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ABSTRACT 

The normal direction to the normal direction to a line in Minkowski geometries generally does not give the original line. 
We show that in lp geometries with  repeatedly finding the normal line through the origin gives sequences of 

lines that monotonically approach specific lines of symmetry of the unit circle. Which lines of symmetry that are ap-
proached depends upon the value of p and the slope of the initial line. 

1p 
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1. Introduction 

Minkowski geometries are completely characterized by 
their unit circle, which is centrally symmetric about the 
origin and convex [1: p. 17]. The spaces are homogene- 
ous (all points are the same) and generally anisotropic 
(the yard stick for distance is not the same in all direc- 
tions). Our principal interest is the planar Minkowski lp 
geometries with . Their unit circles are 1p 

 1
p p

x y  .               (1) 

The exponent p must be at least 1 in order for the unit 
circle to be convex. Convexity is required for the triangle 
inequality [1: pp. 22,23]. If , this is Euclidean 
geometry. If , the circle is not strictly convex. As 
discussed in Section 2, since in Minkowski geometries a 
necessary and sufficient condition for uniqueness of 
normal directions to lines is that the unit circle be strictly 
convex, we do not consider the  case. Convex unit 
circles are strictly convex if they contain no line seg-
ments. The l1 geometry is well studied and is sometimes 
called taxicab, Manhattan, or city-block geometry [2]. 
Since the unit circle for the limiting case  is the 
square with vertices , we do not consider that 
geometry, as well. Figure 1 shows some lp unit circles 
and the circle with , which does not produce a 
Minkowski geometry since the circle is not convex. 

2p 

1p 



1p 

p 
 1, 1 

0.5p 

The unit circle determines distances. For the Min-
kowski distance between points P1 and P2, consider line 

L through the origin O and parallel to the line through P1 
and P2. The distance between P1 and P2 is the quotient of  
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Figure 1. Unit circles  = 1
p p

x + y  for p = 0.5, 1, 1.5, 2, 4 

and 6. The circles with p = 1, 1.5, 2, 4 and 6 give Minkowski 
geometries. 
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the Euclidean distance between P1 and P2 and the unit of 
measurement or scale in the direction of L. The unit of 
measurement is the Euclidean distance from the O to 
point Q where L intersects the unit circle [3: p. 225, 4]. 
Equivalently, translate the axes so that the origin is at P1 
and the point P2 has coordinates  2 2, x y . The Min-
kowski distance between points P1 and P2 is the value of 

 such that 0d   2 2,x d y d , is on the unit circle [1: p. 
17]. These definitions give a distance function [1: pp. 
17-18, 3: pp. 225-228]. For lp geometries, the second 
definition gives 

2 2 1
p p

x d y d  , 

so that 

 12 2 
pp p

d x y  . 

There are many applications of lp geometries. The 
shape 

 
p p

x a y b 1

b

               (2) 

is called a Lamé curve after some work by Gabriel Lamé. 
Ruane and Swartzlander [5] considered apertures for 
light with shape (2) with , which give a larger area 
than  for their constraints. Piet Hein designed a 
large traffic island for Stockholm, Sweden using (2) with 

 and , saying that it gives a smooth 
traffic flow. He called the curves (2) with  super-
ellipses. The shape (2) has been extensively used for fur-
niture design and elsewhere [6: pp. 240-254]. The Melior 
typeface’s “O” has , perhaps for aesthetic 
reasons. 

2p 

2.7581

2p 

2.5p  1.2a 

p

2p 



In the next section, we define normality in Minkowski 
geometries. Since the normal line to the normal line of a 
line is usually not the original line, in Section 3 we de-
termine the behavior of the lines obtained by succes-
sively finding normal lines of normal lines. The limiting 
behavior is in Theorems 3.4 and 3.5. In Section 4, we 
create a circle, called a Radon curve, using portions of 
two lp geometries’ unit circles, for which the normal to 
the normal of any line is the original line, which is called 
reflexivity of normality. 

2. Definition of Normality 

There are two equivalent, intuitive ways to define nor-
mality in Minkowski geometries with smooth unit circles. 
One is that line L2 is normal to the given line L1 with L2 
meeting L1 at point Q if for every point P on line L2, the 
distance from P to Q is the minimum of all distances 
from P to any point on L1 [1: p. 78, 3: p. 228]. 

