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ABSTRACT 

Pseudopotential calculations of the ground state energies of the Lanthanum neutral atom, first and second corresponding 
cations by means of the variational Monte Carlo (VMC) and the diffusion Monte Carlo (DMC) methods are performed. 
The first and the second ionization potentials have been calculated for Lanthanum. The obtained results are satisfactory 
and comparable with the available experimental data. Studying the DMC energy of the La atom at different time steps, 
gave us a time step error of the order 0.0019 Hartree for the smallest time step, τ = 0.0001 Hartree−1, and −0.0104 Har-
tree for the largest time step, τ = 0.01 Hartree−1. This paper demonstrates the ability of extending the QMC method for 
lanthanides and obtaining highly accurate results. 
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1. Introduction 

Quantum Monte Carlo (QMC) is a powerful technique by 
which one can perform computational electronic struc- 
ture calculations with high accuracy. One of the advan- 
tages of the QMC technique is that its computational 
efforts scales with N3 where N is the number of electrons 
in the system. This technique is favorable over other 
computational many-body methods. The most common 
QMC techniques, for atoms and molecules, are the varia- 
tional Monte Carlo (VMC) and the diffusion Monte 
Carlo (DMC). Accurate calculations for extremely light 
atoms using QMC methods are performed by a large 
number of researchers [1-4]. For the atoms heavier than 
Ne, the situation is more difficult. However, there have 
been some studies which gave satisfactory results [5-8]. 
For our knowledge, it is the first time Qwalk code is to 
be used in dealing with lanthanides. 

The study of chemical systems that contain f-elements 
is still a particularly challenging branch of computational 
chemistry. The difficulties presented by f-elements in 
quantum mechanical calculations arise from the large 
magnitude of the relativistic effect and the limitation in 
the electron correlation treatment. 

In the present work, by means of VMC and DMC 
methods, we have done calculations for the ground state 
energies of La atom and its charged cations with the hope 

“achieving high accuracy”. In addition, we study the 
DMC energies at different time steps and the accurate 
extrapolated value of the ground state energy of La atom 
is derived. To allow the QMC calculations of this heavy 
atom, pseudopotential valence-only calculations have been 
performed, since the presence of the inert core electrons 
introduces a large fluctuation in the energies and this 
reduces the computational efficiency. In our study, the 
basic form of the wave function is the Slater-Jastrow 
wave function which is considered the most common and 
simplest one. 

In the next section, we outline a brief description of 
the QMC methods. The results are then presented and 
discussed. Atomic units are used throughout this work 
unless otherwise indicated. 

2. Computational Methods 

Quantum Monte Carlo methods have been extensively 
described in the literatures [9-11], so we give here a brief 
description of the two methods, the variational and diffu- 
sion Monte Carlo methods.  

The variational Monte Carlo (VMC) technique de- 
pends on the familiar variational principle for finding the 
ground energies of quantum mechanical systems. By the 
variational principle, the expectation value of the ground 
state energy of a many body system of N particles evalu- 
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ated with a trial wavefunction ψT is given by 
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which provide an upper bound to the exact ground state 
energy E0.  

The VMC method rewrites the last integral in the fol- 
lowing form: 
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 is the local energy EL of an electronic  

configuration, and   2

T R is the probability density for  

the configuration R. 
The Metropolis algorithm is used to sample a series of 

points, Ri, from the probability density in the configura- 
tion space. At each of these points the local energy EL is 
evaluated [12]. After a sufficient number of evaluations 
of the local energy have been made, the average is taken 
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So the VMC is a simple technique in which the statistical 
efficiency of the results depends on the whole on the trial 
wavefunction. The better the wavefunction guess, the 
more efficient the VMC result.  

The more accurate diffusion Monte Carlo (DMC) 
method is a stochastic projector method for solving the 
imaginary time many-body Schrödinger equation: 
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where τ is the imaginary time, τ = it and ET is the energy 
offset. 

