Wireless Sensor Network, 2009, 1, 1-60 %ﬁ\}\ Scientific

Published Online April 2009 in SciRes (http://wwaiBP.org/journal/wsn/).) g;slfl‘;;',j?”g

Policy Based Self-Adaptive Scheme in Pervasive Computing

Jian Quan OUYANG"?, Dian Xi SHI™, Bo DING™, Jin FENG**, Huai Min WANG™
"'5chool of Computer, National University of Defence Technology, Changsha, China
"College of Information Engineering, Xiangtan University, Xiangtan, China
*Nanchang Military Academy Unit Battle, Nanchang, China
E-mail: *kissingmanl@gmail.com, “dxshi @nudt.edu.cn, { ®maildb, *whm w} @163com, *fengjin0510@126.com
Received February 15, 2009;revised March 6, 2009;accepted March 10, 2009

Abstract

Nowadays, application systems in pervasive comgutiave to be self-adaptive, which means adapting
themselves to dynamic environments. Our aim isnéibke systematic development of self-adaptive cempo
nent-based applications. The paper first introdacaevel policy based framework for self-adaptighesne

in pervasive computing. Then the proposed polidglogy and policy language are well expressive east

ily extensible to support the design of policy whis based on the Separation of Concerns principle-
thermore, the context-driven event channel decsuffle communication between the suppliers and con-
sumers for asynchronous communication. The propfyaetework can provide both a domain-independent
and a flexible self-adaptation solution.

Keywords: Policy Ontology, Self-Adaptive, Policy LanguagenReive Computing

1. Introduction icy is applied to meta protocol, thus it can malize a
reflective approach in the adaptation architectimead-
ditional, the proposed policy ontology and poliand
guage can support for knowledge representation and
reasoning and knowledge sharing. And they are likasi
to support the design of policy which is based ba t
Separation of Concerns principle.

The rest of the paper is structured as followsnémt
section, we introduce the current state of theSsttion 3
discusses the requirements of self-adaption. Seectio
describes the overview of adaptation architectéia-
lowing this, Section 5 proposes a policy descrgtian-
guage for pervasive computing. Section 6 illustate
event scheme. Section 7 will give an introductiorthe
prototyping applications in fire alarm scenario ge-
liminary experiments. Finally we summarize our work
and give future plan in Section 8.

Technology of software evolution drives the need fo
software self-adaptive. Moreover, while pervasioene
puting environment is open and dynamic, application
systems in pervasive computing have to be selftadap
which is adapt themselves to work in dynamic emviro
ments. Previous adaptation work is based on piadict
future circumstances and adapting themselves byokay
embedding the adaptation decisions in the progiaae.c
Itis clearly that it is done in an ad hoc way. Wpolicy
can define the behaviour of adaptive are appliedliby
ferent research projects for the flexible reconfagion
systems, it seems that a feasible approach to tmude
led from functional concerns and systematicallyedep
self-adaptive applications. Moreover, as it canasafe
the business logic (rules) from the controls (paogr
ming code) of the implementations, policy-basedcesuh
are typically more flexible and adaptable than npo- 2. Current State of the Art

icy-based approach. In a word, policies can spesify

adapt the behavior of a system and can be apptied t There are several ways for proposing polices. Bresly,
various areas: auction mechanisms, access comrel, the approaches to policy specification are propsofa
vacy (Information Collection Policies), Context awa policy language specification. Lobo [1] depicted #DL

computing, etc. (policy description language) to describe the etigs
In this paper, we present a policy based adaptive a for mapping a series of events into a set of astion
chitecture for pervasive computing. Different framr- Damianou [2] described a policy language (Pondp¥) a

rent policy approach, in the view of the proposeltesne, plying for both management and security policies fo
the context information is used as meta data aagdi distributed systems. Anthony [3] introduced a pplic

