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Abstract 
 
In this paper, the preconditioned accelerated overrelaxation (AOR) method for solving a class of two-by-two 
linear systems is presented. A new preconditioner is proposed according to the idea of [1] by Wu and Huang. 
The spectral radii of the iteration matrix of the preconditioned and the original methods are compared. The 
comparison results show that the convergence rate of the preconditioned AOR methods is indeed better than 
that of the original AOR methods, whenever the original AOR methods are convergent under certain condi-
tions. Finally, a numerical example is presented to confirm our results. 
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1. Introduction 
 
Sometimes we have to solve the following linear systems 

,Hx f                 (1.1)  

where  
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Systems such as (1.1) are important and appear in 
many different applications of scientific computing. For 
example, (1.1) are usually faced when the following gen- 
eralized linear-squares problem is considered 

   1min ,
n

T

x
Ax b W Ax b


 


 

where W is the variance-covariance matrix. One can see 
[2-5] for details. 

As is known, the linear systems (1.1) can be solved by 
direct methods or iterative methods. Direct methods are 
widely employed when the order of the coefficient ma-
trix H  is not too large, and are often regarded as robust 
methods. The memory and the computational require-

ments for solving the large linear systems may seriously 
challenge the most efficient direct methods available to- 
day. The alternative is to use iterative methods establi- 
shed for solving the large linear systems. Naturally, it is 
necessary that we make the use of iterative methods in-
stead of direct methods to solve the large sparse linear 
systems. Meanwhile, iterative methods are easier to im-
plement efficiently on high performance computers than 
direct methods. 

As is known, there exist three well-known classical it-
erative methods, i.e., Jacobi, Gauss-Seidel and succes-
sive overrelaxation (SSOR) method, which were fully 
covered in the excellent books by Varge [6] and Young 
[7]. To make the convergence rate of SSOR method bet-
ter, accelerated overrelaxation (AOR) method was pro-
posed in [8] by Hadjidimos. 

To solve the linear systems (1.1) with the AOR itera-
tive method, based on the structure of the matrix H , the 
matrix H  is split as follows   
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BC

  
        

        (1.2) 

The AOR iterative method for solving (1.1) is estab-
lished as follows 

   1
, , 0,1,i i

w rx T x wg i            (1.3) 

where 0w  , ,w rT  is iteration matrix and is of the fol-
lowing form 
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Obviously, if w r , then the AOR method reduces to 
the SOR method. 

The spectral radii of the iteration matrix is decisive for 
the convergence and stability of the method, and the 
smaller it is, the faster the method converges when the 
spectral radii is smaller than 1. To accelerate the conver-
gence rate of the iterative method solving the linear sys-
tems (1.1), preconditioned methods are often used. That 
is, 

,PHx Pf  

where the preconditioner P  is a non-singular matrix.  
If the matrix PH is expressed as 
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then the preconditioned AOR method can be defined by 

     
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In this paper, according to the idea of [1] by Wu and 
Huang, a new preconditioner is proposed to improve the 
convergence rate of the AOR method. Be similar to the 
work of [1] and [9], we compare the spectral radii of the 
iteration matrix of the preconditioned and the original 
methods. The comparison results show that the conver-
gence rate of the preconditioned AOR methods is indeed 
superior to that of the original AOR methods, whenever 
the original AOR methods are convergent (to see the next 
section). 

For convenience, we shall now briefly explain some of 
the terminology and lemmas. Let   n n

i jC c    be an 
n n  real matrix. By   ,diag C  we denote the n n  di- 
agonal matix coinciding in its diagonal with .iic  For 

  ,ijA a   ,n n
ijB b   we write A B if ij ija b  

holds for all , 1, 2, , .i j n   Calling A  is nonnegative 
if 0,A   0; , 1,2, , ,ija i j n   we say that 0A B   

if and only if A B  These definitions carry immedi- 
ately over to vectors by identifying them with 1n  ma- 
trices.     denotes the spectral radius of a matrix.  

Lemma 1.1 [6] Let n nA   be a nonnegative and 
irreducible n n  matrix. Then 

1) A  has a positive real eigenvalue equal to its spec- 
tral radius  A ; 

2) for   ,A there corresponds an eigenvector 0x  ; 
3)  A  is a simple eigenvalue of A . 
4)  A  increases when any entry of A  increases. 
Lemma 1.2 [10] Let A  be a nonnegative matrix. 

Then 
1) If x Ax   for some nonnegative vector ,x  

0x  , then  A  . 
2) If Ax x  for some positive vector x , then 
 A  . Moreover, if A  is irreducible and if 

0 x Ax x     for some nonnegative vector x , then 

( )A     

and x  is a positive vector. 
The outline of this paper is as follows. In Section 2, 

the spectral radii of the iteration matrix of the original 
and the preconditioned methods are compared. In Sec-
tion 3, a numerical example is presented to illustrated our 
results. 
 
2. Preconditioned AOR Methods and  

Comparisons  
 
Now, let us consider the preconditioned linear systems, 

,Hx f                   (2.1) 

where  H I S H    and  f I S f   with 
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Naturally, we assume that there at least exists a non-
zero number in the elements of S . 