Importance sampling with a trial wavefunction 
 is used to improve the statistical accuracy of the 

simulation and this is can be achieved by multiplying 
Equation (4) by and rearranging 
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This equation can be simulated with a random walk 

having diffusion, a draft, and a branching step and may 
be written in the integral form: 
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where the Green’s function  , ;G R R    is a solution 
of the same initial Equation (5) and can be interpreted as 
a probability of transition from a state R to R'. It is pos- 
sible to use QMC method to solve the integral in Equa- 
tion (6) but the difficulty is that the precise form of 
 , ;G R R    is not known. Fortunately the comparison 

of the Schrodinger equation with the diffusion equation 
gives us a clue about how one might approximate the 
unknown Green’s function.  

The evolution during the long time interval τ can be 
generated repeating a large number of short time steps τ. 
In the limit 0  , one can make use of the short time 
approximation for Green’s function [13]: 
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But due to the fermionic nature of electrons, the 
wavefunction must have positive and negative parts and 
this is opposite to the assumed nature of ψ which is a 
probability distribution. So the fixed-node approximation 
[14] had been used to treat the fermionic antisymmetry 
which constrains the nodal surface of ψ to equal that of 
the antisymmetric trial wavefunction ψT.  

So far, the main difference between VMC and DMC is: 
In VMC, a Monte Carlo method evaluates the many- 
dimensional integral to calculate quantum mechanical 
expectation values. Accuracy of the results depends cru- 
cially on the quality of the trial wavefunction, which is 
controlled by the functional form of the wavefunction 
and the optimization of the wavefunctions parameters. 
DMC removes most of the error in the trial wavefunc- 
tion by stochastically projecting out the ground state us- 
ing an integral form of the imaginary-time Schrödinger 
equation [15]. 

The form of the trial wavefunction is therefore very 
important; it must be both accurate and easy to evaluate. 
The simplest and most common wavefunction used in 
QMC is the Slater Jastrow wavefunction which consists 
of a Slater determinant multiplied by the exponential Jas- 
trow correlation factor which includes the dynamic cor- 
relation among the electrons so it plays a crucial role in 
treating many-body systems. The basic functional form 
of the Slater-Jastrow wavefunction is 
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where  1 2, , NR r r r   denote the space coordinate of  

N electrons, J(R) is the Jastrow factor, cn are coefficient, 
and Dn(R) is a Slater determinant of single particle orbi- 
tals which usually obtained from self-consistent DFT or 
Hartree-Fock calculations. 

3. Results and Discussion 

All our QMC calculations were performed by means of 
Qwalk code [16]. The basic form of the wavefunction is 
a product of Slater determinants for spin-up and spin- 
down electrons multiplied by a Jastrow correlation factor. 
The initial orbitals of the trial wavefunction are gener- 
ated in GAMESS package [17] via spin-restricted open 
Hartree-Fock calculations. In the present work we have 
performed pseudopotential calculations by using the 
CRENBS ECP basis set [18] which eliminates 54 elec- 
trons (Xe-core) so three electrons only are treated as va- 
lence electrons in the Lanthanum atom. The usage of 
large pseudopotential introduces additional errors but the 
Monte Carlo errors are much decreased. We used a mean 
population of 2000 configurations. At first, all our calcu- 
lations in Table 1 were performed with a time step of τ = 
0.0001 H−1. 

In Table 1, we present pseudopotential calculations of 
the Hartree Fock, EHF, the variational Monte Carlo, EVMC, 
and the diffusion Monte Carlo, EDMC, ground state ener- 
gies for the Lanthanum atom, first and second charged 
cations, alongside with the fluctuations of the local en- 
ergy; σ, for each method. In the last column, we measure 
the accuracy of the Jastrow factor by estimating   
which is the percentage of the DMC correlation energy 
retrieved within VMC 
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E E
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It is worth mentioning here that because of the lack of 
experimental data we didn’t able to make a comparison 
for the estimated values of the pseudopotential ground 
state energies for La. To our knowledge, these are the 
first values for La published to date by the QMC method. 

