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ABSTRACT 

In classical convex optimization theory, the Karush-Kuhn-Tucker (KKT) optimality conditions are necessary and suffi- 
cient for optimality if the objective as well as the constraint functions involved is convex. Recently, Lassere [1] con- 
sidered a scalar programming problem and showed that if the convexity of the constraint functions is replaced by the 
convexity of the feasible set, this crucial feature of convex programming can still be preserved. In this paper, we gener- 
alize his results by making them applicable to vector optimization problems (VOP) over cones. We consider the mini- 
mization of a cone-convex function over a convex feasible set described by cone constraints that are not necessarily 
cone-convex. We show that if a Slater-type cone constraint qualification holds, then every weak minimizer of (VOP) is 
a KKT point and conversely every KKT point is a weak minimizer. Further a Mond-Weir type dual is formulated in the 
modified situation and various duality results are established. 
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1. Introduction 

Convex programming deals with the minimization of a 
convex objective function over a convex set usually de- 
scribed by convex constraint functions. In the past vari- 
ous attempts have been made to weaken the convexity 
hypothesis [2-4] by replacing convex objective as well as 
constraint functions with more general ones and thus 
exploring the extent of optimality conditions applicabil- 
ity. 

As a breakthrough to this, Lassere [1] showed that as 
far as KKT optimality conditions are concerned, the 
convexity (or any of its generalization) of the constraint 
functions can be replaced by the convexity of the feasible 
set described by the constraints. More precisely, Lassere 
considered the following convex optimization problem 
(CP): 

(CP) minimize  f x  

subject to 

  0,jg x  1, ,j m   

where : nf R R  is a differentiable convex function 
and the feasible set 

  0 : 0,  1, ,n
jF x R g x j m      

is a convex set while the jg s : nR R  are differenti- 
able but not necessarily convex functions. To prove the 
necessity and sufficiency of KKT conditions in this 
framework Lassere considered the following non-de- 
generacy condition (ND1): For all 1, ,j m  , 

  0jg x  , whenever 0x F  and   0jg x   (ND1) 

He showed that if the Slater constraint qualification1 
and the above non-degeneracy condition (ND1) hold, 
then a feasible point x* of (CP) is a global minimizer if 
and only if it is a KKT point, that is, 

   * *

1

0
m

j j
j

f x g x


    , 

and 

 * 0j jg x  , 1, ,j m   (KKT1) 

for some non-negative vector  1, , m
m R    . 

This work of Lassere [1] has been carried forward to 
the non-smooth case by Dutta and Lalitha [5]. They con- 
sidered the same problem (CP) with the only difference 
being that the function f is a non-differentiable convex 
function and the convex set 0F  is described by local 
1The Slater constraint qualification is said to hold for the problem (CP) 
if there exists ˆ nx R  such that  ˆ 0jg x   for all 1, ,j m  . 
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Lipschitz constraint functions jg  which are not neces- 
sarily differentiable or convex. In terms of Dutta and 
Laltha [5] a point *

0x F  is said to be a KKT point for 
the problem (CP) if there exist scalars 0, 1, ,j j m    , 
such that 

   * 0 *

1

0 ,
m

j j
j

f x g x


    

and 

 * 0,j jg x   1, ,j m   (KKT2) 

where 

      * * *: , ,n nf x R f y f x y x y R          

denotes the sub-differential of f at x* and 

    0 * 0: , , ,n n
j jg x R g x d d d R        

denotes the Clarke sub-differential of the function jg  at 
x*. 

Further, Dutta and Lalitha [5] introduced the following 
non-smooth version (ND2) of Lassere’s non-degeneracy 
condition: 

For all 1, ,j m   

   0
00 , whenever and 0j jg x x F g x    (ND2) 

In this modified setting Dutta and Lalitha [5] con- 
cluded that if each jg  is assumed to be regular in the 
sense of Clarke [6] and if the Slater constraint qualifica- 
tion and the non-degeneracy condition (ND2) hold, then a 
feasible point x* is a global minimizer of f over 0F  if 
and only if it is a KKT point. 

The overall aim of this paper is to extend Lassere’s [1] 
results to a vector optimization problem over cones. 

2. Preliminaries and Problem Formulation 

We consider the following vector optimization problem 
(VOP) over cones: 

(VOP) K – minimize  f x  

subject to  g x Q  
where : n pf R R  and : n mg R R  are differenti- 
able functions, K and Q are closed convex cones with 
non-empty interiors in Rp and Rm respectively. 

Let   :nF x R g x Q     be the set of feasible 
solutions of (VOP). 

The positive dual cone K* and the strict positive dual 
cone *sK  of K are respectively defined as 

 * :  0  for all p tK z R x z x K     

and 

  * : 0 for all \ 0s p tK z R x z x K    . 

