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ABSTRACT 
Pattern search algorithms is one of most frequently used methods which were designed to solve the derivative-free op-
timization problems. Such methods get growing need with the development of science, engineering, economy and so on. 
Inspired by the idea of Hooke and Jeeves, we introduced an integer m  in the algorithm which controls the number of 
steps of iteration update. We mean along the descent direction, we allow the algorithm to go ahead m  steps at most to 
explore whether we can get better solution further. The experiment proved the strategy’s efficiency. 
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1. Introduction 
In this paper, we consider the unconstrained minimiza-
tion problem  

min ( )nx R
f x

∈  
where : nf R R→ , is continuously differentiable, but 
the information about the gradient of f  is either un-
available or unreliable. There are lots of problems where 
derivatives are unavailable but we also want to do some 
optimizations. The diversity of applications comes from 
different complicated backgrounds with economics, en-
gineering, mathematics, finance, and so on (see [1-3] for 
instance). 

In such cases, derivative-free optimization methods 
(also named direct search methods) which neither com-
pute nor approximate derivatives play an important role. 
The reader is referred to see [4-6]. In [5], the author in-
troduced an ingenious idea for a generalized pattern 
search method and gave convergence analysis. It in-
cludes several known algorithms as its special cases. Fa-
miliar with the analysis of the property of the generalized 
method, the author developed two new classes of pattern 
search methods [6]. 

Inspired by the idea of Hooke and Jeeves [7], we im-
proved the method of [6] by introducing an integer m . 

We mean, if a step is successful (the value of f  de-
crease), then the same direction maybe also be proved 
successfully at the current point. So, we allow the algo-
rithm to explore the same direction further. On the other 
hand, if it always goes ahead along one direction until it 
can not improve the value of f  any more, it likely 
neglects additional information which other directions 
can offer. To balance these two aspects, we introduce an 

integer m  be used to control iteration steps which we 
mean that we allow the algorithm to iterate at most m  
steps along the same direction. 

Next, we would like to present some basic concepts 
we need. 

2. Pattern Search Methods and Positive 
Bases 

We use ⋅  and ,< ⋅ ⋅ >  to represent the Euclidean 
norm and inner product, respectively. By abuse of nota-
tion, if A  is a matrix, a A∈  means that the vector 
a is a column of A . It will also be convenient to assume 
that 1 2[ , , , ]ra a a

 represents, not only the matrix with 
r  columns, but also, depending on the context, the set 
of r  vectors 1 2[ , , , ]ra a a

. The identity matrix is 
denoted by I  and its i th−  column by ie . Finally, 
we write e  to represent a vector of ones with appropri-
ate size. 

2.1. Positive Bases 
We present a few basic properties of positive bases be-
ginning from the theory of positive linear dependence 
developed by Davis [8]. The positive span of a set of 
vectors 1 2[ , , , ]rv v v

 is the convex cone 

1
{ : , 0, 1, 2, , }

r

n i i i
i

v R v a v i rα
=

∈ = ≥ =∑   

The set 1 2[ , , , ]rv v v  is said to be positively de-
pendent if one of the vectors is in the convex cone posi-
tively spanned by the remaining vectors, i.e., if one of the 
vectors is a positively combination of the others; other-
wise the set is positively independent. A positive basis is 
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a positively independent set whose positive span is nR . 
Alternatively, a positive basis for nR  can be defined as a 
set of nonzero vectors of nR  whose positive combina-
tions span is nR , but no proper set does. The following 
theorem in [8] indicates that a positive spanning set con-
tains at least 1n +  vectors in nR . 

Theorem 1 If 1 2[ , , , ]rv v v  positively spans nR , 
then it contains a subset with 1r −  elements that 
spans nR . 

Furthermore, a positive basis can not contain more 
than 2n  elements ([8]). Positive basis with 1n +  and 
2n elements are referred to as minimal and maximal 
positive basis respectively. 

We present now three necessary and sufficient charac-
terizations for a set of vectors that spans nR or 
spans nR positively ([8]). 

