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ABSTRACT 

The paper looks at the quantification of risks of trading strategies in incomplete markets. We realized that the no-arbi- 
trage price intervals are unacceptably large. From a risk management point of view, we are concerned with finding 
prices that are acceptable to the market. The acceptability of the prices is assessed by risk measures. Plausible risk 
measures give price bounds that are suitable for use as bid-ask prices. Furthermore, the risk measures should be able to 
compensate for the unhedgeable risk to an extent. Conic finance provides plausible bid-ask prices that are determined 
by the probability distribution of the cash flows only. We apply the theory to obtain bid-ask prices in the assessment of 
the risks of trading strategies. We analyze two popular trading strategies—bull call the spread strategy and bear call 
spread strategy. Comparison of risk profiles for the strategies is done between the Variance Gamma Scalable Self De-
composable model and the Black-Scholes model. The findings indicate that using bid-ask prices compensates for the 
unhedgeable risk and reduces the spread between bid-ask prices. 
 
Keywords: Conic Finance; Coherent Risk Measure; Acceptability Indices; Incomplete Markets; Bid-Ask Prices;  

Continuous Time Models 

1. Introduction 

The paper focuses on the quantification of risks of trad-
ing strategies, particularly when the market is incomplete. 
The incompleteness of the market gives rise to many 
martingales, each of which produces a no-arbitrage price. 
Thus there is no exact replication so as to obtain a unique 
price. Furthermore, the no-arbitrage price intervals are 
unacceptably large. From a risk management point of 
view, we are concerned with finding the prices which are 
acceptable. The acceptability of these prices is assessed 
by risk measures. 

In the financial literature, two major classes of risk 
measures have gained ground in assessing the risks of 
financial positions. Foremost, we have coherent meas-
ures introduced by [1]. Since then, the theory of coherent 
risk measures has been applied to several problems in 
finance. Secondly, there is the grounding work of [2], in 
which they proposed a new class of performance meas-
ures known as acceptability indices. The acceptability 
indices can be considered as an extension of coherent 
risk measures. Under the acceptability framework, a fi-

nancial position is acceptable if its distribution function 
withstands high levels of stress, or in other words, a 
stressed sampling of the financial position has a positive 
expectation. In this paper, our contribution is assessing 
the risk profiles of trading strategies using the acceptabil-
ity framework. 

The rest of the paper is organized as follows: Section 2 
looks at the problem of pricing in incomplete markets. 
Section 3 gives an overview of risk measures and pre-
sents new acceptability indices based on the family of 
distortion functions. Section 4 presents a brief detail on 
conic finance and provides closed form expressions for 
the bid-ask prices. Section 5 presents the models that are 
used in this work. Section 6 presents numerical tests on 
assessing the risks of two trading strategies. Section 7 is 
the conclusion. 

2. Problem of Pricing in Incomplete Markets 

We start by motivating the problem through explaining 
the mathematical structure of good deal bounds by [3], 
also found in [4]. The good deal bounds determine the 
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range of values of a risky position payoff. Let  be the 
set of replicable payoffs,  be the market price to 
replicate a payoff Y , and 

R
 Y

R A  be an acceptance set of 
payoffs that are acceptable to the situation. The lower 
good deal bound for a payoff X  is: 

   sup .
Y R

b X Y Y X A


           (1) 

This payoff might be interpreted as a bid price. Equa-
tion (1) tells us that if X  can be bought for less than 

, then there is a  that can be bought for  b X Y  Y  
such that a cost . The upper good deal 
bound, which might be interpreted as the ask price for 

    0b X Y 

X , is given by: 

      inf .
Y R

a X b x Y Y X A


           (2) 

Equation (2) tells us that selling X  or buying X  
yields the same effect. The interpretation of  b X  is 
the cost that renders X  to be acceptable. As [5] pro-
pose: any valuation principle that gives price bounds 
induces a risk measure and vice versa. The accept- 
ance set A  must include the set of riskless payoffs, 
 0Z Z   , which is the acceptance set that generates 
no-arbitrage bounds. The set A  does not intersect with 
the set  0Z Z   of pure losses. The acceptance set 
A  must be consistent with market prices, , or arbi-

trage occurs. 


Now, an incomplete market is one in which there are 
many martingale measures . The price bounds in 
Equations (1) and (2) form an interval of arbitrage-free 
prices for 

Q

X : 

   inf , supQ Q

Q Q
I E X E X

 

 
  





          (3) 

where  is a set of equivalent martingale measures. 
The problem with the interval of the arbitrage-free prices 
for 



X  is that it is usually too wide for the no-arbitrage 
bounds to serve as useful bid-ask prices. 

In practice, derivatives traders are aware of the incom-
pleteness of the markets and after making trades on cer-
tain positions, they are not able to hedge away all the risk. 
Instead, they must bear the risk associated with the trade. 
To cover their business expenses and to earn compensa-
tion for bearing the risk they are not able to hedge, trad-
ers establish bid-ask intervals around the expected dis-
counted payoff. 