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

J. Q. OUYANG ET AL.

definition language which is designed to permit poi

49

-Well-defined semantics: The next requirement is

expression of self-managing behaviours. Moreover, awell-defined semantics. Obviously, Well-defined ippl

prototype library implementation of the policy sopp
mechanisms which can facilitate adaptive-policy de-
ployment is illustrated. Ahn [4] proposed a higkde
policy description language for formally specifyingn-
text entity relation, and introduced the translatdrich

can provide automatic generation of Java classes fo

ubiquitous entities.
The other approach is based on logic programming fo

supporting well defined semantic. Semantic Web Lan-

guages for policy specification: KaoS [5] and Ré]. [
Uszok [5] proposed a framework for specificatioramn
agement, conflict resolution and enforcement ofqies
which is used OWL ontology. Kagal [6] introduced a
policy language (Rei) for pervasive computing eomir
ment which can express the behaviour of entitiesitis
used as part of a secure pervasive system.

Recently, there are several policy based applicatio
in the ubiquitous/pervasive computing scenariokziRu
[7] presented policy based adaptive services fobilmo

commerce, but the event scheme is not mentioned. Er

radi [8] introduced policy-based middleware, Manage
able and Adaptive Service Compositions (MASC), for
dynamic self-adaptation of Web services composition
David [9] presented an adaptive framework which is
based on the Fractal component model. In the frarew
context-awareness service can provide informatimuga

the execution context. Chan [10] proposed an events

model for a highly adaptive mobile middleware, Web
Proxy for Active Deployable Service (WebPADS).
Bandara [11] applied Event Calculus to transfornthbo
policy and system behaviour specifications int@m=nil
notation. However, these methods did not concentrat
the Separation of Concerns principle to supporomec
figuring system based on reflective scheme.

can support for knowledge representation and réagon
and knowledge sharing of polices. Moreover, it ean
able interoperability of heterogeneous rules.

-Usability: As the perspective pervasive computing is
to seamless integration of computing into the sser’
everyday life, make it easy for users to write suileone
of the critical requirement of policies. Make rulegelli-
gible to the common user and declarative, humad-rea
able interface is favourable for design polices

-Lightweight: Foe the reason of limitation of resource
in pervasive computing environment, strong ruleirag
is difficult to run for the various devices in peasive
computing environment. Lightweight policy architect
is necessary for devising the rule engine.

4. Overview of Adaptation Architecture
4.1. Coreldea

The core idea of the adaptation architecture isvehim
Figure 1. The architecture is based on the terfepole
icy-driven systems which are applied in variouspdisia
systems.

We are using policies which can be seen as a set of
ophisticated rules modelled by Event-Conditioni@wt
rules for the definition of the adaptive behaviduiper-
vasive computing environment. Thus it can react to
changes of the context information by reconfigurihg
application.

Our proposed policy engine is based on the Separati
of Concerns [14] principle: extract explicit rulebusi-
ness logic from various applications. In the fatp in a

Lately, Adamczyk [12] proposed a lightweight cycle, Contgxt data is provided by context-awaren-co
framework called the Autonomic Management Toolkit, ponent, PolicyController matches all polices witie t
which can support dynamic deployment and manage-Context data and select the appropriate policy.nThe

ment of adaptation loops.

3. Requirements of Adaptation in Pervasive
Computing Environment

Generally, self-adaptive applications need to adritow
and when decisions and actions are taken. Polisgeéba
scheme can specific the adaptation layer and atitapta
time [13]. Different from the three basic requirertse
(Uniformity, Separation and Generic) for the deyelo
ment of adaptation architecture [7], we define fbk
lowing three basic requirements of policy in peivas
computing environment:

-Expressiveness: The first requirement is that suitable
expression of policies is important for describitig
rules to specify the behavior of a system. On the o
hand, it is need to be restricted to avoid ambigsiior
ill-defined policies. On the other hand, it can bettoo
complex for untrained user to write rules.

Copyright © 2009 SciRes.

judge whether the conditions in the “action-evetatile
are met. If they are met, EventMonitor triggered by
relevant events and notify PolicyExecutor. As thextn
step PolicyExecutor will executes the predefinetbsu
and lead to a change of the context information.