The tabulated results in Table 1 tell us that we have 
performed high accuracy QMC calculations. As expected 
the best values for fluctuations is the diffusion Monte 
Carlo one, σDMC. Indeed, we obtained the results with 
high efficiency, η, which is greater than 90% for the La 
atom and its doubly charged cation, La+2, and greater 
than 80% for its singly charged cation La+1. 

From the estimated DMC energies for the La atom and 
its cations, we calculated the first and second ionization 
potentials for La and compared it with the experimental 
values [19]. These values are shown in Table 2. The first 
ionization potential is in a good agreement with the ex- 
perimental value while the error is larger for the second 

ionization potential, we attributed this to the large dif- 
ference in the fluctuations of the estimated diffusion 
Monte Carlo energies, σDMC, between the La atom and its 
double charged cation, La+2. 

Practical calculations of the DMC energy suffer from 
the time step error that originates from the use of finite 
time step in the short time approximation. To investigate 
the time step error in our diffusion Monte Carlo calcula- 
tions for La atom, we made calculations for several val- 
ues of τ to get an accurate extrapolation to zero time step. 
Table 3 presents a number of calculations of the DMC 
energies at different steps. The values of the DMC en- 
ergy of La atom as a function of the time step are plotted 
in Figure 1.  

From Figure 1, it can be seen that the relation between  
 
Table 1. Ground state total energies computed within Har- 
tree Fock, EHF, variational Monte Carlo, EVMC, and diffu- 
sion Monte Carlo, EDMC, for La, first and second charged 
cations. All energies are in Hartrees. 

 EHF σHF EVMC σVMC EDMC σDMC η% 

La −1.2138 0.31 −1.2511 0.20 −1.2535 0.14 93.95

La+1 −1.0106 0.35 −1.0374 0.19 −1.0431 0.17 82.46

La+2 −0.6643 0.23 −0.6724 0.04 −0.6727 0.03 96.42

 
Table 2. First and second ionization potentials for the La 
atom computed within diffusion Monte Carlo, IPDMC, com- 
pared to the available experimental values, IPEXP. The ioni- 
zation potentials are in (eV). 

 IPDMC (eV) IPEXP (eV) 

First 5.72 5.58 

Second 15.80 11.06 

 
Table 3. Time step dependence of the diffusion Monte Carlo 
Energy, EDMC, for the La atom. The last column indicates 
the values of the time step errors. 

Time step (Hartree)−1 EDMC (Hartree) Time step error (Hartree)

0.00010 −1.2535 0.0019 

0.00025 −1.2557 −0.0003 

0.00050 −1.2567 −0.0013 

0.00100 −1.2594 −0.0040 

0.00150 −1.2610 −0.0056 

0.00200 −1.2582 −0.0028 

0.00400 −1.2624 −0.0070 

0.00600 −1.2639 −0.0085 

0.00800 −1.2654 −0.0100 

0.01000 −1.2658 −0.0104 

Open Access                                                                                         WJCMP 



A Quantum Monte Carlo Study of Lanthanum 

Open Access                                                                                         WJCMP 

206 

 

Figure 1. Time step dependence of the diffusion Monte 
Carlo (DMC) energies for La atom. 
 
the DMC energies and the time steps follows a polyno- 
mial relationship, this is because the presence of Jastrow 
factor that introduces polynomial behavior in the energy 
as a function of time step. We performed a polynomial 
extrapolation of the energies to zero time step. The ex- 
trapolated value at τ = 0 for La is −1.25659 ± 0.000839 H. 
For the smallest time step, τ = 0.0001 H−1, we found a 
time step error of 0.0019 H and for the largest time step, 
τ = 0.01 H−1, a value of −0.0104 H has been found.  

In conclusion, the small statistical errors which have 
been reported for La and its charged cations in this paper 
open the way to the possibility for performing high ac- 
curacy QMC calculations for the lanthanides.  
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