Now, in constructing the bid-ask prices, the difficulty 
posed by incomplete markets is very significant because 
of adverse selection. For instance, if the ask price is too 
high, few potential investors will be willing to pay so 
much and the result is foregone profits. If the ask price is 
too low, the resulting trade is bad for a trader and entails 
likely losses. So, to ensure that trades made at bid and 
ask prices are beneficial, it helps to use methods that 
produce bounds for the prices that are suitable for use as 

bid-ask prices and are adequate to minimize unhedgeable 
risk to an extent. In the process, we will be able to quan-
tify risk since any valuation method that yields price 
bounds also induces a risk measure [5]. 

3. Risk Performance Measures 

In this section, we give a brief overview of the risk 
measures. In general, a risk measure, : X   , is a 
functional that assigns a numerical value to a random 
variable representing an uncertain payoff. 

3.1. Coherent Risk Measure 

Definition Coherent Risk Measure 
A risk measure   is coherent if it satisfies the follow-
ing axioms: 
 Translation Invariance:  

   X r X      , 

for all ,X   . 
 Monotonicity:    X Y   if X Y  a.s. 
 Positive Homogeneity: 

   X X   , 

for 0  . 
 Subadditivity:  

     X Y X     Y , 

for all ,X Y   
 Relevance:   0X   if 0X   and 0X  . 

The last property is included although it is not a de-
terminant of coherency. Translation invariance axiom 
implies that by adding a fixed amount   to the initial 
position and investing it in a reference instrument, the risk 
 X  decreases by  . The monotonicity axiom pos-

tulates that if    X Y   for every state of nature , 
 is more risk because it has higher risk potential. Y
The positive homogeneity axiom implies that risk 

linearly increases with size of the position, that is to say 
that the size of the risk of a position should scale with the 
size of the position. This is just a natural requirement, 
though this condition may not be satisfied in the real 
world since markets may be illiquid. The subadditivity 
axiom implies that the risk of a portfolio is always less 
than the sum of the risks of its subparts. This axiom en-
sures that diversification decreases the risk.  

According to the basic representation theorem proved 
by [1] for a finite   , any coherent risk measure admits a 
representation of the form: 

   inf Q

Q
X E X


 


,              (4) 

with a certain set  of probability measures with respect 
to . A cash flow 


P X  is acceptable if it has negative risk, 

that is  X 0 . 
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3.2. Acceptability Indices 

Cherny and Madan, defined a subclass of risk measures 
called acceptability indices, defined formally as: 

3.3. Definition. Index of Acceptability 

The acceptability index is as a mapping   from the set 
of bounded random variables to the extended half-line 
 0, . The index satisfies the following four properties: 
 Monotonicity 

If  dominates Y X , that is X Y , then  

   X Y  . 

 Scale invariance 
 X  stays the same when X  is scaled by a posi-

tive number, that is  for .  cX  X  0c 
 Quasi-concavity 

If  X Y   and  Y Y  , then  

  1X Y Y     , 

for any  0,1  . 
 Fatou Property (Convergence) 

Let  nX  be a sequence of random variable. 
1n  and X  nX  converges in probability to a random 

variable X. If  nX x , then  X x  . 
The acceptability indices are constructed by replacing 

the cumulative distribution function of X ,  XF x


, by a 
risk adjusted distribution, X X  F x . The corre-
sponding risk measure is the negative expectation of the 
zero cost cash flow under the distorted distribution func-
tion: 

     d ,XX x F x              (5) 

where   is a family of concave distortion functions on 
[0,1] increasing pointwise in the stress level parameter  . 
A higher value of   results in severe distortion of the 
distribution function of X . Then, the acceptability index, 
 X , is the largest stress level   such that the expec-

tation of X  remains positive under the distortion or in 
other words the distorted cash flow remains acceptable: 

    sup : 0 .X X           (6) 

Cherny and Madan introduced four acceptability indi-
ces based on the family of distortion functions which are 
namely: AIMIN, AIMAX, AIMINMAX, AIMAXMIN. 
 AIMIN is the largest number x  such that the expec-

tation of the minimum of 1x   draws from cash flow 
distribution is still positive. Let  

1 1min , ,
law

xY X X   , 
where 1, , 1xX X   are independent draws from X . 

The concave distortion function is given by:  

     1
1 1 , , 0,1

x

x y y x y
              (7) 

 AIMAX constructs a distribution from which one 
draws numerous times and takes the maximum to get 
the cash flow distribution being evaluated. Let, 

 1 1max , ,
law

xY Y   X

1

, 
where 1, , xY Y   are independent draws of . The 

concave distortion function is given by:  

Y

   
1

1 , , 0,x
x y y x y    1

1

      (8) 

 AIMAXMIN is constructed by first using the MIN-
VAR and then followed by the MAXVAR to create 
worst case scenarios. 
Let  

  1 1 1max , , min , ,
law

x xY Y X X  
, ,

, 
where 11 xX X   are independent draws of X  and 

1 1, , xY Y   are independent draws of . Combining 
the MINVAR and MAXVAR, we have the distortion 
function: 

Y

      
1

1 1 ,1 1 , 0,1
x x

x y y x y
          (9) 

 AIMAXMIN is constructed by first using the 
MAXVAR and then followed by the MINVAR to 
create worst case scenarios. Let 

1 1min , , ,
law

xY Z Z  
law

 

1 1max , , ,xZ Z X 

, ,

 

where 1 1xZ Z   are independent draws of Z . 
Combining the MINVAR and MAXVAR, we have the 
distortion function: 

   
11

11 1 , 0,,

x

x
x y y x y




 
  


 


    1     (10) 

The acceptability indices are more plausible in assess-
ing the risks of financial positions. The acceptability in-
dices have been used heavily in the theory of conic fi-
nance, which we review next. 

