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ABSTRACT 

Considerable efforts are currently being devoted to investigation of metal-organic, organic-organic and organic-inor- 
ganic interfaces relevant to organic electronic devices such as organic light emitting diode (OLEDs), organic photo-
voltaic solar cells, organic field effect transistors (OFETs), organic spintronic devices and organic-based Write Once 
Read Many times (WORM) memory devices on both rigid and flexible substrates in laboratories around the world. The 
multilayer structure of these devices makes interfaces between dissimilar materials in contact and plays a prominent 
role in charge transport and injection efficiency which inevitably affect device performance. This paper presents results 
of an initial study on how switching between voltage thresholds and chemical surface treatment affects adhesion prop-
erties of a metal-organic (Au-PEDOT:PSS) contact interface in a WORM device. Contact and Tapping-mode Atomic 
Force Microscopy (AFM) gave surface topography, phase imaging and interface adhesion properties in addition to 
SEM/EDX imaging which showed that surface treatment, switching and surface roughness all appeared to be key fac-
tors in increasing interface adhesion with implications for increased device performance. 
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1. Introduction 

The investigation of interfaces between dissimilar or-
ganic-metal, organic-organic and organic-inorganic ma-
terials which are inherent in the devices made from them 
has been intensified in recent times. The interface phe-
nomena are thus crucial towards the development, under-
standing and improvement of organic-based semicon-
ductor electronic device [1-14] applications such as or-
ganic light emitting devices (OLEDs) [15-18], organic 
photovoltaic devices [19-21], organic thin film transistor 
devices [22-27] and organic spin electronic devices in 
which the transport and control of spin polarized infor-
mation are represented [28-30]. The interface between 
the different materials that make them up determines the 
charge transport and charge injection efficiency, with 
implications for the performance of the devices.  

Interfacial phenomena are particularly crucial towards 

the development and improvement of applications of 
these devices and in order to effectively investigate mul-
tilayer structured devices, the overall flexibility becomes 
very critical. This, in addition to their molecular nature, 
makes the study of organic thin films interfaces to be 
more intensified compared to inorganic semiconductors.  

The type of interaction at the interface is either physi-
cal or chemical and progress in organic electronics re-
quires their detail understanding [31]. Investigations of 
the chemical nature of interfaces are common in thin film 
characterization, but not much attention has been directed 
at measuring physical interaction until recently when 
advanced characterization tools are becoming more widely 
available. However, in a work reported on the nanoscale 
adhesion between organic-organic, organic-inorganic, and 
inorganic-inorganic thin film interfaces [32], the AFM 
technique was used in quantifying the interfaces, though 
with some limitations. The pull-off forces and surface 
parameters were measured and incorporated into theo-*Corresponding author. 
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retical models for the estimation of surface energies. Ob-
viously, therefore, the improvement of performance of 
organic electronic devices depends on a clear under-
standing of the principles underlying organic-film/metal- 
electrode interfaces. 

Data-storage and switching applications of conjugated 
polymer-based devices in which, depending on the volt-
age-sweep direction, two different current-voltage (I-V) 
characteristics, and hence low and high conducting states 
are used, have been observed and reported (e.g. [33-39]). 
These devices have an associated memory effect for 
data-storage applications especially the bistable archi-
tectures (e.g. [21,26,38,40-47]). The bistable and multi-
ple-layer stacking structures have therefore emerged as a 
viable technology for flexible, ultrafast, and ultrahigh- 
density memory devices in the field of organic electron-
ics [48]. 

In a multilayer organic electronic device structure 
(Figure 1), charges often move from one layer to another 
by either injecting holes and/or electrons or transporting 
the same in one direction or the other. In the emissive 
layers, injected charges produce localized charge carry- 
ing species which move through the device under the 
influence of external field (bias) across the interface [49]. 
Charge injection transport efficiency through the inter-
faces is thus critical to device performance. However, 
there are problems of adhesion, morphological inho-
mogeneities and conductivity anisotropy at these inter-
faces which are not yet properly understood [50]. 