4.2. Reflective Scheme

A reflective scheme can ensure that can suppart-str
tural reconfiguration while examining and changeien
ronment, aiming to self-adapt at runtime. As shdwn
Figure 2, in our architecture, the strategy of skpara-
tion of component and policy can gain the decogpth
meta-level scheme and based-level implementatibe. T
advantage of the reflective scheme can conclude two
parts:

1) The policy-based application system can befilexi
extensible and adaptive, since the policy can Ipéogted
and modified in the course of runtime of systems.

Wireless Sensor Network, 2009, 1, 1-60

50

|

Context

Policy Engine |

- “action—event” table

*

I Policy
Execeutor

Figure 1. The core idea of the adaptation ar chitecture.

2) Policy-based scheme decouples the reusable com

J. Q. OUYANG ET AL.

course of adapt procedure and the sole driver dapt
procedure.

5. Policy Descriptive Language for Perva-
sive Computing (PDL PC)

5.1. Palicy Ontology

To attain better semantic language understandirdy an
share knowledge for reusable, Figure 4 illustrates
policy ontology we are developing to express thacst

ponent between the developments and deployabilityture of polices precisely.

stage. The developer can only focus on using pdbcy
describe the base-level business logic, and théogep

The proposed policy ontology defines the vocabesari
for indicating rules that perform different typef ax-

mentor can designate the component according to thgiyns To describe policy rules, the ontology defihe

application environment.

Context is the provider of the meta-level datajgyol
is the meta-level protocol between the business lagd
context, policy engine is meta-level procedure, bed
haviour component is the base-level computing entit

4.3. Context-driven M echanism

Context is one of the most important features of/pe
sive computing. As the dynamic character of pemesi
computing, it is necessary to model and specifytexdn

in a way such that context information can easiy e
change, share and reuse their knowledge. For sitypli
we define context as four tuple ConData=(ConSup,
ConType, Value, TimeStamp), ConSup is the supplier
context data, ConType indicates the type of theeocdn
(e.g., location, temperature), Value gives the eanof
the context data, Timestamp describes the genmratio
time of the context.

Here, we classify the components into two classes:

Context-aware components which gain and aggrebate t
context data and Behaviour components which cauty o
the actions according to the predefined rules ilicpo
engine. The policy engine is driven by policies ethare

a set of rules in XML files and describe how théde
iour component reacts in a specific context to supp
deployable application. As shown in Figure 2, cahts
the only starting point of self-adaptation and als® end
point of adaptation.

4.4, Context-driven Policy Based Framework

The model of context-driven policy consists of thre
layers, which is shown as Figure 3. The bottomrlage
context layer. The top layer is self-adaptive layeiile
the policy layer is in the middle. Context layencab-
stract the state of physic and information spageeiva-
sive computing environments and context-driven &szen
The policy layer is used for describing self-adepti
rules including context constraint, descriptioracfions.
Self-adaptive layer is based on context-driven sghe
Context based event is the jumping-off point of the

Copyright © 2009 SciRes.

basic concepts of “policy ontology” including “Prity”,
“Event”, “Precondition” and “LogicType”. Furthermey
we use “Unionof’ relation to design the hierarchica
structure of the policy ontology.

The structure of the policy ontology is as follows.

Priority: The “Priority” class defines the priority be-
tween policies. It has been further classified itiiaggh”
and “Low” subclass.

LogicType: LogicType class indicates types of logic
including two-valued logic and fuzzy logic.

Precondition: Preconditions are constraints on the ac-
tion and environment. We use “Unionof’ relation to
model the composition of the value restriction.

Event: The “Event” class implies the policy is trig-
gered by the changed environment context. The “Bven
class include:

1) “EventTpye” subclasses comprise “AtomEvent”
and “Composite” subclasses. In the meantime, “Com-
posite” subclass is composed by “EventOperator” and
“AtomEvent” via “Unionof” relation.

2) “LogicTpye”.

3) “Precondition”.

4) “Component” subclasses can indicate the related
component which can perform a specific action.

5) “Action” subclasses can represent an invocation
certain type of computing procedures to acquirg irse
formation or provide services in the pervasive smA
ment.

Also, the “Unionof” relation can describe the “Eten
Tpye”, “LogicTpye”, “Precondition”, “Component” and
“Action” to form “Event” class.