4. Conic Finance Theory 

We look at the principles of conic finance as set out in 
[6]. The market serves a passive counterparty accepting 
the opposite side of zero cost trades proposed by market 
participants. The departure of conic finance from the 
traditional one price economy is that trade now depends 
on the direction of trade, with the market buying at bid 
price and selling at ask price. Cash flows to trade are 
modeled as bounded random variables on a fixed prob-
ability space  , , P   for a base probability measure 
selected by the economy. 

Now, for a risk with a cash flow outcome denoted by 
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the random variable X  with a distribution  F x

Q

 at a 
fixed period, we develop bid-ask prices at which the cash 
flow is bought and sold such that the net cash flow is an 
acceptable risk. The set of acceptable risks is defined by 
a convex cone of random variables that contains the 
non-negative cash flows. [1] showed that any acceptable 
set (cone)  of acceptable risks, there exists a convex 
set  of probability measures ,  equiva-
lent to , with the property that  if and only if: 


 Q

X P

  0, all .QE X Q             (11) 

The acceptability of a cash flow can then be com-
pletely determined by its distribution function. Accept-
ability of cash flows is linked to positive expectation via 
concave distortion. So for some concave distribution 
function ,  the cash flow distribution 
function 

 u
 

0 u 
 

1
F x P X x 



 is acceptable if: 

  dx F x


  0.             (12) 

[6] show that the bid price,  b x , for the cash flow X  
is given by: 

      d 0 inf Q

Q
b x x F x E X



 
    

,

 

    (13) 

and the ask price is given by:  

      d 1 0 sup .Q

Q
a x x F x E X



 
      



  (14) 

The bid and ask prices for call and put options can be 
obtained by using closed formulas which are obtained on 
integration by parts. Let  be the random variable at 
time  of an underlying asset. The call option 

 and put option , where 

S
T

 C S K
 P K S

  K  
is the strike price. The following are the closed bid and 
ask prices expressions: 

    1 SK
a C F x x



   d ,

d ,

.

          (14) 

    1 SK
b C F x x



            (15) 

    
0

d ,
K

Sa P F x x
               (16) 

     
0

1 1 d
K

Sb P F x x
            (17) 

sF  is the distribution function of  and is important 
because the bid and ask prices are determined completely 
by this distribution.  

S

5. Continuous Time Models for Option  
Pricing 

This section looks at the models that are used for option 
pricing. It is acknowledged that the relatively most liquid 
traded assets with market information are quoted vanilla 
options. In practice, trades mark to market their models 

to quoted vanilla options before they can price non- 
quoted options. As a result, this has led to demands for 
models that are capable of synthesizing the surface of 
vanilla options. It is well known that the geometric 
Brownian model is not capable of synthesizing the sur-
face of vanilla options, although it remains a standard 
quoting model in the markets. Improvements on this 
model are offered by Lévy processes, which were found 
to be successful in synthesizing across strikes for a given 
maturity. The following is a brief overview of the mod-
els. 

5.1. Black-Scholes Model 

The log-normal process models continuously compound- 
ed returns using the general Brownian motion so that: 

  , X t t W t                (18) 

where  W t  is a standard Weiner process,   is the 
instantaneous drift and   is the instantaneous volatility 
of returns. The stochastic differential equation of the 
stock price is: 

      d d dS t S t t W t   ,         (19) 

where   is the growth rate of the stock and is related to 
  as follows 21 2    . The stochastic differential 
equation can be solved to give the following dynamics of 
the stock price: 

     21
0 exp

2
S t S t W t        

  
.    (20) 

The characteristic function for the logarithm of the 
stock price is: 

    ln 2 21 1
e exp ln 0

2 2
iu S tE iu S t   2u t

                
 

(21) 

5.2. Variance Gamma Model 

[7] define a Variance Gamma process,  , , ,X t    , as 
a time changed Brownian motion as follows: 

      , , , ,X t t W       t        (22) 

where  t  is a Gamma process with parameters  
and , that is, 

a
b   ~t Gamma at b

 ,a b
,  where the gamma 

probability density function  is given by:  

   
1

, , e , 0.
a a

bxb x
f x a b x

a


 


           (23) 

  and   are respectively the instantaneous drift and 
volatility and  W t  is a standard Brownian motion. 
The Variance Gamma process uses a gamma process to 
time change a Brownian motion. The density function of 

Open Access                                                                                            JMF 



M. E. SONONO, H. P. MASHELE 469

a Variance Gamma process is known in closed form and 
requires the computation of the modified Bessel function 
of the second kind which can be time consuming. Thus 
we resort to using the characteristic function, which is 
found by the conditioning on the jump  t  as in many 
Lévy processes and is given by: 

    2 2
t

u
1

1 .
2X t u iu



    


 
 
 

     (24) 

The dynamics of the stock price are given by:  

        0 exp , , , ,S t S t X t            (25) 

where   is the instantaneous expected return of the 
stock evaluated at calendar time and   is a compensa-
tor term The characteristic function for the logarithm of 
stock price is: 

           lne exp ln 0iu S t

X tE iu S t          .u  

(26) 
The compensator term can be found from the charac-

teristic function and is given by: 

    1
nl X t i

t
 
   . 