Theorem 2 Let 1 2[ , , , ]rv v v , with 0iv ≠  for 
all 1, 2, ,i r=  , span nR . Then the following are 
equivalent: i) 1 2[ , , , ]rv v v  positively spans for nR . 
ii) For every 1, 2, ,i r=  , iv−  is in the convex 
cone positively spanned by the remaining 1r −  vectors. 
iii) There exist real scalars 1 2, , , rα α α with 0iα > , 

{1, , }i r∈  , such that 
1

0r
i ii
vα

=
=∑ . iv) For every 

nonzero vector nb R∈ , there exists an index i  in 
{1, , }i r∈   for with 0T

ib v > . 
The following result provides a simple mechanism for 

generating different positive bases. The proof can be 
found in [6]. 

Theorem 3 Suppose 1 2[ , , , ]rv v v  is a positive ba-
sis for nR  and n nB R ×∈  is a nonsingular matrix, 
then 1 2[ , , , ]rBv Bv Bv  is also a positive basis 
for nR . 

From above theorems, we can easily deduce the fol-
lowing corollary. 

Corollary 1 Let 1 2[ , , , ] n n
nB b b b R ×= ∈  be a 

nonsingular matrix, then 
1

[ , ]n
ii

B b
=

−∑  is a positive 
basis for nR . 

A trivial consequence of this corollary is that [ , ]I e  
is a positive basis. 

2.2. Pattern Search Methods 
Pattern search methods are characterized by the nature of 
the generating matrices and the exploratory moves algo-
rithms. These features are discussed more fully in [5] and 
[9]. 

To define a pattern, we need two components, a basis 
matrix and a generating matrix. 

The basis matrix can be any nonsingular matrix 
n nB R ×∈ . The generating matrix is a matrix 

kn P
kC Z ×∈ , where 1kP n> + . We partition the ge-

nerating matrix into components [ ], ,0k k kC L= Γ  
We require that k MΓ ∈ , where M  is a finite set 

of integral matrices with full row rank. We will see that 
kΓ  must have at least 1n +  columns. The 0 in the last 

column of kC  is a single column of zeros. 
A pattern kP  is then defined by the columns of the 

matrix k kP BC= . For convenience, we use the parti-
tion of the generating matrix kC  to partition kP  as 
follows: 

[ , ,0]k k k kP BC B BL= = Γ  
Given 0, >∆∈∆ kk R , we define a trial step i

ks  
to be any vector of the form i

kk
i
k BCs ∆= , where i

kC  is a to be any vector of the form i
kk

i
k BCs ∆= , column 

of kC . Note that i
kBC  determines the direction of the 

step, while k∆  serves as a step length parameter. 
At the k th−  iteration process, we define a trial 

point as any point of the form i
kk

i
k sxx += , where 

kx  is the current iteration point. 
The following algorithms state the pattern search me-

thod for unconstrained minimization.  

2.3. Algorithm 1 Pattern Search Method 
Let 0 nx R∈  and 0 0∆ >  be given. 

For 0,1, 2,k =   

Compute ( )kf x . 
Determine a step ks  using an unconstrained explora-

tory moves algorithm. 
If ( ) ( )k k kf x s f x+ < , then 1k k kx x s+ = + , otherwise 

1k kx x+ = . 
Update kC  and k∆ . 

2.4. Algorithm 2 Updating k∆  
Let , and { }0 1, , , ,lw w w Z⊂  

0 0w < , 0, 1, 2, ,iw i l≥ =  . 
Let 0 ,wθ τ=  { }, 1, 2, ,i

k i lλ τ∈ = 
. 

If ( ) ( )k k kf x s f x+ ≥ , then 1k kθ+∆ = ∆ . 

If ( ) ( )k k kf x s f x+ < , then 1k k kλ+∆ = ∆ . 

3. Our Algorithm and Numerical Results 
In [5], the generating matrix has the form 

[ ], , ,0k k k kC M M L= −  for some nn× nonsingular 
matrix kM . In light of the above discussion, the nature 
of [ ],k k kM MΓ = −  as a maximal positive basis is now 
revealed. 

In [6], the author reduced the number of objective 
evaluations in the worst case from n2  to as few as 

1+n . The choice is to make kΓ  include 1+n  col-
umns which are just the minimal positive bases. 