Charge transport efficiency could be enhanced by re-
ducing the number of interfaces in organic devices. This 
is often done using the standard polymer processing 
method of blending in which organic materials, forming 
individual layers, are innovatively blended, thereby re-
ducing the number of layers. This has been recognized as 
one of the possible ways forwarded for improved charge 
transport efficiency [51], as illustrated in Figure 2. 

This investigation was therefore motivated by the need 
to explore additional interface reengineering techniques  
 

 

Figure 1. Typical device structure for sun harvesting (Poly-
mer Solar Cells) and light emission (OLEDs). The figure 
shows the contacts and the emissive layers made up of dif-
ferent carefully selected conducting (conjugated) polymers. 

 

Figure 2. Device structure that reduced the number of in-
terfaces using conventional polymer blending technique in 
which each phase would be expected to independently their 
different roles of charge transportation and injection. 
 
using a combination of memory switching, adhesion and 
surface treatment. Also, this type of study could be in-
corporated into device performance improvement studies 
in view of recent reported improving power conversion 
efficiency of conjugated polymer-based solar cells [52], 
which remains largely unsatisfactory for large-scale 
commercial production in competition with its amor-
phous silicon-based devices. There are indications that 
charge transportation at the interface could be improved 
by a better understanding of the physical phenomena at 
the interface [32]. This has brought into the fore, an in-
tensified investigation of the physical interaction be-
tween the dissimilar materials in direct contact, which is 
vital to sustainable device performance.  

2. Experimental Details 

2.1. Materials and Equipment 

The materials used in this investigation include AL 4083 
PEDOT:PSS suitable for OLED fabrication (H. C. Starck, 
MA, Newton, USA) as the organic layer, n-doped silicon 
wafer (Eagle-Picher, Miami, OK, USA) as the substrate, 
gold (Au) as the metal contact layer (Alfa Aesar, USA), 
hydrochloric acid (Aldrich, USA) for the surface treat-
ment of the organic layer, Hydrofluoric acid (Aldrich, 
USA) and standard assorted reagents for substrate clean-
ing. The thermal deposition of the gold contact on the 
organic layer was carried out using an Edwards E306A 
deposition system (Edwards, Sussex, UK), the switching 
was done with an HP semiconductor parameter analyzer 
(HP 4145B) for the current-voltage measurement, etched 
silicon contact AFM tips were purchased from Veeco 
Instruments (Woodbury, NY, USA), Digital Instruments 
Dimension 3000 Atomic Force Microscope (AFM) 
(Digital Instruments, Plainview, NY), Scanning Electron 
Microscope (SEM-EDX) (Philips FEI XL30 FEG-SEM, 
Hillsboro, USA), a standard Fishers ultrasonic bath, an 
ultra violet ozone cleaning system and a drying chamber 
were all used in the course of this study.  

2.2. Experimental Procedure 

A Write Once Read Many times (WORM) device was 
fabricated by direct spin-casting of PEDOT:PSS on a 
suitably cleaned n-Si substrate followed by vacuum 
deposition of Au Contact. The cleaning procedure for the 
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substrate includes the use of a combination of different 
solvents including acetone, trichloroethylene (TCE), iso-
propanol, hydrofluoric acid (HF), a detergent and deion-
ized water under different temperature conditions in an 
ultrasonic bath. The substrate was then transferred to an 
ultra violet ozone cleaning system for 5 min for further 
cleaning after which it was transferred to a glove box for 
safe keeping, ready for spin coating of the organic layer.  

A thin layer of PEDOT:PSS (about 500 nm) deter-
mined based on standard calibration curves obtained by 
plotting series of spinning speeds, accelerations and 
thicknesses and after drying (H. C. Starck, Newton, MA 
USA suppliers of PEDOT:PSS) was then deposited on 
the substrate by spin coating in ambient air condition 
followed by baking in an oven at 200˚C for about 60 min. 
The sample was again transferred to a glove box ready 
for the Au deposition. Some of the spin-coated samples 
were chemically treated with dilute HCl (0.1 N) prior to 
deposition of the Au contact (approximately 100 nm, 
preceded by a thin layer, about 5 nm, of Cr) which was 
carried out by thermal evaporation under a vacuum of 1 
× 10–6 Torr (1 Torr = 133.32 Pa).  