For easier expression, we give the other definition in 
terms of unit vectors. It says that a unit vector is normal 
to a second unit vector if the first vector contains the ori-
gin and a point where the slope of the unit circle is the 

same as the slope of the second vector [1: p. 125, 7: p. 
145]. An application of this definition is illustrated in 
Figure 2, where 6p  . We use the second definition, 
since in practice finding the tangent lines to (1) is easier 
than minimizing a distance. 

In lp geometries, the axes  and  are mu-
tually normal lines, as are  and . However, 
in general, the normal line to the normal line of a line is 
not the original line. 

0x 
y x

0y 
y x 

In any Minkowski geometry, the unit circle is strictly 
convex if and only if normality is unique [1: p. 257, 3: p. 
232]. If the unit circle contains a line segment S, then 
normality is not unique for any line parallel to that seg-
ment. Take such a line L through the origin. Any line 
through the origin and intersecting S is normal to L, since 
the distance from the origin to the segment is one for all 
the normal lines. Hence, we do not consider l1 or l ge-
ometries. 

3. Repeatedly Finding Normal Lines 

The purpose of this section is to explore the behavior of 
the lines found by repeatedly finding normal lines in lp 
geometries. The origin O is placed at the point on the 
initial line where the normal is found. 

Lemma 3.1 Consider lp geometry with . For 
, the slope of the normal line to  is 

1p 
mx0m  y 

   1 1
1

p
m

 .                (3) 

For 0m  , the slope of the normal line to y mx  is 

   1 1
1

p
m

 .                (4) 

Proof. For , we find the point of tangency to the 
unit circle, where the tangent is parallel to 

0m 
y mx . See 

Figure 3. In the second quadrant, the derivative of 
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Figure 2. In l6 geometry, the line orthogonal to  4 3y x   

2  through the point  0.5,1.5  is , but 

the Euclidean (l2) normal line is 

0.95 + 1.025y x

 3 4 + 9 8y x . 
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Figure 3. OP is normal to =y mx . 

 
  1

p px y    gives   1
d d

p
y x x y

  . Setting this  

equal to m gives    1 1
1

p
y x m

  , which is the slope  

of the normal line to . Formula (4) is derived 
similarly. □ 

y mx

Lemma 3.2 Consider lp geometry with . Desig-
nate by mn the slope of the nth line found by iteratively 
finding normal lines at the origin, starting with the line 

 with . For even n, 

1p 

0y m x 0 0m 

   21 1

2

p

n nm m


  ,              (5) 

and for odd n, 

   21 1

2

p

n nm m


    .            (6) 

For even n, 

   1 1

0

np

nm m
 ,                (7) 

and for odd n, 

   1 1

01
np

nm m
  .              (8) 

These formulas can be appropriately altered for 0 0m  . 
Proof. To obtain (5), for even n, using (3), 

   1 1

1 1
p

n nm m


               (9) 

and using (4) and (9), 

   

      

   2

1 1

2 1

1 1
1 1

1 1

1

1 1

.

p

n n

p
p

n

p

n

m m

m

m


 






 

     



 

Equation (5) supplies    21 1

2 0

p
m m

  and also the  

main induction step to give (7). Similarly, obtain (6) and 
(8). □ 

Lemma 3.3 Consider lp geometry with . If 1p 

0,1 0,21m m ,              (10) 

then 

,1 ,21nm mn ,              (11) 

where the second subscript indicates the identity of the 
line. 

Proof. Take m0,1 and m0,2 to be positive. The proof for 
negative initial slopes is similar. For even n, using (7) for 
line 1, (10), and then (7) for line 2 give 

       1 1 1 1

,1 0,1 0,2 ,21 1
n np p

n nm m m m
 

   .  