In this paper, we simply select the relative parameters 
as follows: [ ], ,kB I I e= Γ = −

 
with ( )Te 1,,1,1 = , 

1/ 2 , 1kθ λ= = . 
Then, we have all we need to state our algorithm now. 
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Algorithm 3 Modified Pattern Search Method 
(1) Start with 0 0 0, , , 0, 1x f k mn∆ = =  and m . 
(2) Check the stopping criteria. 
(3) Let i

kkkk Cxx ∆+=+1  and compute ( )1+kxf . 
If ( ) ( )1k kf x f x+ <  then go to step (4), else go to 
step (5). 

(4) If mmn ≤ , then kkkk xxxx −+=′ +++ 111  and  
compute ( )1+′kxf . If ( ) ( )kk xfxf <′+1 , then  

1k kx x += , 1 1, 1k kx x mn mn+ +′= = +  go to step (4); 
else 1k k+∆ = ∆ , 1, 1k kx x k k+= = + , go to step (5). 

(5) If 1i n< + , then 1i i= + , go to step (3); else set 

1 1
1, , 1, 1
2k k k kx x k k i+ += ∆ = ∆ = + = , go to step 

(2). 
In fact, from the above algorithms, we can see that if 

we think any successful step as an iteration, then B in our 
algorithm should be I  (identity matrix) or ( ),nP i j  
(A matrix which exchanges the i th−  row (or column) 
and the j th−  one of the identity matrix). Whenever a 
step is found failure, then B is set to be I again. It is easy 
to know that our choices and settings satisfied the condi-
tions in [5,6]. Then, we would like to state the conver-
gence theorem which is also the same as in [5,6]. 

Theorem 4 Assume that ( )0L x  is compact and 
that f is continuously differentiable on a neighborhood 
of ( )0L x . Then for the sequence of iterates kx  gener-
ated by algorithm 3, we have 

( )klim inf f x 0k→∞ ∇ = . 
Proof: The reader is referred to [5,6]. 

Remark: ( )0L x  is Level set defined as follows: 

( ) ( ) ( ){ }0 0 , nL x x f x f x x R= ≤ ∈ . 

We tested our algorithm on the 18 examples given by 
Moré, Garbow and Hillstrom [9]. The 19-th is our testing 
problem at the beginning which we used for testing the 
effectiveness of the new algorithm. Its definition is: 
( ) 2

2
2
1 xxxf += . We select m  to equal 0, 1, 2, 3, 5 

and 10 respectively. It is easy to know that when 0m = , 
it is just the traditional pattern search method with posi-
tive basis. 

The column “P” denotes the number of the problems, 
and ”N ” the number of variables. The numerical results 
are given by “F” which denotes the number of function 
evaluations. And “f” denotes the final function value we 
got when m = 2. Additionally, the symbols “×” means 
that the algorithm terminates because the number of 
function evaluation exceeds 500,000. And for the easy 
comparing among the results we rearranged the order of 
the number of problems. The stopping condition we select is  

610k
−∆ ≤ ,              (1) 

which is different with other relative documents. 
We select Equation (1) as the stopping criteria just be-

cause it is simple and easy for understanding. It is 
thought that if very small step can not lead to decrease in 
function value, then the current iteration point maybe 
located in a neighborhood of a local minimum. The algo-
rithm is also terminated if the number of function evalua-
tions exceeds 500,000. And we test it from three kinds of 
initial points, say, 0x , 10 0x  and 100 0x . The values 
of them are suggested in [10]. We will see that our algo-
rithm is robust and performs the best when m = 2. The 
results are represented in the following tables in the Ap-
pendix. 
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Appendix 
Table 1. The results for initial point 0x . 