5.2. Policy Descriptive Language for Pervasive
Computing (PDLPC)

Policies can be described at different levels stralstion.
At a high level, Policies could be specified usirajural
language. At a low level, the method of logic ggeddraic
can be applied to specify policy description. Ie thter-
mediate point, production rules are be found tccipe
policies. In this paper, we prefer in the internagelipoint
for effectively computing in pervasive computing

Wireless Sensor Network, 2009, 1, 1-60

J. Q. OUYANG ET AL.

User ==b Application

Behavior
componment Base-leve
L1
Metz-level

PolicyExecutor
Contexi-aware_.

componment
- action-event table
Encapsulation
of contex

Engine

Figure 2. Reflective scheme of context-driven policy scheme.

Policy Layer

Context Layer
Figure 3. Model of context-driven palicy.

environments. For this reason we propose a Poliey D
scriptive Language for Pervasive Computing (PDLPC)
based on the proposed policy ontology.

The syntax of PDLPC is defined based on the BNF
notation. The most important features of BNF used i
this paper are as follows:

» =is the defining symbol. On the left-hand sidehis t
name of the grammar rule and on the right-hand iside
the definition of that name.

* | indicate optional elements.

« {and} indicate repetition. Zero or more elements.

« , is the definition separator symbol. It separates
ternatives in a grammar rule.

* ; is the terminator symbol. Every rule is termimate
by this symbol.

The definition of PDLPC is as follows.

<PolicySet>::={<Policy>};

<Policy>::= <PolicylD>,<Priority>,<LogicType>,
<EventPreconditionGroup>,<Event>;

<Priority>::=<High>|<Low>;

< LogicType >::=<Two-Valued >|<Fuzzy>;

<EventPreconditionGroup>::= {<EventPrecondition>};

<EventPrecondition>::= <EventPreconditionid>,
<EventCondition>,<Restriction>;

<EventCondition>::=<Context>|<State>;

<Con-
text>:==<ContextTime>,<ContextAattribute>,<DataType

<DataType>:==<int>|<char>|<float>|<double>|<datetin

<Restriction>::=<LogicOperator>,<Value>;

<LogicOperator>::=<Over>|<Below>|<Equate>;

<Event>::=<EventType>,<LogicType>, <Precondi-
tionGroup>,<Component>,<ActionGroup>;

Copyright © 2009 SciRes.

51

<EventType>::
<AtomEvent>:
<Compo-
siteEvent>::=<AtomEvent>,<EventOperator>;
<EventOperator>::=<>|<and>|<or>|<not>|;
<LogicType>:=<Two-valued>|<Fuzzy>;
<PreconditionGroup>::={<Precondition>};
<Precondi-
tion>::=<PreconditionID><Context>,<Restriction>;
<ActionGroup>::={<Action>};
<Action>:: =<ActionlD>, <Component>, <Method>,
<ParameterSet>;

=<AtomEvent>|<CompositeEvent>;
:=<ContextValueEvent >|<StateEvent>;

PDLPC consists of there layers: policy-event-action
Poalicy is at a high level and could be a set oésuhhich
govern the behaviour of a system can be triggesed b
events. At a low level, Action is a domain dependetion
and Precondition is constraints on the Action and@o-
nent. It can reveal the execution of actions anukicer
greater understanding of the action and its paensein
the middle level, Event is used to trigger poliog aepre-
sent the execution of action reacts in a speaifitext.

From the above description, it is convenient tabke
to define polices separately, and re-use them RIaFT.

5.3. XML Based Representation

For rules are intuitive and natural way of thinkitigere
is need to write rules conveniently. As XML becomes
the de facto standards for data representationiraad
change, and XML data which can be viewed as ahiera
chically-structured rooted tree is convenient fepresent
the policy descriptive language. Here, we prefeuse
XML-based representation for PDLPC.

We use the fire alarm example to illustrate PDLPC
using XML, as show in Figure 5. From the example, w
can find the useful features of our approach.

1) Policy is a hierarchically-structured that canfb-
vourable to XML parser.

2) Events and parameters are attached to a componen

5.4. TheLifecycle of Polices

The lifecycle of polices is as shown in Figure 6ink
cludes the main steps and related activities inpthlecy
life cycle.