5.3. Variance Gamma Scalable Self  
Decomposable (VGSSD) Model 

Sato process model was first introduced by [8]. The Sato 
process was shown to be effective in synthesizing many 
options on numerous underliers at the same time. The 
idea behind the model was to construct stochastic proc-
esses that had inhomogeneous independent increments 
from Lévy processes with homogeneous independent 
increments such that the higher moments are constant 
over the time horizon. 

The starting point for the construction of the Sato 
model is the self-decomposable law. Loosely speaking, 
the self-decomposable law describes random variables 
that decompose into the sum of a scaled down version of 
themselves and an independent residual term. The scal-
ing property means the distribution of increments of var-
ious time scales can be obtained from that of other time 
scale by rescaling the random variable at that time scale. 
Thus the distribution at larger time scales are derived 
from those at smaller time scales, which are easier to 
estimate as the data are sufficient. [9] proposed that the 
self-decomposable law is associated with the unit time 
distribution of self-similar additive process whose in-
crements are independent, but not necessarily stationary. 

It is known that stock prices are moved by many 
pieces of information. If the pieces of information are 
considered as a sequence of independent random vari-
ables , then the price changes are con-

sequences of the impacts from all i

 : 1, 2,iZ i  

Z . Now, let 

0
n i

i

S  Z  denote their sum. Suppose that there exist 
centering constants n  and scaling constants nb  such 
that the distribution of n n n  converges to the dis-
tribution of the random variable 

c
b S c

X , which belongs to a 
family law “class L”. Then the random variable X  is 
said to have the class L property. So, the price change 
over the time horizon is the outcome of many independ-
ent random variables which can be approximated as a 
random variable X  that has the law of “class L”. [10] 
define the self-decomposable law as follows. 

5.4. Definition Self Decomposable Law 

A random variable X  is self-decomposable if for all 
 0,1c , 

,
law

cX cX X                   (27) 

where cX  is a random variable independent of X . 
The self-decomposable random variable X  can be 

decomposed into a partial of itself and another inde-
pendent random variable. [10] also shows that one may 
associate with such a self-decomposable law at unit time 
a process with independent but inhomogeneous incre-
ments by defining the marginal law of the process at time 
points  upon scaling the law at unit time. Therefore we 
have that: 

t

 X t ,t X t 0.                  (28) 

Thus we can study the price changes easily using 
self-decomposable laws, which are easier to handle than 
class L. 

Self-decomposable laws are an important sub-class of 
the class of infinitely divisible laws [11]. The character-
istic function of the self-decomposable laws has the form 
(see [10]) 

 2 2 eiux

R
u 1xp 1 1 ,x

g x
E i iux x

x

1

2
ru e eiux d

  
 

       
  


 









(29) 
where ,r  are constants, ,  2 0 

   2

R

g x

x
1 dx x   , 

and  g x  is an increasing function when 0x   and 
decreasing function when . An infinitely divisible 
law is self-decomposable if the corresponding Lévy den-
sity has the form  

0x 

 g x

x
, 

where  g x  is increasing for negative x  and de-
creasing for positive x . 

The dynamics of the stock price is defined as: 
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         0 exp ,S t S r t X t t          (30) 

where  is a compensator term. The Sato process 
used in this work is the one constructed from the vari-
ance gamma process and is known as the Variance 
Gamma Scalable Self Decomposable (VGSSD) process. 
The variance gamma process is defined by time changing 
an arithmetic Brownian motion with drift 

 t

  and volatil-
ity   by an independent gamma process with unit 
mean rate and variance rate  . Let  ; G t   be the 
gamma process, then the variance gamma process is 
written as: 

    , , , ; ; ,VGX t G t W G t           (31) 

where  is an independent standard Brownian mo-
tion. 

 W t

The gamma process is an increasing pure jump Lévy 
process with independent identically distributed incre-
ments over regular non overlapping intervals of length 

 that are gamma distributed with density h  hf g  
where: 

 
1
e

, 0

h g

h h

v

g
f g g

h

 




 


  
 

.             (32) 

The VGSSD is constructed from the variance gamma 
process by defining the scaled stochastic process  X t  
such that it is equal in law to  where  1VGt X  1VGX  
is a variance gamma random variable at unit time. It fol-
lows that the characteristic function of  X t  is given 
by [7] 

     
2 2

1  
1

1 .
2VGX t Xu iut u t         

 
    (33) 

Since the VGSSD is a scaled stochastic process, its 
higher moments remain constant over time.  

6. Numerical Tests 

Next, focus is shifted to analyzing the risk profiles of 
option investing strategies. We examine two option 
strategies which are namely bull call spread strategy and 
bear call spread strategy. We determine the maximum 
risk, maximum reward and breakeven price for each of 
the strategies. Comparison of risk profiles is done be-
tween the VGSSD model and the Black-Scholes model. 
The Black-Scholes model is considered here since it is 
the one that is mostly used by industrial practioners. So, 
the Black-Scholes is a proxy for market prices. The the-
ory of conic finance provides bid-ask prices, which de-
pend on the risk appetite of investors. For evaluation of 
bid-ask prices, we use acceptability indices based on the 
MAXMINVAR. The options used in the strategies are of 

European type and are applied to Single Stocks Futures 
(SSF) options offered in the South African financial 
markets. 