We begin by defining the notion of a KKT point in 

terms of (VOP). 
Definition 2.1: A point *x F  is said to be a 

KKT-point if there exist  * \ 0K   and *Q   such 
that 

   * * 0t tf x g x      and  * 0t g x  . 

For the problem (VOP), the solutions are defined in 
the following sense: 

Definition 2.2 [7]: A point *x F  is called 
1) a weak minimum of (VOP) if for all x F  

   * intf x f x K  ; 

2) a Pareto-minimum of (VOP) if for all x F  

     * \ 0f x f x K  ; 

3) a Strong minimum of (VOP) if for all x F  

   *f x f x K  . 

Let wF  denote the set of weak minimum solutions of 
(VOP). 

The forthcoming optimality and duality results are 
based on suitable generalized convexity assumptions 
over cones, thus we recall some known definitions in the 
literature. 

Definition 2.3 [8,9]: A function  : n pf R R  is said 
to be 

1) K-convex at a point * nx R  if for every nx R  

      * * *f x f x f x x x K    . 

2) K-pseudoconvex at * nx R  if for every nx R  

      * * *int intf x x x K f x f x K      . 

3) strongly K-pseudoconvex at * nx R  if for every 
nx R  

      * * *intf x x x K f x f x K      . 

4) strictly K-pseudoconvex at * nx R  if for every 
nx R  

      * * *intf x x x K f x f x K      . 

If f is K-convex (K-pseudoconvex, strongly K-pseu- 
doconvex, strictly K-pseudoconvex) at every * nx R  
then f is said to be K-convex (K-pseudoconvex, strongly 
K-pseudoconvex, strictly K-pseudoconvex) on Rn. 

On the lines of Jahn [10] we define Slater-type cone 
constraint qualification as follows: 

Definition 2.4: The problem (VOP) is said to satisfy 
Slater-type cone constraint qualification at *x F  if 
there exists ˆ nx R  such that 

    * * *ˆ intg x g x x x Q   . 

Note that if g is Q-convex at x* and the problem (VOP) 
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satisfies Slater constraint qualification, that is, there ex- 
ists ˆ nx R  such that  ˆ intg x Q  , then (VOP) satis- 
fies Slater-type cone constraint qualification at x*. 

Also, it is worth noticing that following the steps of 
Lassere [1] and Dutta and Lalitha [5] we can define the 
analogous non-degeneracy condition (ND3) for (VOP) as 
follows: 

For all  *Q \ 0  ,   0t g x   , whenever x F  
and   0t g x  . 

But if we assume that Slater-type cone constraint 
qualification holds at a point *x F , then there exists 
ˆ nx R  such that 

    * * *ˆ intg x g x x x Q    

which means that for all  *Q \ 0   for which 

 * 0t g x  , we have   * *ˆ 0t g x x x     which 

itself implies that  * 0t g x    and hence the non- 
degeneracy condition holds. 

Thus in the paper, we shall extend Lassere’s [1] results 
to the vector optimization problem (VOP) over cones but, 
unlike Lassere, to prove our results we need to assume 
only Slater-type cone constraint qualification at a point. 

3. Optimality Conditions 

In this section we prove several classical optimality re- 
sults by taking generalized convexity assumptions over 
cones on the objective function and assuming the feasible 
set to be convex and with no convexity type restriction 
on the constraint function. It is clear that if the constraint 
function g in (VOP) is Q-convex then the feasible set F is 
convex, so we begin by exemplifying the fact that F can 
be convex without g being Q-convex. 

Example 3.1: Consider 2:g R R  defined as 

   2,  6g x x x   

and  

  , : , 0Q x y y x x   . 

Here g is not Q-convex, because if we take 5 2x   
and * 3x   then 

      * * * 1
0,

4
g x g x g x x x Q

       
 

. 

But the feasible set  : 2F x R x    is convex. 
We have the following lemma. 

Lemma 3.1: If the feasible set F of (VOP) is convex 
then 

   * * 0, for all t g x x x x F             (1) 

   * * *where  , \ 0  satisfy 0tx F Q g x    . 
Proof: Let F be convex and suppose  

 * *, \ 0x F Q  , 

satisfy  * 0t g x  . 
Assume that 

   * * 0  for some  t g x x x x F     .    (2) 

Now, for 0 1  , we have 

  
       

* *

* * *

g x x x

g x g x x x o



 

 

   
 

where 

 
0

lim 0o





 . 

This implies that. 

  
       

* *

* * *

t

t t t

g x x x

g x g x x x o

 

    

 

    
 

Using (2) together with  * 0t g x   for  suffi- 
ciently small, 0  , we get 

  * * 0t g x x x    .           (3) 

Since F is convex, therefore  * *x x x F   , that 
is, 

  * *g x x x Q    , 

so that 

  * * 0t g x x x    . 