A selection of the Au/PEDOT:PSS/Si device was qua-
sistatically switched or “blown” using a pulsed voltage 
ramp with 10 ms long 100 mV steps and applied for 0.5 - 
4 ms as necessary The switching was carried out by use 
of current transients to change the polymer fuse (PE-
DOT:PSS) from a conducting (“1” or “ON”) to a non- 
conducting (“0” or “OFF”) state. Quasistatic (continuous) 
condition (J~10 A/cm2): 0 V - 10 V - 0 V and rapid volt-
age pulsed transient condition (J~1 kA/cm2): 10 V, 2 μs 
were used for this purpose [53,54]. 

The Au contact was deposited either before or after the 
polymer surface treatment and was carefully removed by 
a peeling process before and after switching. The same 
was done before and after polymer surface treatment. 
Phase imaging, surface topography and force calibration 
curves were obtained for the different surfaces by AFM 
in contact and tapping modes to quantify the physical 
interaction at the polymer interface using Au-coated can-
tilever tips. Interaction force response between the sam-
ple and cantilever tip [32,55] was measured for each 
sample. The surface roughness for each surface was re-
corded and related to adhesion data as measured by the 
deflection as recorded from the interaction between 
Au-coated cantilever tip and the polymer surface.  

The differently deposited, treated or untreated, switched 
or unswitched surfaces before or after peeling the Au- 
contact, were separately investigated by SEM/EDX to 
qualitatively correlate the effectiveness of the peeling 
process, and the relative degree of polymer-metal inter-
face adhesion. These tips were coated with Au the com-
plementary materials that make direct contact with the 
surfaces. The purpose is also to investigate whether part 

of the polymer peeled with the gold contact. 

3. Result and Discussion 

Figures 3 and 4 show the surface topography (Figures 
3(a)-(d)) as determined by the degree of roughness ob-
tained in the tapping mode; and the force calibration 
plots (Figures 3(a)-(d)) obtained in contact mode for the 
unswitched (Figures 4(a) and (c)) and switched (Figures 
3(b) and (d)) devices when untreated (Figure 3) and 
treated (Figure 4). The values for the respective rough-
ness are as shown in Table 1. 

Analysis of the force calibration curves shows that in 
the unswitched mode, when untreated (Figure 3(b)), the 
Au-coated cantilever tips dragged on the polymer surface 
prior to disengagement whereas, after switching, the dis-
engagement of the tip was without dragging (Figure 
3(d)). This was accompanied with a reduced adhesion 
force by almost 50%. Upon surface treatment, this effect 
combined with that of switching to give the highest ad-
hesion force in the samples under consideration with a 
much greater dragging prior to cantilever tip disengage-
ment. This appears to suggest that surface treatment and 
switching are significant to improved interface adhesion 
between the Au contact and the polymer. This is ex-
pected to lead to an improvement in device performance; 
the next in the on-going work. 

The summary of the deflection on the force calibration 
curve (a direct measure of adhesion force) as estimated 
directly from the calibration plots under different surface 
treatment and switching conditions, is shown in Table 2.  

Figures 5 and 6 show the SEM/EDX images for an 
untreated surface in the unswitched state (Figure 5) and 
in the treated and switched state (the two extremes). 
Figure 5 indicates that peeling the Au contact from the 
PEDOT:PSS surface was “harder” with more of the Au 
remaining adhered to the polymer under similar peeling 
conditions.  

This qualitatively suggests that adhesion force would 
be high. However, upon surface treatment (which is ex-
pected to make the surface to be more even, due to re-
moval of surface peat, hence minimizing conductivity 
anisotropy and heterogeneity at the interface), the Au 
peeled off neatly leaving a smooth polymer surface, 
(Figure 6). 