A bull call spread is a bullish strategy formed by buy-
ing an “in-the-money call option” (lower strike) and sell-
ing “out-of-the-money” (higher strike). Both call options 
must be on the same underlying and expiration date. The 
strategy’s net effect is to bring down the cost and break-
even (long call strike price + net debt) on a buy call (long 
call) strategy. 

A bear call spread is a bearish strategy formed by buy-
ing an “out-of-the-money” call option (higher strike) and 
selling an “in-the-money” call option (lower strike). Both 
call options must be on the same underlying security and 
expiration date. The strategy's concept is to protect the 
downside of the sold call option by buying a call option 
of higher strike price. Then, the investor receives a net 
credit since the call option which has been bought has a 
higher strike price than the sold option. The breakeven 
will be the sum of the strike price of the short call option 
plus the premium received. 

For numerical illustration purposes, we used names of 
two large South African banks—ABSA and Standard 
Bank. Note that, the illustrations do not pertain to any 
real positions on the banks. The bid-ask prices were 
computed at various theoretical prices of the underlying 
on the expiration date. The 3-month JIBAR is used as a 
proxy for the risk-free interest rate. To realize model 
calibration, we need market prices. Simulated data set of 
bid-ask options at different strikes maturing on the same 
date were generated using the models introduced in the 
previous Section. 

The illustrations that follow merely suggest what an 
investor can do given the different risk appetites on an 
investor. The illustrations are implemented at stress (risk) 
level of 0.01, 0.05 and 0.10. 

6.1. Bull Call Spread Risk Profile 

6.1.1. Scenario 
An investor owns 100 shares in ABSA Bank (ASAQ), 
which in early July are trading at a Single Stock Future 
(SSF) fair value of R140. The investor believes the mar-
ket will be bullish in the coming 6 months and decided to 
create a bull call spread. So the investor buys a DEC 
ASAQ 140 call option and sells a DEC ASAQ call op-
tion with a higher strike price, so as to create the bull call 
spread strategy. The concern for the investor is on the 
appropriate higher strike which can create an attractive 
strategy. 

1) At different stress (risk) levels, the investor deter-
mines the bid-ask prices for the range of strike prices. 

2) The investor analyzes the risk profiles at each strike 
price choice so as to create an appropriate trade. 

3) The investor finally assesses the performance of the 
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strategy, given a range of possible values of the underly-
ing at expiration for the appropriate strike price from step 
2 at a stress level of 0.01. 

In addition, the investor gathers the following infor-
mation: 

3month JIBAR rate 5 % .01  

Time to expiration 6 r 12  y  

Dividend yield 0% (assumpti . on)  

In order to create the strategy appropriately, the inves-
tor implemented the following steps. 

1) Bid-Ask Prices at Different Stress  Levels   γ
The calibrated parameters used for this strategy are 

0.240   in the Black-Scholes model and  

0.226, 0.131, 0.08, 0.480         

in the VGSSD model. An attractive bull call spread is 
created when an investor buys a lower strike call and 
sells a higher strike call. In the scenario presented above, 
the investor has the choices shown in Table 1. Table 2 
shows the bid-ask prices for the options using both the 
Black-Scholes model and VGSSD model. 

2) Risk Profile Analysis 
Next, we look at the risk profiles for each of the 

choices using bid-ask prices provided in step 1 at a 
stress level of 0.01. Under the Black-Scholes model, an 
attractive strategy can be created by choice 4) as shown 
in Table 3. The reason is that the risk and breakeven 
point is lower whilst maximum reward and maximum 
Return on Investment (ROI) are high enough to be at-
tractive. 

Also under the VGSSD model, an attractive strategy 
can be created using choice 4) as shown in Table 4. The 
reason being again that the risk and breakeven is lower 
whilst the maximum reward and maximum Return on 
Investment (ROI) are high enough to be attractive. 

3) Scenario Analysis at the Expiration Date 
After choosing an attractive choice from step 2, we 

now look at the profit/loss of the strategy at expiration 
for a range of prices for the underlying. We compare the 
profit/loss under the two models—Black-Scholes model 
and VGSSD model. Table 5 shows the profit/loss of the 
strategy under the two models. Figure 1 shows the plot 
of the profit/loss of the strategy for a range of prices of 
the underlying at expiration. From Figure 1, it can be 
observed that the breakeven point is lower using the 
VGSSD model than the Black-Scholes model. A lower 
breakeven point is ideal for a strategy which intends to 
reduce risk. 

6.1.2. Comment on the Strategy  
The spread was observed to be lower in the VGSSD 
model than in the Black-Scholes model. Reduced spread 
can minimize the unhedgeable risk, which can be a major 

Table 1. Bull call spread investor choices. 

Step 1 Long Call Buy R140 Strike Call 

Step 2 1) Short Call Sell R141 Strike Call 

Or 2) Short Call Sell R142 Strike Call 

Or 3) Short Call Sell R143 Strike Call 

Or 4) Short Call Sell R144 Strike Call 

Or 5) Short Call Sell R145 Strike Call 

 
boost for option trading strategies. As a result, the cost of 
trade is lowered as the sold options can offset the cost of 
the bought option. In conclusion, the strategy becomes 
less risky in terms of lower risk and lower breakeven 
point but offers limited potential reward, which can still 
be highly attractive. 