This contradicts (3). Hence the result. 
The above lemma plays a pivotal role throughout the 

rest of the paper, thus we illustrate it by means of an ex- 
ample. 

Example 3.2: Consider 2 :g R R  and Q as defined 
in Example 3.1. Then we have already seen that g is not 
Q-convex whereas the feasible set F is convex. 

Now, if we take * 2x F  , then  * 0t g x   if 
and only if  , , 0      , and for this choice of , 

     * * 5 2 0 for allt g x x x x x F         

Also, for any other * 2x  , there does not exist any 
 * \ 0Q   for which  * 0t g x  . 

Hence the lemma holds. 
The following theorem serves the main purpose of the 

paper. 
Theorem 3.1: Consider a feasible solution x* of the 

vector optimization problem (VOP) and assume that Sla- 
ter-type cone constraint qualification holds at x*. If f is 
K-convex at x* and the feasible set F is convex then x* is 
a weak minimum of (VOP) if and only if it is a KKT- 
point. 

Proof: Let *x F  be a weak minimum of (VOP). By 
Lemma 1 [11], there exist *K   and *Q   not 
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both zero such that 

     * * * 0,t t nf x g x x x x R           (4) 

and 

 * 0t g x  .                 (5) 

If possible, let 0  , then 0   so that from (4), 
we get 

   * * 0,t ng x x x x R      .       (6) 

Since Slater-type cone constraint qualification holds at 
x*, there exists ˆ nx R  such that  

    * * *ˆ intg x g x x x Q   , 

which gives that 

     * * *ˆ 0t g x g x x x    . 

This together with (5) implies 

   * *ˆ 0t g x x x    , 

which contradicts (6). Therefore 0  . 
Since the inequality (4) holds for every nx R , we 

conclude that 

   * * 0t tf x g x                (7) 

and 

 * 0t g x  .                 (8) 

Hence x* is a KKT-point. 
Conversely, let *x F  be a KKT-point, that is, there 

exist  * \ 0K   and *Q   such that (7) and (8) 
hold. 

Suppose x* is not a weak minimum of (VOP), so there 
exists x̂ F  such that 

   * ˆ intf x f x K  .            (9) 

Since f is K-convex at x*, 

      * * *ˆ ˆf x f x f x x x K    .      (10) 

By (9) and (10), 

  * *ˆ intf x x x K   , 

which implies 

   * *ˆ 0t f x x x    . 

This, by (7), gives 

   ˆ 0t g x x x     . 

But this contradicts Lemma 3.1 as   0t g x   . 
Hence x  is a weak minimum for (VOP). 
Theorem 3.2: Let f be K-pseudoconvex at *x F  

and suppose that F is convex. Further assume that Sla- 
ter-type cone constraint qualification holds at x*. Then x* 
is a weak minimum of (VOP) if and only if it is a 
KKT-point. 

Proof: Proof follows on similar lines as Theorem 3.1. 
Now we obtain sufficient optimality conditions for 

(VOP). 
Theorem 3.3: Let f be K-convex at *x F  and the 

feasible set F be convex and suppose that there exist 
*sK   and Q   such that (7) and (8) hold. Then 

x  is a Pareto minimum of (VOP). 
Proof: Let if possible, x  be not a Pareto minimum 

of (VOP). Then there exists x̂ F  such that 

     ˆ \ 0f x f x K   .           (11) 

Since f is K-convex at ,x  we have 

      ˆ ˆf x f x f x x x      . 

Using (11), we get 

     ˆ \ 0f x x x K K    . 

Since * ,sK   we have 

   ˆ 0t f x x x     . 

Now proceeding as in the converse part of Theorem 
3.1, we get a contradiction to Lemma 3.1. Hence x  is a 
Pareto minimum of (VOP). 

We now give an example to illustrate Theorem 3.3. 
Example 3.3: Consider the problem 

(VOP) K-Minimize  f x  

Subject to  g x Q   
where 2:g R R  and Q are as defined in Example 3.1 
and 2:f R R  and K are given by 

      2 2 3, 3 , , :f x x x x K x y x y x         . 

Then, as shown in Example 3.1, g is not Q-convex. 
while the feasible set  : 2F x R x    of (VOP) is 
convex. Also f is K-convex at * 2x  . 

It can be seen that for 

* *3 21 21
1, and ,

4 20 20
sK Q           

   
, 

   * * 0,t tf x g x      and  * 0t g x  . 

Thus by Theorem 3.3, * 2x   is a Pareto minimum of 
(VOP). 

Remark 3.1: Example 3.3 describes a vector optimi- 
zation problem in which a Pareto minimum is obtained 
by applying Theorem 3.3 whereas it is impossible to do 
so using Lassere’s [1] results. 