The step of policy analysis is to parse the poley
via XMLParser. In the meantime, for the efficierayd
simplify of policy management, priorities of poksi fall
into two main categories: low and high. The conflic
between the two policies can be resolved at rue-tim

When PolicyController check the policy is high prio
ity, the policy will be activated, otherwise it Whe de-
activated. According to the reflective scheme, &pl
tion developer can adjust relevant policies to tiesv
situation including insert, modify and delete pglim
Policy Set. The policy maintenance mechanism is con
venient to improve the policy definition and depiognt.

Wireless Sensor Network, 2009, 1, 1-60

52

J. Q. OUYANG ET AL.

Policy Language
Ontology

unionOf
.. Event ‘e .
Priority Precondition LogicType
| unionOf
‘ EventType H LogicType ‘ ‘P..—. diti H C | ‘ ‘ Action
becla

Composite unionOf

AtomEvent Event unjonOf
unionOf

t

subclas

Context
ValueEvent

Component || Method Par;::eler

Operator
subc l'as

S

Over | Below || Equate

Figure 4. Policy ontology.

<PolicySet PolicylD="FireAlarm™>
<Policy>
<Priorities>High</Priorities>
<LogicType>Two-Valued</LogicType>
<PreconditionGroup>
<Precondition PreconditionID="First">
<Context>
<ContextTime>180506</ContextTime>
<ContextAattribute>temperature</ContextAattribute>
<DataType>float</DataType>
</Context>
<Restriction>
<Over>
<Value>200</Value>
</Over>
</Restriction>
<Component>Temperature_sensor_demo</Comp®n
</Precondition>
</ PreconditionGroup>
<Event>
<EventType>ContextEvent</type>
< LogicType >IF-THEN</Type>
< PreconditionGroup>
< Precondition PreconditionID="first">
<Context>
<ContextTime>180507</ContextTime>
<ContextAattribute>fog</ContextAattribute>
<DataType>float</DataType>
</Context>
<Restriction>
<Over>
<Value>0.3</Value>
</Over>
</Restriction>
<Component>Fog_sensor_demo</Component>
</Precondition>
</ PreconditionGroup>
<ActionGroup>
<Action ActionID="Fire_alarm”>
<Component>Fire_alarm_demo</Component>
<Method>Forecast</Method>
<ParameterSet></ParameterSet>
</Action>
</ActionGroup>
</Event>
</Policy>
</PolicySet>

ent

Figure5. Firealarm examplein XML.

Copyright © 2009 SciRes.

6. Event Scheme

6.1. Context-Driven Event Channel

The context-driven event channel decouples the apmm
nication between the suppliers and consumers fgm-as
chronous communication. Event scheme supports asyn-
chronous communication and lets one or more sugplie
to send events to more than one consumers occuating
the same time. Context-driven event channel ihaws

in Figure 7.

Controller

Activate policy

Low
priority

Parse policy

Application

Figure 6. Thelifecycle of poalices.

High
XMLF arse . priority
Policy Set -
Deactivate policy

Insert

Event

Context supplier
i channel

Context comsumer

ContextManager

IPush Push

Service PolicyExecutor

Event Context—Event

Entity

[}

Monitor table
[
User *
Environment PolicyController

PolicyEngine

Figure 7. Context-driven event channel.

Wireless Sensor Network, 2009, 1, 1-60

J. Q. OUYANG ET AL.

Context Suppliersand Consumers. ContextManager
is the context suppliers consist of context datéckwiis
organized as hierarchical ontology including Sexyic
Entity, User and Environment. When the context data
changed, context suppliers will push events to gomwss.

Context consumers which are managed by PolicyCon-

troller are final goals of the events generatedhaycon-
text suppliers pushing the events.
Event Channel: The event channel plays the role of a

central mediator between the context consumers and

suppliers. Both the suppliers and consumers conoect

53

=
@

Figure 8. Hierarchical event composition example.

and or not

one or more event channels which are managed by

EventMontior. An event channel is responsible fans-
ferring events from the suppliers to the consumers.