6.2. Bear Call Spread Risk Profile 

6.2.1. Scenario 
In early July an investor believes the SSF fair price of 
Standard Bank (SBKQ) is going to fall from the current 
levels of R120 to around R117.50. The investor wants to 
create an attractive bear call spread. So the investor 
writes a SEP SBKQ 119 call option and buys a higher 
SEP SBKQ strike call, so as to create a bear call strategy. 
A little bit of concern to the investor is on the appropriate 
higher strike to choose so as to create an attractive strat-
egy. 

1) Now at different stress (risk) levels, the investor 
determines the bid-ask prices for the range of higher 
strike prices. 

2) The investor analyzes the risk profiles at each of 
strike price choices so as to create an appropriate trade. 

3) Finally, the investor accesses the performance of the 
strategy for the appropriate strike price in step 2 at a 
stress level of 0.01 given a range of possible values of 
the underlying at expiration.  

1) Bid-Ask Prices at Different Stress  γ  Levels 
The calibrated parameters used for this strategy are 

0.306   in the Black-Scholes model and  

0.285, 0.070, 0.060, 0.510         

in the VGSSD model. An attractive bear call spread is 
created when an investor sells a lower strike call and 
buys a higher strike call. In the scenario presented here, 
the investor has the choices shown in Table 6. Table 7 
shows the bid-ask prices for the options using both the 
Black-Scholes model and VGSSD model. 

2) Risk Profile Analysis 
We now look at the risk profiles for each of the 

choices using bid-ask prices provided in step 1 at a stress 
level of 0.01. In Table 8 a potential strategy can be cre-
ated using a strike which provides reduced risk and a 
lower breakeven point. In addition, the gain on this strat- 
egy is the net credit received upon entering the trade. As 
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Table 2. Bull call spread bid-ask prices at different stress levels. 

Black-Scholes Model VGSSD Model Stress 
Level S K Bid Ask Spread S K Bid Ask Spread 

0.01 140 140 11.05 11.83 0.78 140 140 11.04 11.77 0.73 

  141 10.56 11.32 0.76  141 10.54 11.25 0.71 

  142 10.07 10.81 0.74  142 10.04 10.73 0.69 

  143 9.62 10.33 0.71  143 9.59 10.26 0.67 

  144 9.16 9.85 0.69  144 9.15 9.79 0.64 

  145 8.71 9.37 0.66  145 8.70 9.32 0.62 

0.05 140 140 10.50 14.59 4.09 140 140 10.49 14.28 3.79 

  141 10.03 14.00 3.79  141 10.01 13.68 3.67 

  142 9.56 13.40 3.84  142 9.53 13.09 3.56 

  143 9.09 12.80 3.71  143 9.07 12.52 3.45 

  144 8.67 12.28 3.61  144 8.66 12.01 3.35 

  145 8.24 11.72 3.48  145 8.23 11.47 3.24 

0.10 140 140 9.85 18.45 8.60 140 140 9.81 17.67 7.86 

  141 9.38 17.72 8.34  141 9.35 16.99 7.64 

  142 8.93 17.03 8.10  142 8.92 16.35 7.43 

  143 8.49 16.33 7.84  143 8.46 15.67 7.21 

  144 8.07 15.67 7.60  144 8.05 15.05 7.00 

  145 7.68 15.05 7.37  145 7.67 14.46 6.79 

 
Table 3. Bull call spread risk profile using Black-Scholes model. 

Step 1 Long Call     

 Buy R140 Strike Call@R11.77     

Step  2 Short Call Risk Reward Breakeven Max ROI 

1) Sell R141  Strike Call@R10.54 R1.23 -R0.23 R141.23 −18.70% 

2) Sell R142  Strike Call@R10.04 R1.73 R0.27 R141.73 15.61% 

3) Sell R143 Strike Call@R9.59 R2.18 R0.82 R142.18 37.61% 

4) Sell R144 Strike Call@R9.15 R2.62 R1.38 R142.62 52.67% 

5) Sell R145 Strike Call@8.70 R3.07 R1.93 R143.07 62.87% 

 
Table 4. Bull call spread risk profile using VGSSD model. 

Step 1 Long Call     

 Buy R140 Strike Call@R11.83     

Step 2 Short Call Risk Reward Breakeven Max ROI 

1) Sell R141 Strike Call@R10.56 R1.27 −R0.27 R141.27 −21.26% 

2) Sell R142  Strike Call@R10.07 R1.76 R0.24 R141.76 13.64% 

3) Sell R143 Strike Call@R9.62 R2.21 R0.79 R142.21 35.75% 

4) Sell R144 Strike Call@R9.16 R2.67 R1.33 R142.67 49.81% 

5) Sell R145 Strike Call@R8.71 R3.12 R1.88 R143.12 60.26% 

 
a result choice 4) is attractive to create the strategy since 
the net credit is fairly high, and the breakeven point as 
well as the risk are reduced. 

In Table 9 a potential strategy again can be created 
using a strike which provides reduced risk and lower 
breakeven. Also, the gain on this strategy is the net credit 
received upon entering the trade. As a result choice 4) is 
attractive to create the strategy since the net credit is 

fairly high, and the breakeven point is reduced and the 
risk is fairly low. 