Theorem 3.4: Let f be strictly K-pseudoconvex at 
x F   and the feasible set F be convex and suppose 
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that there exist  \ 0K   and Q   such that (7) 
and (8) hold. Then x  is a Pareto minimum of (VOP). 

Proof: Let if possible, x  be not a Pareto minimum 
of (VOP). 

Then there exists x̂ F  such that 

     ˆ \ 0f x f x K   . 

Since f is strictly K-pseudoconvex at ,x  we get 

  ˆ intf x x x K    . 

As  * \ 0K  , we have 

   * *ˆ 0t f x x x    . 

Now proceeding as in the converse part of Theorem 
3.1, we get a contradiction to Lemma 3.1. Hence x  is a 
Pareto minimum of (VOP). 

Theorem 3.5: Let f be strongly K-pseudoconvex at 
*x F  and the feasible set F be convex and suppose 

that there exist  \ 0K   and Q   such that (7) 
and (8) hold. Then x  is a strong minimum of (VOP). 

Proof: Let if possible, x  be not a strong minimum 
of (VOP). 

Then there exists x̂ F  such that 

   ˆf x f x K  . 

Since f is strongly K-pseudoconvex at ,x  we get 

  ˆ intf x x x K    . 

As  \ 0K  , we have 

   * *ˆ 0t f x x x    . 

Again proceeding as in the converse part of Theorem 
3.1, we get a contradiction. Hence x  is a strong mini- 
mum of (VOP). 

4. Duality 

With the primal problem (VOP), we associate the fol- 
lowing Mond-Weir type dual program (MDP): 

(MDP) K-maximize  f y  

subject to  

      0,t tf y g y x y x F           (12) 

  0,t g y                            (13) 

 , \ 0 ,y F K Q     . 

Let FD denote the set of feasible solutions of (MDP). 
Definition 4.1: A point  , , Dy F    is said to be a 

weak maximum of (MDP) if 

     int , for all , , Df y f y K y F    . 

Let D
WF  denote the set of weak maximum solutions 

of (MDP). 
Theorem 4.1: (Weak Duality) Let x F  and 

 , , Dy F   . Assume that f is K-pseudoconvex at y 
and the feasible set F is convex, then 

    intf y f x K  . 

Proof: Let x F  and  , , Dy F   . Suppose to 
the contrary that 

    int .f y f x K              (14) 

Since f is K-pseudoconvex at y, (14) implies 

   intf y x y K   . 

As  * \ 0K  , we get 

    0t f y x y    .            (15) 

Since   0t g y  , therefore by Lemma 3.1, 

    0t g y x y    .            (16) 

Adding (15) and (16), we have 

      0t tf y g y x y      , 

which contradicts (12). Hence,     intf y f x K  . 
Theorem 4.2: (Strong Duality) Let .Wx F   As- 

sume that Slater-type cone constraint qualification holds 
at x*. If f is K-pseudoconvex at x* and the feasible set F is 
convex, then there exist  \ 0K   and Q   
such that  , , .Dx F      Further, if the conditions of 
Weak Duality Theorem 4.1 hold for all x F  and 
 , , Dy F   , then  , , .D

Wx F      
Proof: Since all the conditions of Theorem 3.2 hold, 

therefore there exist  \ 0K   and Q   such 
that 

    0t tf x g x         

and 

  0t g x   . 

Thus  , , .Dx F     Further if  , , D
Wx F     , 

then there exists  , , Dy F    such that 

    int ,f y f x K   

which contradicts Theorem 4.1. 
Hence,  , , .D

Wx F      
Theorem 4.3: (Converse Duality) Let  

 , , .D
Wy F      

Assume that f is K-pseudoconvex at y  and the fea-
sible set F is convex. Then .Wy F   

Proof: Suppose .Wy F   Then there exists x̂ F  
such that 

   ˆ intf y f x K   . 
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Since f is K-pseudoconvex at ,y  we get 

  ˆ intf y x y K    , 

so that, 

   * ˆ 0.t f y x y              (17) 

Also,  * * 0t g y  , so that by Lemma 3.1, 

   * ˆ 0t g y x y     .         (18) 

Adding (17) and (18), we have 

     * * ˆ 0t tf y g y x y        , 

which contradicts (12). Hence, .Wy F   

5. Conclusion 

This paper gives a new direction to the search for solu- 
tion of a vector optimization problem over cones. We 
have shown that, with Slater-type cone constraint quail- 
fication, convexity of the feasible set can replace the 
cone-convexity (or any of its generalization) of the con- 
straint functions, and then we just need to assume the 
cone-convexity (or a suitable generalization) of the ob- 
jective function to prove the necessity and sufficiency of 
the KKT optimality conditions. Moreover, a Mond-Weir 
type dual has been formulated in the modified situation 
and various duality results have been established. 
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