P N m = 0, F m = 1, F m = 2, F m = 3, F m = 5, F m = 10,F m = 2, f 

2 6 ×  ×  ×  ×  ×  ×  — 

4 2 ×  ×  ×  ×  ×  ×  — 

10 2 ×  ×  ×  ×  ×  ×  — 

12 3 ×  130,552 127,201 105,761 119,244 ×  8.52906D-2 

1 3 5590 70,774 7741 7750 7750 7750 4.34729D-8 

3 3 7182 53,656 7412 7413 7413 7413 1.16348D-8 

5 3 2825 839 485 2441 2419 2398 534.653 

6 3 2651 121 2607 2639 2607 2607 1.20174D-9 

7 3 1812 5140 895 1644 1644 1644 0.47141 

8 3 176,941 109 110 110 110 110 1.68911D-5 

9 3 1326 105 161 1284 1284 1284 4.75148D-2 

11 4 14,559 92,655 13,991 14011 14,010 14,010 85822.2 

13 3 709 651 665 670 670 670 2.57368D-3 

14 3 13,858 27,322 20,993 28,958 95,780 18,656 4.32517 

15 3 8310 11,383 8403 8403 8403 8403 2.39103 

16 2 9658 20,884 4011 5058 4511 4511 8.91800D-4 

17 4 58,246 ×  50,618 50,841 50,876 50,876 5.087505D-12 

18 4 374 861 423 425 425 425 4.36513D-12 

19 2 156 157 157 157 157 157 3.63798D-12 

 
Table 2. The results for initial point 10 0x . 

P N m = 0, F m = 1, F m = 2, F m = 3, F m = 5, F m = 10, F m = 2, f 

2 6 ×  ×  ×  ×  ×  ×  — 

4 2 ×  ×  ×  ×  ×  ×  — 

10 2 ×  ×  ×  ×  ×  ×  — 

14 3 ×  395,663 405,203 ×  ×  ×  11.85160 

1 3 5599 1494 7750 7759 7759 5194 4.34729D-8 

3 3 13,989 ×  962 27,048 10,557 9172 0.28108 

5 3 87,860 410 376 362 343 329 84.988 

6 3 2676 86 86 86 86 86 32.4938 

7 3 1812 5165 918 1664 1661 1658 0.47140 

8 3 177,085 255 10301 1711 8963 240,840 1.65986D-5 

9 3 1453 679 1605 1622 1569 1522 3.3929D-6 

11 4 18,145 112,591 16,484 788 16337 16276 85822.2 

12 3 19,716 5833 14,437 32,520 32520 32,520 8.7120D-4 

13 3 717 708 762 767 767 767 2.5736D-3 

15 3 8571 11,765 8571 8637 8570 8539 2.39102 

16 2 9685 20,904 4026 5074 4525 4523 8.91800D-4 

17 4 98,178 78,527 85,858 86,334 86,388 86,383 5.087505D-7 

18 4 473 507 494 494 495 495 6.13756D-11 

19 2 201 190 188 189 190 190 3.63798D-12 
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Table 3. The results for initial point 100 0x . 

P N m = 0, F m = 1, F m = 2, F m = 3, F m = 5, F m = 10, F m = 2, f 

5 3 ×  101 98 95 95 92 10222 

10 2 ×  ×  ×  ×  ×  ×  — 

14 3 ×  ×  ×  ×  ×  ×  — 

1 3 5689 1584 7840 7849 7849 7849 403472D-8 

2 6 142,287 66,879 59,418 58,982 51,958 51,426 8.70496 

3 3 856 1167 393 352 463 430 0.41085 

4 2 134 152 152 152 152 152 1.000 

6 3 4375 35,350 1405 9375 3863 5833 91.756 

7 3 2212 5390 1098 1819 1796 1775 0.47140 

8 3 178,525 1245 11,067 2470 9622 241,459 1.6598D-5 

9 3 1633 789 1695 1700 1638 1579 3.392D-6 

11 4 50,455 162,471 61,685 32,205 29,500 27,933 85822.2 

12 3 81 81 81 81 81 81 32.835 

13 3 608 1042 1091 1095 1095 1095 2.5736D-3 

15 3 11181 29,597 9944 10,002 9706 10,387 2.391 

16 2 9955 21,084 4176 5208 4645 4628 8.91800D-4 

17 4 133,549 88,233 115,142 108,730 115,674 115,623 5.087505D-7 

18 4 1013 869 977 768 868 724 6.13756D-11 

19 2 651 505 458 434 415 394 3.63798D-12 

 
 
 
 
 
 
 
 
 
 
 
 
 