3) Scenario Analysis at the Expiration Date 
Next, we look at the profit/loss of the strategy at expi-

ration for a range of prices for the underlying using the 
choice selected in Step 2. We compare the profit/loss under 
the two models—Black-Scholes model and VGSSD model. 
Table 10 shows the profit/loss of the strategy under the 
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Table 5. Bull call spread profit/loss under Black-Scholes and VGSSD models. 

Black-Scholes Model VGSSD Model 

ASAQ@expiry Profit/Loss ASAQ@expiry Profit/Loss 

135 −2.67 135 −2.62 

136 −2.67 136 −2.62 

137 −2.67 137 −2.62 

138 −2.67 138 −2.62 

139 −2.67 139 −2.62 

140 −2.67 140 −2.62 

141 −1.67 141 −1.62 

142 −0.67 142 −0.62 

142.67 0.00 142.62 0.00 

143 0.33 143 0.38 

144 1.33 144 1.38 

145 1.33 145 1.38 

146 1.33 146 1.38 

147 1.33 147 1.38 

148 1.33 148 1.38 

149 1.33 149 1.38 

150 1.33 150 1.38 

 
Table 6. Bear call spread investor choices. 

Step 1 Short Call Sell R119 Strike Call 

Step 2 1) Long Call Buy R120 Strike Call 

Or 2) Long Call Buy R121 Strike Call 

Or 3) Long Call Buy R122 Strike Call 

Or 4) Long Call Buy R123 Strike Call 

Or 5) Long Call Buy R124 Strike Call 

 
Table 7. Bear call spread bid-ask prices at different stress levels. 

Black-Scholes Model VGSSD Model Stress 
Level S K Bid Ask Spread S K Bid Ask Spread 

0.01 120 119 6.91 7.45 0.54 120 119 6.87 7.40 0.73 

  120 6.40 6.90 0.50  120 6.37 6.86 0.71 

  121 5.92 6.40 0.48  121 5.88 6.35 0.69 

  122 5.47 5.93 0.46  122 5.43 5.89 0.67 

  123 5.02 5.45 0.43  123 5.01 5.43 0.64 

  124 4.62 5.03 0.41  124 4.61 5.02 0.41 

0.05 120 119 6.57 9.42 2.85 120 119 6.55 9.34 2.79 

  120 6.06 8.76 2.70  120 6.04 8.67 2.63 

  121 5.61 8.16 2.55  121 5.59 8.09 2.50 

  122 5.18 7.61 2.43  122 5.17 7.53 2.36 

  123 4.75 7.03 2.28  123 4.73 6.95 2.22 

  124 4.35 6.50 2.15  124 4.33 6.42 2.09 

0.10 120 119 6.16 12.25 6.09 120 119 6.14 12.05 5.91 

  120 5.67 11.44 5.77  120 5.66 11.28 5.62 

  121 5.25 10.74 5.49  121 5.23 10.56 5.33 

  122 4.81 10.00 5.19  122 4.80 9.85 5.05 

  123 4.42 9.33 4.91  123 4.41 9.19 4.78 

  124 3.71 8.08 4.37  124 3.69 7.94 4.25 
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Table 8. Bear call spread risk profile using Black-Scholes model. 

Step 1 Short Call     

 Sell R119 Strike Call@R6.91     

Step 2 Long Call Risk Reward Breakeven Max ROI 

1) Buy R120 Strike Call@R6.90 R0.99 R0.01 R119.01 1.01% 

2) Buy R121 Strike Call@R6.40 R1.49 R0.51 R119.51 34.23% 

3) Buy R122 Strike Call@R5.93 R2.02 R0.98 R119.98 48.51% 

4) Buy R123 Strike Call@R5.45 R2.54 R1.46 R120.46 57.48% 

5) Buy R124 Strike Call@5.03 R3.12 R1.88 R120.88 60.26% 

 
Table 9. Bear call spread risk profile using VGSSD model. 

Step 1 Short Call     

 Sell R119 Strike Call@R6.87     

Step 2 Long Call Risk Reward Breakeven
Max 
ROI

1) 
Buy R120 Strike  

Call@R6.86 
R0.99 R0.01 R119.01 1.01%

2) 
Buy R121 Strike  

Call@R6.35 
R1.48 R0.52 R119.52 35.14%

3) 
Buy R122 Strike  

Call@R5.89 
R2.02 R0.98 R119.98 48.51%

4) 
Buy R123 Strike  

Call@R5.43 
R2.56 R1.44 R120.44 56.25%

5) 
Buy R124 Strike  

Call@5.02 
R3.15 R1.85 R120.85 58.73%

 

 

Figure 1. Plot of bull call spread profit/loss. 
 
two models. Figure 2 shows the plot of the profit/loss of 
the strategy for a range of prices of the underlying at ex-
piration. The breakeven point is lower in the VGSSD 
model than the Black-Scholes model, which is ideal in 
creating a strategy with reduced risk. 

Table 10. Bull call spread profit/loss under the Black-Scho- 
les and VGSSD models. 