Reflective Scheme: PolicyExecutor can dynamically
change context data via EventMonitor for reflection
Moreover, when the policy in Policy Set is modified
deleted, it will lead to relevant change in Context
eventTable and EventMonitor.

6.2. Event Composition

An adaptation policy consists in a set of rulegheaf
the form Event-Condition-Action (ECA). The evenihca
be classified into two classes: AtomEvent and Cempo
siteEvent. AtomEvent consists of two types: Coiaixt
ueEvent represents the change of the context déibe
StateEvent gives a clue to the state of the system.

There is four event operators that allow variousiki
of complex events to be specifieel; and, or, not.

+—: If Aand B are events, AB denotes that event B
must only be triggered after event A or that evérind
B must be triggered in sequence.

is as shown in Figure 8, The composition event F is
composed by five atom events A,B,C,D,E: (not A) and

(B or (D—E)) and C.

7. The mplementation of Adaptation
Architecture

For the convenience of implementing the self adapti
we extend the CCM component container for suppgrtin
policy scheme. As shown in Figure 9, We augment the
infrastructure of CCM component container including
increasing the context list, Context-Event tablelidy-
Controller, Policy Table and Policy Executor forpsu
porting the parse and handle of policy. Contextisa
two-dimension table, which consists of componemaa
context name and the value of the context data.- Con
text-event table can describe the change of phyaith
information space. It includes the field of contestime,
event ID and event name. PolicyController is resjda

for matching all polices with the Context data aedect

- and: If A and B are events, A and B denotes thatthe appropriate policy. Policies are defined astocd
CompositeEvent is triggered when both event A and Bsophisticated rules which is described in XML (Exge
have been happened no matter the occurrence time dple Markup Language). The Policy Table can maintain

event A, B.

-or: If A and B are event s, A or B denotes that
CompositeEvent is triggered when either event B s
happened.

*not: If A is a event, not A denotes that Compo-
siteEvent is triggered when event A is not happened

the policy information which contains policy ID, Iy
priority, event ID, The reference of PolicyExecutor
pointer. They indicate the execution of action teac a
specific context and are storaged by hash table.

The functionality of Policy Engine is monitoringeth
change of the value of Context and executing tleelgr

The event composition can be composed via simplefined polices. It comprises the Event Monitor, Byli

Boolean expressions. The hierarchical event cortiposi
consists of multiple levels of atom events. Thenepia

Executor, PolicyController, Policy Table, Policy rBer
and POA (Portable Object Adapter).

P —— T
Component
— Lomponent
Context Event Table Container
N iy
! | POA
Infra— H
structure |i} = o
of CCH i Event Policy Policy

component, [Monitor

Policy Executor

Controller Parser

container il

|
|
!
ContextEList

Policy
! Table

Policy Engine

The extension of GCM

Figure 9. Extension of CCM component container for component fault detection.

Copyright © 2009 SciRes.

Wireless Sensor Network, 2009, 1, 1-60

54 J. Q. OUYANG ET AL.

Policy Parser is a CORBA object, which is a XML 8.2. Error Tolerant Policy
parser. The functionality of Policy Parser is totchaall
polices in the Context Event Table and select igeapri- As pervasive computing environments is open and dy-
ate policy to dynamically generate the Policy Execu namic, the technology is sustainable and high denti

Policy Executor is a two dimension pointer array. i it is inconspicuous to the user and does ndudisthe

The first dimension is context name, and the seésrl | ;ser's attention. This necessitates the pervasivepat-
pointer Wh'?h point to a group of COR.BA Ob].eCtS and ing system has to be resilient to faults and shbaldble
corresponding interfaces. The policy is storied &s ;e error-tolerant

structure ?r': 30I|fcy cond|t|ort1, Paclt_lonEtype,t comprl)(t:f Here, a prototype implementation of component error
name, method of component. FOliCy Executor canichec recovery has been realized based on fire alarmasicen

the condition of policy is met, if it is true, dmethod of The instance of error tolerant policies is as shamn

thi Cg(r)rl]i?:(;/g%r:tfoalllr;zrb ?atlzlegsgi;lzﬂgbeylsgd?ﬁg uninstalling Figure 11. It means that "If temperature contexnea
' [CompomentStatus], and context value=[Component

activating/deactivating the polices. In the meastirit : .
can adjust the priority of the polices according the- Failure], then call the" activate () method of tenape
ture-aware component”.

mand of the applications.
& Policy Table is initialized by PolicyController and
—
/ fire warning

can providing the query operation. For instance;aih
retrieve the reference of the corresponding Poligy
ecutor by event ID.