The proof of (11) for odd n uses (8) and (10) in a simi-
lar manner. □ 

Because of the symmetries of the lp unit circle about 
the axes, only 0  need be considered. The condi-
tion 

0m 
0,1 0,2m1m   between the slopes of two initial lines 

means that the lines have the same angle with the respec-
tive axes. Lemma 3.3 shows the symmetries about 
y x   in the behavior of the iterated normal lines, so 

only initial slopes between 0 and 1 need to be considered. 
Theorem 3.4 Consider lp geometry with . For 

the initial line 0

2p 
y m x  with 0 , the subse-

quence of 
0 m 1

 nm  for even n has values  and 
monotonically approaches 1, and the subsequence for 
odd n has values 

0 1nm 

1nm    and monotonically ap-
proaches –1. For the initial line 0  with , 
the subsequence of 

y m x 0m 1
 nm

nm

 for even n has values  
and monotonically approaches 1, and the subsequence 
for odd n has values  and monotonically ap-
proaches –1. 

1nm

1 

Proof. Take 00 m 1  . Using Lemma 3.2, for even n,  

   21 1

2

p

n nm m


   nm  

and 

   1 1

0Limit Limit 1
np

n
n n

m m


 
  . 

For odd n, 

   21 1

2

p

n nm m


     nm  

and 

    1 1

0Limit Limit 1  1
np

n
n n

m m


 
   

1

. 

Lemma 3.3 says that initial lines 0  with y m x
00 m 
0 1m 

 give the behavior of the iterated normal lines 
for . □ 

Open Access                                                                                            APM 



J. M. FITZHUGH, D. L. FARNSWORTH 650 

As an example of Theorem 3.4, Table 1 contains the 
slopes of the first eight iterated normal lines for 2.5p   
with 0 1 5m   and 0 . Lemma 3.3 says that the 
entries in the table’s two columns are inverses, since the 
values of the m0s are inverses. The normal lines mono-
tonically approach the lines 

5m 

y x  , as shown by the 
arrows in their graphs in Figures 4 and 5. 

Theorem 3.5 Consider lp geometry with 1 2p 
1

0 1nm 

0 1m 
1nm 

. 
For the initial line 0  with 00 , the subse-
quence of  for even n has values  and 
monotonically approaches 0, and the subsequence for 
odd n has values  and monotonically ap-
proaches –∞. For the initial line 0  with , 
the subsequence of  for even n has values  
and monotonically approaches , and the subsequence 
for odd n has values  and monotonically ap-
proaches 0. 

y m x

nm  

 nm

nm

m 

y m x

 nm

1

 1

 
Table 1. The slopes of the first eight iterated normal lines 
for p = 2.5. 

 0 1 5m   0 5m   

m1 −2.9240 −0.3120 

m2 0.4890 2.0448 

m3 −1.6111 −0.6207 

m4 0.7277 1.3743 

m5 −1.2361 −0.8090 

m6 0.8682 1.1518 

m7 −1.1000 −0.9101 

m8 0.9391 1.0648 
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Figure 4. The lines ny m x

2.5p 

 for the values in the first 

column of Table 1 for  and 0 1 5m  . 

0 0.8 -0.8-1.6 1.6 2.4-2.4
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Figure 5. The lines ny m x

2.5p

 for the values in the second 

column of Table 1 for   and . 0 5m 

 
Proof. The proof is the same as the proof of Theorem 

3.4 with the small necessary changes being made. □ 
As an example of Theorem 3.5, Table 2 contains the 

slopes of the first eight iterated normal lines for 5 3p   
with 0 4 5m   and 0 5 4m  . Lemma 3.3 says that the 
entries in the two columns are inverses, since the values 
of the m0s are inverses. The normal lines monotonically 
approach the axes, as shown by the arrows in their graphs 
in Figure 6. The clockwise arrows are for 0 4 5m  , 
and the counterclockwise arrows are for 0 5 4m  . 

The lp geometries have unit circles that are symmetric 
about the lines 0x  , , , and 0y  y x y x  . 
Theorems 3.4 and 3.5 show that these directions are like 
attractors or else isolated pairs when iteratively taking 
normal lines. Taking 0x   or  as the initial line 
gives a cycle of normal lines of period 2 between 

0y
0x   

and 0y  . Taking y x  or  as the initial line 
gives a cycle of normal lines of period 2 between 

y x 
y x  

and y x  . 

4. A Geometry with Reflexive Normality 

Although our focus is on lp geometries with , por-
tions of the unit circles (1) for different values of p can 
be joined to obtain interesting geometries. Theorem 4.1 
shows how to make normality reflexive for all lines, that 
is, the normal to the normal of a line is the initial line. 
Reflexivity is sometimes called symmetry. 

