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Abstract 
 
Many problems in physics like reconstruction of the radially distributed emissivity from the line-of-sight 
projected intensity, the 3-D image reconstruction from cone beam projections in computerized tomography, 
etc. lead naturally, in the case of radial symmetry, to the study of Abel’s type integral equation. Obtaining 
the physically relevant quantity from the measured one requires, therefore the inversion of the Abel’s inte-
gral equation. The aim of this letter is to present a user friendly algorithm to invert generalized Abel integral 
equation by using homotopy perturbation method. The stability of the algorithm is analysed. The validity and 
applicability of this powerful technique is illustrated through various particular cases which demonstrate its 
efficiency and simplicity in solving these types of integral equations. 
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1. Introduction 
 
Since Abel formulated his integral equation [1] and pre-
sented its analytic solution, the equation has found appli- 
cation in many branches of physical science. The earliest 
application, due to Mach [2], arose in the study of com-
pressible flows around axially symmetric bodies. Usually, 
physical quantities accessible to measurement are quite 
often related to physically important but experimentally 
inaccessible ones by Abel’s integral equation, [3-9]. Ob-
taining the physically relevant quantity from the meas-
ured one requires, therefore, the inversion of the Abel’s 
integral equation, and in case the object does not have ra- 
dial symmetry, it requires, in principal, the inversion of 
Random transform.  

We consider the following generalized Abel’s integral 
equation 
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where  g x is the known function. The expression 
 x t

  is called the kernel of the Abel’s integral equa- 
tion or Abel kernel. An Abel’s integral equation belongs 
to the class of Volterra equation of the first kind. If  g x  
is a continuously differentiable function, then the Abel’s 
integral Equation (1) has a unique solution  
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which is equivalent to  
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Though, while the analytic solution to the Abel Equa-
tion (1) is given by (2), in practice we have only a point 
wise approximation to g, so the inversion must be carried 
out numerically. Since the integral transform (2) is equi- 
valent to fractional differentiation of order 1   some 
amplification of data noise is inevitable [11]. As the pro- 
cess of estimating the solution function   ,y x  if the data 
function  g x  is given approximately and only at a dis- 
crete set of data points, is ill-posed since even very small, 
high frequency errors in the measured  g x , such as will 
arise from experimental errors, photon counting noise and 
noise in the electronics, might cause large errors in the 
reconstructed solution  .y x  This is due to the fact that 
inversion formula (3) requires differentiating the meas-
ured data  g x . In 1982, an analytic but derivative free 
inversion formula was obtained by Deutsch and Benia-
miny [12] to avoid this problem. In addition, many nu-
merical inversion methods [13-21] have been developed 
with varying degree of success with the inherent limita-
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tions of all measured data. Consequently, the direct use 
of (2) and (3) are restricted and stable numerical methods 
become important. 

The aim of the present letter is to propose an algorithm 
to invert the Abel’s integral Equation (1) by using the 
homotopy perturbation method (HPM). We construct a 
convex homotopy by using HPM to obtain an iterative 
solution to (1) and analyze the stability of the algorithm. 
Some numerical examples are also presented to illustrate 
the accuracy of the algorithm. 
 
2. Method of Solution 
 
In this method, using the homotopy technique of topol-
ogy, a homotopy is constructed with an embedding pa-
rameter  0,1 ,p  which is considered as a “small para- 
meter”. When the homotopy theory is coupled with per-
turbation theory it provides a powerful mathematical tool. 
The details of the method can be found in [22-24].  

We construct the following convex homotopy 
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to develop a numerical inversion algorithm for the Abel 
integral Equation (1), where the embedding parameter 

 0,1p  can be consider as an expanding parameter 
[23], to obtain  
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where,   , 0,1,2,3,iL x i    are the functions to be de- 
termined. We use the following iterative scheme to eva- 
luate  iL x . 

Substituting (5) in (4) and the equating the coefficients 
of p with the same power, we get  
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Hence the solution of Equation (1) is given by  
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Now, we consider the stability of the solution (7) to 
small changes in data. That is we are interested in what 
happens to y, when we replace  g x  by    g x g x , 

where   ,g x  is unknown apart from some restriction 
on its magnitude relative to  .g x  For computational 
convenience, we write    1 .g x x   Subsequently, 
the iterative scheme (6) becomes 
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where  nL x  is given by (6) and  
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Thus, the new solution   ,y x  is given by  
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The effect of the noise  1 x  in the data deviates the 
solution by 
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where  1 0.x   
From (10), we conclude that y  and g  are con-

nected via the following generalized Abel integral equa-
tion 
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Thus, we have proved the following theorem 
Theorem. The presence of a noise term  g x  in the 

observable data  g x  changes the solution  y x  by 
an amount equivalent to the solution of the Abel integral 
Equation (11) with input equal to the noise term  g x  
itself.  

As  g x  is not known before hand, we take an up-  

per bound for  g x . Let  
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reduces to 
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3. Numerical Examples 
 
The simplicity and accuracy of the proposed algorithm is 
illustrated by the following numerical examples. We 
compute the error      ˆE x y x y x    , where  y x  
is the exact solution and  y x  is an approximate solu-
tion of the problem obtained by truncating equation (7).  

Examples. To illustrate the method, we consider the 
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following three pairs of generalized Abel integral equa-
tions with their inversions: 
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and  erf x  are the modified Bessel function of first 
kind and the error function respectively. 
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Using the iterative scheme (6) and truncating the solu-
tion series (7) at levels n = 13, 27 and 37 for the pairs 
(14), (15) and (16) respectively; we obtain the approxi-
mate solutions of the above problems. The various errors 

  , 1, 2, 3iE x i   are shown in the Figure 1. 
 
4. Conclusions 
 
A very simple but powerful and user friendly algorithm 
to invert generalized Abel integral equation is proposed 
by using homotopy perturbation method. It is proved that 
the change   ,y x  in the solution  y x  caused by the 
presence of noise  g x  in the observable data   ,g x  
is the solution of the generalized Abel integral equation 
with input data equal to the noise  g x  itself. 
 

 

Figure 1. The various errors   , 1, 2, 3iE x i   for the pairs 
of Abel’s integral Equations (14)-(16). 
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