& Event Monitor is also initialized by PolicyControl-
ler. The role of Event Monitor is to register theest to
the Context Event Table or remove the event from th
Context Event Table. The event ID is unique and lwan
bound to the Policy Table. It can periodically ntonithe
change of value the Context List. When the charge i

sprinkler
control valve

light

temperature

infrared sens

detected, it judge whether the context event ighi Figure 10. Fire alarm scenario.
Context Event Table, if it is false, insert the &t event
into Context Event List. <PolicySet>
<Policy>
8. Prototype | mplementation <Policy Description>Temerature error tolerentiqy</Policy

Description >
<Priorities>High</Priorities>
<Event>
<Event Description >Platform cotext event</Ev®escrip-

8.1. FireAlarm Scenario

The first prototype implement is based on fire @mar |ton>

scenario, as shown in Figure 9. There are temperatu <EventType>ContextEvent</type>
infrared sensor, sprinkler control valve and firarming <Type>IF-THEN</Type>

light in a room. The fire alarm application consistf <PreconditionGroup> :
sprinkler control valve component, fire warning hig <Precondition>//Error event triggered

<Contextid>
component, temperature-aware component and fire <Component>Temperature_sensor</Component>
alarm policy. The temperature-aware component aggre <ContextTime>180506</ContextTime>//
gate the context information from the temperat@mssr <Attribute>ConponentState</Attribute>
and the aggregated data which is the occurrenedi-lik <LogicType>Bool</LogicType>//
hood of fire alarm (0%-100%) is displayed by firenitor :cheosr::i’t(%dni
terminal. When the captured values from temperatare <qu:a'te>
sor exceed the threshold, fire alarm component drille <Value>Failure</Value>//The Componisrfailed
the fire alarm lamp give off flashes of light artiskler </Equate>
control valve begin to sprinkle water which can dumi- </Restriction>
vated by sprinkler control valve component. As phede- </Precondition>
fined value which is assigned by policy stored MLXfile :fgﬁgﬁg?g;onerou?
. s . p>//action
is update from 200 to 150, it is need to only medtee fire <Action>
alarm application without recoding the program code <Component>Temperature_sensor</Companent
Moreover, while the temperature exceeds the thiésho <Method>activate</Method>//reload thenponent
policy engine will result in a change of the comti&for- <7:Cf=t‘if::leter58t></PafamEtefSet>
mation by way of executing the predefined polices. <IActionGroup>

The XML parser is based on TinyXML parser (from </Event>
SourceGauge Website). In the mean time, the refiste </Policy>
recall mechanism is used in the communication betwe </PolicySet>

the temperature-aware component and context manager
component. Figure11. Instance of error tollrant policy.

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

J. Q. OUYANG ET AL.

8.3. Comparison with Current Methods (2]
The proposed self-adapt model is based on reflectiv
scheme for adaptive middleware support. It means th
context information is used as meta data and paay
be regarded as meta protocol. Thus it can sepaedite
adapt functionality from business logic of a system
Compared with David [9], the proposed framework can
be more reusable and flexible. Compared with Adatacz
[12], the proposed policy ontology is well defined-
mantic. This means that it can adapt the behavadur
applications in the pervasive computing without re-
coding functionality, and a change in the applmagi can

be applied without restarting the system. Moreotie,
proposed policy language is based on the policglogy,
which has a common semantic understanding of aadap-
tive rules for well-defined semantics, thus it islhex-
pressive and easily extensible to support the desfg
policy engine which is based on the Separation ai-C
cerns principle.

However, there is still a limitation of the propdse
scheme that has an impact on the complexity of cemp
nent management because there both exist behaviou[rn
component in the base-level and context-aware cempo
nent in the meta-level.