Black-Scholes Model VGSSD Model 

SBKQ@expiry Profit/Loss SBKQ@expiry Profit/Loss

125 −2.54 125 -2.56 

124 −2.54 124 -2.56 

123 −2.54 123 -2.56 

122 −1.54 122 -1.56 

121 −0.54 121 -0.56 

120.46 0.00 120.44 0.00 

120 0.46 120 0.44 

119 1.46 119 1.44 

118 1.46 118 1.44 

117 1.46 117 1.44 

116 1.46 116 1.44 

115 1.46 115 1.44 

 

 

Figure 2. Plot of bear call spread profit/loss. 

6.2.2. Comment on the Strategy 
Under this strategy, the spread is reduced under the 
VGSSD model than the Black-Scholes model. The lower 
spread implies reduced cost of risk and lower breakeven 
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point. However, in this strategy reducing the risk impacts 
on the potential reward under the VGSSD model as 
compared to the Black-Scholes model. 

7. Conclusions 

In this paper, we have looked at the quantification of 
risks of trading strategies in incomplete markets. We 
established that the no-arbitrage price intervals are unac-
ceptably large. We need intervals with prices which are 
acceptable to the market. The acceptability of the prices 
is assessed by risk measures. Ideal risk measures are 
those that produce price bounds that are suitable for use 
as bid-ask prices and are able to compensate for un-
hedgeable risk. Plausible risk measures we look at are 
coherent risk measure and acceptability indices. Accept-
ability indices are heavily used in the theory of conic 
finance, which we used to assess the risk of trading 
strategies. Conic finance provides plausible bid-ask pric-
es which are determined only by the probability distribu-
tion of the cash flow. 

We assess the risks of financial positions using two 
strategies-bull call spread and bear call spread. Com-
parison of the risk profiles for the trading strategies is 
done between the VGSSD model and the Black-Scholes 
model. The findings showed that the spread was reduced, 
especially using the VGSSD model as compared to the 
Black-Scholes model. In addition, the findings showed 
that the bid-ask price intervals are able to compensate for 
the unhedgeable risk. Ultimately, reward from the strate-
gies had a potential of increasing. 

REFERENCES 
[1] P. Artzner, F. Delbaen, J. Eber and D. Heath, “Definition 

of Coherent Measure of Risk,” Mathematical Finance, 
Vol. 9, No. 3, 1999, pp. 203-228.  
http://dx.doi.org/10.1111/1467-9965.00068 

[2] A. Cherny and D. Madan, “New Measure of Performance 
Evaluation,” Review of Financial Studies, Vol. 22, No. 7, 
2009, pp. 2571-2606.  
http://dx.doi.org/10.1093/rfs/hhn081 

[3] J. N. Cochrane and J. Saá-Requejo, “Beyond Arbitrage: 
‘Good Deal’ Asset Price Bounds in Incomplete Markets,” 
Journal of Political Economy, Vol. 108, No. 1, 2000, pp. 
79-11. http://dx.doi.org/10.1086/262112 

[4] J. Staum, “Incomplete Markets,” In: J. R. Birge and V. 
Linetsky, Handbook in Operations Research and Man- 
agement Science, Vol. 15, Chapter 12, Elsevier, Berlin, 
2008, pp. 511-563.  

[5] S. Jaschke and K. Küchler, “Coherent Risk Measures and 
Good Deal Bounds,” Finance and Stochastics, Vol. 5, No. 
2, 2001, pp. 181-200.  
http://dx.doi.org/10.1007/PL00013530 

[6] A. Cherny and D. Madan, “Markets as a Counterparty: 
An Introduction to Conic Finance,” International Journal 
of Theoretical and Applied Finance, Vol. 13, No. 8, 2010, 
pp. 1149-1177.  
http://dx.doi.org/10.1142/S0219024910006157 

[7] D. Madan, P. Carr and E. Chang, “The Variance Gamma 
Process and Option Pricing,” European Finance Review, 
Vol. 2, No. 1, 1998, pp. 79-105.  
http://dx.doi.org/10.1023/A:1009703431535 

[8] P. Carr, H. Geman, D. Madan, and M. Yor, “Self De- 
composability and Option Pricing,” Mathematical Fi- 
nance, Vol. 17, No. 1, 2007, pp. 31-57.  
http://dx.doi.org/10.1111/j.1467-9965.2007.00293.x 

[9] K. Sato, “Self Similar Processes with Independent Incre- 
ments,” Probability Theory and Related Fields, Vol. 89, 
No. 3, 1991, pp. 285-300.  
http://dx.doi.org/10.1007/BF01198788 

[10] K. Sato, “Lévy Processes and Infinitely Divisible Distri- 
butions,” Cambridge University, Cambridge, 1999. 

[11] P. Carr, H. Geman, D. Madan and M. Yor, “Pricing Op- 
tions on Realized Variance,” Finance and Stochastics, 
Vol. 9, No. 4, 2005, pp. 453-475.  
http://dx.doi.org/10.1007/s00780-005-0155-x 

 

Open Access                                                                                            JMF 

http://dx.doi.org/10.1111/1467-9965.00068
http://dx.doi.org/10.1093/rfs/hhn081
http://dx.doi.org/10.1086/262112
http://dx.doi.org/10.1007/PL00013530
http://dx.doi.org/10.1142/S0219024910006157
http://dx.doi.org/10.1023/A:1009703431535
http://dx.doi.org/10.1111/j.1467-9965.2007.00293.x
http://dx.doi.org/10.1007/BF01198788
http://dx.doi.org/10.1007/s00780-005-0155-x