This study is significant in the quest to finding ways of 
improving the lifetimes of organic electronic devices 
through interface reengineering which is vital to better 
device performance. It has also qualitatively and quanti-
tatively revealed the possibility of using this technique in 
combination with established packaging (or encapsulat-
ing methods to significantly contribute to general im-
provement in device performance). It was observed that 
peeling the gold contact in the untreated, unswitched  

Open Access                                                                                          AMPC 



B. BABATOPE  ET  AL. 

Open Access                                                                                          AMPC 

302 

 

      
(a)                                                  (b) 

             
(c)                                                (d) 

Figure 3. Surface roughness ((a) and (c)) and force displacement curves ((b) and (d)) for untreated PEDOT:PSS on silicon 
substrate when in the unswitched ((a), (b)) and switched ((c), (d)) modes. (a) Surface roughness in the untreated and 
unswitched mode; (b) Force-displacement curve in untreated and unswitched mode; (c) Surface roughness in the untreated 
and switched mode; (d) Force-displacement curve in the untreated and switched mode. 
 

    
(a)                                (b) 

       
(c)                                  (d) 

Figure 4. Surface roughness ((a) and (c)) and force displacement curves ((b) and (d)) for untreated PEDOT:PSS on silicon 
substrate when in the unswitched ((a), (b)) and switched ((c), (d)) modes. (a) Surface roughness in the treated and unswitched 
mode; (b) Force-displacement curve in the treated and unswitched mode; (c) Surface roughness in the treated and switched 
mode; (d) Force-displacement curve in the treated and switched mode. 
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Figure 5. SEM/EDX images for an Untreated sample in the 
unswitched mode showing the surface of PEDOT:PSS after 
peeling off the Au contact (top and bottom right), the Au 
surface (inset) and the EDX for the contact showing that no 
polymer adhered to it. 
 
 

 

Figure 6. SEM/EDX images for an treated sample in the 
switched mode showing the surface of PEDOT:PSS after 
peeling off the Au contact (bottom right), the Au surface 
(top right) and the EDX for the contact showing that no 
polymer adhered to it. 
 
Table 1. Summary data showing the effect of surface treat-
ment and switching on the Au-PEDOT:PSS interface adhe-
sion. 

  Unswitched Switched Adhesion Force

Untreated 
Rough  

(13.667 nm) 
Smooth 

(5.609 nm) 
Increased 

Treated 
Rough  

(9.739 nm) 
Smooth 

(1.434 nm) 
Increased 

Adhesion 
Force 

Not  
Significant 

Significant 
Increase 

 

 
sample was “harder” compared to the switched and 
treated samples that peeled more easily with the highest 
interface adhesion. Since this is more or less an explora-
tory study, the concept of switching especially the effect 
of treating the surface with different reagents requires  

Table 2. Summary of adhesion data showing deflection val-
ues. 

Untreated Treated 

Unswitched 140.00 nm Unswitched 70.00 nm 

Switched 78.00 nm Switched 185.50 nm 

Unswitched Switched 

Treated 70.00 nm Treated 185.50 nm 

Untreated 140.00 nm Untreated 78.00 nm 

 
further detailed investigation. 

The quantitative analysis of the micrographs consis-
tently showed convincingly that there was no evidence of 
the presence of the polymer, PEDOT:PSS, on the gold 
surface as all the specimens investigated showed that 
each time the Au contact was peeled, no polymer ad-
hered to it (Figures 5 and 6). The adhesive force at the 
interface is thought to be a combination of Van Der Waal 
and electrostatic forces in view of the involvement of 
different interacting ions from the reagent used in surface 
treatment together with that of the polyelectrolyte dopant 
in PEDOT. The physics and chemistry of the interaction 
are thus very crucial to further understanding of this 
phenomenon as it would complement this initial result of 
the study.  

4. Conclusions 

From this preliminary investigation, it can be suggested 
that  

1) Surface treatment, switching and surface roughness 
all appear to be key factors in increasing interface adhe-
sion, hence device performance.  

2) Switching an untreated PEDOT:PSS surface re-
sulted in reduced interface adhesion. 

3) Switching a surface-treated specimen significantly 
increased interface adhesion most probably because of 
reduced surface roughness. 

These results require more detailed investigations, es-
pecially in relation to the actual device performance. 
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