(3]

[5]

[6]

9. Conclusions
In this paper, we have presented policy based agapt (8]
architecture for pervasive computing. The propqgsed
icy ontology can support for knowledge represeatati
and reasoning and knowledge sharing and integrétion
defining adaptive rules. Also, the proposed polis¢
scriptive language for pervasive computing can kEnab
define polices separately, and re-use them. Morgove
policy management allows application developers to
ensure flexibility and adaptability. Furthermorke tpol-
icy mechanism is based on not only event- condi-
tion-action rules, but also more abstract utilipdypoli-
cies.

Now our ongoing work is to apply the adaptive archi
tecture to the museum monitor scenario in Chinarat-
tice.

9]

[10]

[11]

[12]
10. Acknowledgment

This work was supported by the National High-Tech
Research and Development Plan of China under Grant
No 2006AA01Z198 and China Postdoctoral Science [1°]
Foundation Grant No 20070420187.

11. References [14]

[1] J. Lobo, R. Bhatia, and S. Naqvi, “A policy descipti
language,” 16th National Conference on Artificial

Intelligence, Orlando, Florida, USA, 1999.

Copyright © 2009 SciRes.

55

N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “Ben

A language for specifying Security and management
policies for distributed systems, V 2.3,” Imper@bllege
Research Report DoC 2000/1, October 2000.

R. J. Anthony, “A policy-definition language and
prototype implementation library for policy-based
autonomic systems,” 2006 IEEE International Confegen
on Autonomic Computing, pp. 26876, 2006.

J. Ahn, B. M. Chang, and K. G. Doh, “A policy
description language for context-based accessaand
adaptation in ubiquitous environment,” Emerging
Directions in Embedded and Ubiquitous Computing, pp.
650-659, 2006.

Uszok, Bradshaw, Jeffers, Suri, Hayes, Breedy, Bunch,
Johnson, L. Kulkarni, “KAoS policy and domain sees:
Toward a description-logic approach to policy repreation,
deconfliction, and enforcement,” in POLICY, pp.-98,
2003.

K. Lalana, F. Tim, and J. Anupam, “A policy langeag
for a pervasive computing environment,” Proceediofs
the 4th International Workshop on Policies for Bisited
Systems and Networks, Washington, DC, USA: IEEE
Computer Society, pp. 634, 2003.

E. Rukzio, S. Siorpaes, O. Falke, and H. Hussmann,
“Policy based adaptive services for mobile commgrce
2nd Workshop on Mobile Commerce and Services
(WMCS 2005), Munich, Germany, pp. 183%2, July 19,
2005.

P. C. David and T. Ledoux, “Towards a framework for
self-adaptive component-based applications,” Pidioge

of Distributed Applications and Interoperable Sysie
2003, Lecture Notes in Computer Science 2893, pp4,1
November 2003.

A. Erradil, P. Maheshwari, and V. Tosic, “Policyven
middleware for self-adaptation of web services cosip
tions,” Middleware 2006, LNCS 4290, pp. 62—-80, 2006.

A. T. S. Chan, S. N. Chuang, J. N. Cao, and H. Vnieo
“An event-driven middleware for mobile context aear
ness,” The Computer Journal, 47(3), pp.-Z@B, 2004.

A. K. Bandara, E. Lupu, and A. Russo, “Using event
calculus to formalise policy specification and gsad,”
4th IEEE International Workshop on Policies for
Distributed Systems and Networks, pp-28, 2003.

J. Adamczyk, R. Chojnacki, M. Jatz, and K. Zielhski,
“Rule engine based lightweight framework for adaptiv
and autonomic computing,” International Conferenoe o
Computational Science 2008, LNCS 5101, pp.-354,
June 2325, 2008.

P. McKinley, S. Sadjadi, E. Kaste, and B. Cheng,
“Composing composing adaptive software,” I|EEE
Computer, 37(7), pp. 564, July 2004.

W. Hursch and C. V. Lopes, “Separation of concerns,”
Technical Report NU-CCS-95-03, Northeastern Unityers
Boston, Massachusetts, 1995.

Wireless Sensor Network, 2009, 1, 1-60