By simple computations, we obtain 
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 1 1

11 12 21 12 22 1 12 2

21 23 31 22 23 32 2 23 3

1 11 2 1 12 1 1

.

p p

p p

p p p pp p p

B S I B

b b b b b b b b

b b b b b b b b b

b b b b b b b b

 

  
      
 

   




   


 

Be similar to (1.2), H  can be expressed as 
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Then the preconditioned AOR method for (2.1) is de-
fined as follows: 
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The following theorem is given by comparing the 
spectral radii of the iteration matrix ,w rT  and the origi-
nal iteration matrix ,w rT . 

Theorem 2.1 Let the coefficient matrix H  be irre-
ducible, 1 0B   with  1 0diag B  , 2 0B  , 0C  , 

0D  , 0 1w   and 0 1r  . Then 

1)    , , ,w r w rT T   if  , 1;w rT   

2)    , , ,w r w rT T   if  , 1.w rT   

Proof. By simple computations, we obtain 
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Clearly, if the matrix H  satisfies 1 0B  , 2 0B  , 
0C   and 0D   with 0 1w   and 0 1r  , then 
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Since the matrix H  is irreducible, by observing the 
structure of (2.3), it is not difficult to get that the matrix 

,w rT  is irreducible. Similarly, the matrix ,w rT  is non-
negative and irreducible with  1 0diag B  . 

By Lemma 1.1, there is a positive vector x  such that 

, ,w rT x x  

Where  , .w rT  Obviously, 1   is impossible, 
otherwise the matrix H  becomes singular. So we will 
mainly discuss two cases: 1   and 1  . 

Case 1: 1  . Since , , , ,w r w r w rT x x T x T x     we 
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Since 0S   and 0S  , then we get 
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0 and 0.

0 0

S S
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If 1  , then , , 0w r w rT x T x   but not equal to zero 
vector. By Lemma 1.2, we get    , ,w r w rT T  . That 
is, 1) holds. 

Similarly, 2) holds with 1,   which completes the 
proof. □ 

It is well known that when w r , AOR iteration is 
reduced to SOR iteration. The following corollary is eas-
ily obtained. 

Corollary 2.1 Let the coefficient matrix H  be irre-
ducible, 1 0B   with  1 0diag B  , 2 0B  , 0C  , 

0D   and 0 1w  . Then 

1)     ,w wT T   if   1;wT   

2)     ,w wT T   if   1.wT   

Next, we consider the following preconditioners. Let 
the matrix S  in (2.1) be defined by 
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3) If n p p  , then  
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Naturally, we assume that there at least exists a non-
zero number in the elements of S . For the sake of sim-
plicity, we assume that ,n p p  H  can be expressed 
as  
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The matrix H  is split as follows 
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Then the preconditioned AOR method for (2.1) is of 
the following form: 

     1
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Similarly, the following theorem and corollary are 
given by comparing the spectral radii of the iteration ma- 
trix ,w rT  and the original iteration matrix ,w rT . 

Theorem 2.2 Let the coefficient matrix H  be irre-
ducible, 1 0B  with  1 0,diag B  2 0,B  0,C  0D  , 
0 1w   and 0 1r  . Then 

1)    , , ,w r w rT T   if  , 1;w rT   

2)    , , ,w r w rT T   if  , 1.w rT   

Corollary 2.2 Let the coefficient matrix H  be irre-
ducible, 1 0B  with  1 0,diag B  2 0,B  0,C  0D  , 
and 0 1w  . Then 

1)     ,w wT T   if   1;wT   

2)     ,w wT T   if   1.wT   

 
3. A Numerical Example  
 
Now let us consider the following example to illustrate 
the results. 

Example 3.1 
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Table 1. The spectral radii of the AOR and preconditioned 
AOR iteration matrix. 

n  p  w  r   ,w rT   ,w rT    ,w rT  

5 3 0.95 0.8 0.1153 0.1081 0.1088 

10 6 0.9 0.5 0.2591 0.2513 0.2524 

15 5 0.9 0.85 0.3379 0.3351 0.3358 

20 10 0.75 0.6 0.5422 0.5376 0.5379 

30 18 0.8 0.75 0.7005 0.6960 0.6982 

40 30 0.5 0.3 0.9582 0.9575 0.9579 

50 25 0.9 0.5 1.1774 1.1796 1.1793 

60 20 0.8 0.5 1.3923 1.3957 1.3948 

 
Table 2. The spectral radii of the SOR and preconditioned 
SOR iteration matrix. 

n  p  w r   ,w rT   ,w rT    ,w rT  

5 3 0.95 0.1079 0.1003 0.1038 

10 5 0.9 0.2321 0.2261 0.2276 

15 5 0.8 0.4148 0.4123 0.4127 

20 15 0.75 0.5427 0.5345 0.5404 

30 18 0.65 0.7622 0.7587 0.7602 

40 30 0.6 0.9467 0.9457 0.9464 

50 25 0.8 1.1749 1.1773 1.1766 

60 20 0.5 1.2452 1.2473 1.2468 
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Tables 1, 2 display the spectral radii of the corres-
ponding iteration matrix with different parameters w , 
r  and p . These calculations are performed using Mat-
lab 7.1. 

Obviously, from Table 1, it easy to known that  

   , , 1w r w rT T    and    , , 1w r w rT T   . That  

is, these are in concord with Theorem 2.1 and 2.2. 

From Table 2, it is easy to know that    w wT T   

and    w wT T   when   1.wT   That is, these are 

in concord with Corollary 2.1 and 2.2. 
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