, 200] 44.864 70.587 54.145 

2000 [0, 300] 48.254 102.031 85.248 

2400 [0, 50] 16.578 78.324 56.458 

2400 [0, 100] 

2400 [0, 200] 35.781 213.012 165.612 

2400 [0, 300] 60.354 367.15 268.31

2400 [0, 500] 300.02 575.92 403.24

3000 [0, 50] 18.241 Memory Memory
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Figure 8. Comparison of symbolic algorithm to CSA for
graphs with varying ranges of edge weights. 
 
the nodes and edges of the graphs. The main idea is to
manipulate implicitly sets of edge-disjoint augmen
paths, in which the disjointness is enforced with the 
of priority functions. Since all paths in a maximal edge- 
disjoint set are traced in parallel, the algorithm can han-
dle much larger graphs than it was previously possibl
should be stressed that algorithms that explicitly enumer-
ate edges or vertices cannot be applied to very large p
lems. We have also shown that the algorithm is competi-
tive with traditional algorithms on dense random graphs. 

Several aspects of the work we have presented require
further investigation. We should be able to furthe
prove performance by applying more sophisticated OBDD
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and ADD techniques (e.g., variable ordering, caching). 
More important, we should be able to deal with substan-
ially larger graphs. Further enhancementst lgo-
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rithm may come from improved priority functions. We 
have chosen path augmentations as the basis of our algo-
rithm. Whether efficient symbolic versions of preflow- 
based algorithms can be found remains an interesting 
open question. Another open question concerns the com-
plexity of the algorithm. In particular, a characterization 
only in terms of worst-case run times is unsatisfactory 
for symbolic algorithms. We are also working on ex-
tending our algorithm to general graphs. Moreover, it is 
clear that the principles behind the symbolic matching 
algorithm can be applied to many other problems in var-
ious areas. 
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