1p 

Theorem 4.1 Given the portion of the lp unit circle 
that is in the first and third quadrants, the only way to 
complete a unit circle in the second and fourth quadrants 
for a Minkowski geometry with reflexive normality is 
with the portions of the lq unit circle in the second and 
fourth quadrants for 1 1p q 1  . 
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Table 2. The slopes of the first eight iterated normal lines 
for p = 5/3. 

 0 4 5m   0 5 4m   

m1 −1.3975 −0.7155 

m2 0.6053 1.6521 

m3 −2.1236 −0.4709 

m4 0.3231 3.0946 

m5 −5.4439 −0.1837 

m6 0.0787 12.702 

m7 −45.269 −0.0221 

m8 0.0033 304.58 

 

0 1 -1 -2 2
x

y 

-1 

1 

2 

y = (4/5)x

y = (5/4)x

 

Figure 6. The lines ny m x  for the values in Table 2 for 

5 3p   with 0 4 5m   and 0 5 4m  . 

 
Proof. Since Minkowski unit circles are symmetric 

about their centers, we can reference only the first and 
second quadrants. Take the center to be the origin, and 
construct all normal lines at the origin. In the first quad-
rant, the unit circle is . In the second quad-
rant, the unit circle is 

 p px y 1
 y g x

 2 2

. The original line L1 is 
, , which intersects  at the point 

1 1 1 . The construction is illustrated in Figure 7 for 
p = 4. For reflexivity, demand that the slope of line L1 
equals the slope of the tangent line L3 at the point 

2 2 2  with 

y tx
 ,P x

 ,P x

0t 
y

y

 p px y 1

y g x
x y

 , and demand that the slope 
of the line L2 tangent to  at  1p p   1 1 1,P x y  
equals the slope 2 2xy  of the line L4, which is to be 
orthogonal to line L1. The goal is to find the function 
 g x . The slope of L2 is found by taking the derivative 

of  to obtain  p px y 1
1 1 d d 0p ppx py y x   . 

Then, 

     11 1 1d d 1
pp p py x x y x tx t t
          . 

Equating the slopes of the lines L1 and L3 gives 

0 2

P2

P1 L1 

L3 

L2 L4

y2.5

.5

 

Figure 7. The unit circle in this Minkowski geometry is 

 
4 4

+ =x y 1
 

in quadrants 1 and 3 and  
4 3 4 3

+ =x y 1  in 

quadrants 2 and 4. Lines L1 and L3 are parallel, as are lines 
L2 and L4. In this geometry, normality is reflexive, that is, L4 
is normal to L1 and L1 is normal to L4 for any choice of L1. 
 

 2d dt y x x              (12) 

with  y g x . Equating the slopes of lines L2 and L4 
gives 

1
2 2

pt y  x .             (13) 

Solving (13) for t gives 

   1 1

2 2

p
t y x

  .           (14) 

Equating the expressions for t in (12) and (14) and 
dropping the subscript 2 give the differential equation 

         1 1 1 11 1d d   or  d d
p ppy x y x y y x x

     , 

whose unique solution is 

     11 p pp py x
 C    . 

Since    0 0y g 1  , . Designating 1C   1p p    

by q gives 1 1p q 1   and 

1
q q

x y   

for  y g x  in the second and fourth quadrants. □ 

The unit circles 
4 4

1x y   and 
4 3 4 3

1x y 
 

are dual, since    1 4 1 4 3 1  . Dual unit circles and 
dual spaces are central to Minkowski geometry [1,3,7]. 

Schäffer’s theorem says that dual unit circles have the 
same circumferences, when the circumferences are mea- 
sured with their own distance functions [1: pp. 111-118, 
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7: p. 153, 8,9]. Because of the symmetry of the unit circle 
in Theorem 4.1, it has the same circumference as the dual 
lp and lq unit circles whose arcs compose it. 

Radon curves are equivalently defined as either unit 
circles for which normality is reflexive for all lines or 
unit circles that have arcs of dual circles in alternating 
quadrants as in Theorem 4.1’s example [1: p. 128, 3: pp. 
233-234, 7: pp. 143-145, 10]. 
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