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ABSTRACT 

Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging 
(MRI) and to its widespread applications. New processing methods are essential for addressing issues at each stage of 
MRI techniques. In this study, we present new sets of non-exponential generating functions representing the NMR 
transverse magnetizations and signals which are mathematically designed based on the theory and dynamics of the 
Bloch NMR flow equations. These signals are functions of many spinning nuclei of materials and can be used to obtain 
information observed in all flow systems. The Bloch NMR flow equations are solved using the Boubaker polynomial 
expansion scheme (BPES) and analytically connect most of the experimentally valuable NMR parameters in a simpli-
fied way for general analyses of magnetic resonance imaging with adiabatic condition. 
 
Keywords: Bloch NMR Flow Equations; Boubaker Polynomial Expansion Scheme (BPES); Magnetic Resonance  

Imaging (MRI); Adiabatic Condition 

1. Introduction 

Flow through porous media represents a vast field of 
study with many scientific and engineering applications 
[1-7]. A great number of experimental and theoretical 
studies on flow in restricted motion using NMR are avail- 
able in the literature [1-18]. Most of these studies are based 
on either numerical or approximation solutions of Bloch 
NMR equations. However, it will be fundamental and ideal 
if the theoretical and experimental application of MRI for 
flow analysis in restricted geometry is based on the ana- 
lytical solutions of Bloch NMR equations. This has been 
claimed over the years to be the best approach for ob- 
taining fundamental information to accurately access fluid 
dynamical properties in porous media/restricted geome- 
try. It is possible to derive necessary relationships ana- 
lytically for free motion. However, in the case of re- 
stricted motion for which porous media are defined, the 
macroscopic approach becomes mathematically intracta- 

ble. Thus, in general case, one is forced to use different 
method to find mathematical relation for the MRI signal 
in terms of NMR experimental parameters [19-21]. 

In this investigation, we solved the Bloch NMR flow 
equation which is transformable to Bessel equation of 
order zero using the Boubaker Polynomial Expansion 
Scheme to obtain the NMR transverse magnetization for 
the analysis of flow in anisotropic fluid flow. The rela- 
tionships between fluid velocity, the NMR relaxation 
rates and the path length x for cerebrospinal fluid, white 
and gray matter of human cerebrum are demonstrated. 
The Boubaker Polynomials Expansion Scheme BPES is a 
resolution protocol which has been successfully applied 
to several applied-physics and mathematics problems. 
Solutions have been proposed through the BPES in many 
fields such as numerical analysis [22-27], theoretical 
physics [24-29], mathematical algorithms [26], heat 
transfer [30,31], homodynamics [28,29], material char- 
acterization [32], fuzzy systems modeling [31] and boil- 
ogy [32,33]. *Corresponding author. 
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2. Mathematical Analysis 

The BPES protocol ensures the validity of the related 
boundary conditions regardless of the main features of 
the equation. The BPES is mainly based on Boubaker 
polynomials first derivatives properties 
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In this investigation, the Boubaker Polynomials Ex-
pansion Scheme BPES has been applied to the bound-
ary-valued second order Bloch NMR flow differential 
equation through setting the expression: 

  
0

4
10

1

2

N

y k
k

k kM x B
N




  xr         (3) 

where My(x) are the time independent NMR transverse 
magnetizations, 4k  are the 4k-order Boubaker poly-
nomials, 

B
 0,x 1  is the normalized variable, k  are 

 minimal positive roots,  is a prefixed integer  
r

4kB 0N

and 
01, ,k k N


   are unknown pondering real coefficients. 

Based on the conditions which may conform to the 
real-time experimental arrangements, we obtained a sec-
ond order non homogeneous differential equation from 
the Bloch NMR flow equation [34,35] at Larmor fre-
quency: 
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The x, y, z components (in the rotating frame) of the 
magnetization of a fluid moving with spatially varying 
velocity v is given by the Bloch equations which may be 
written as follows: 
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Subject to the following conditions: 
1) Mo  Mz a situation which holds well in general and 

in particular when the RF B1(x) field is strong say of the 
order of 1.0 G or more. 

2) Before entering signal detector coil, fluid particles 
has magnetization. 

Mx = 0, My = 0. 
3) If B1(x) is large;  1 1 GB x   or more so that My 

of the fluid bolus changes appreciably from the equilib-
rium magnetization Mo. 
 denotes the gyromagnetic ratio of fluid spins; 2   

is the RF excitation frequency; 0f   is the off-reso-
nance field in the rotating frame of reference. T1 and T2 
are the spin-lattice and spin-spin relaxation times respec-
tively, the reciprocals of T1 and T2 are defined as relaxa-
tion rates. Mo is the equilibrium magnetization and RF B1 
is the spatially varying magnetic field [35] which may be 
designed as 

 1B x gx                 (7) 

where g is the field gradient. Equations (5) and (6) give a 
second order non-homogenous differential equation called 
the Bloch NMR flow equation: 
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In NMR systems, when the RF B1 field is applied, My 
has a maximum value when RF B1 has maximum ampli-
tude and Mo ≈ 0. In biological systems especially at the 
molecular level we need to solve Equation (8) to provide 
velocity profiles for different tissues materials such that 
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where n is the number of pulses, TR is the repetition time. 
If  is the time between two pulses, we write: 
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For adiabatic condition, Equation (8) becomes: 
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Equations (13) and (14) can be solved using the Bou-
baker polynomial expansion scheme [21-23] with bound-
ary conditions based on traditional NMR procedures. 
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where β is a constant which is unique to the NMR system 
being described. For this system, the gradient field is 
chosen (under the condition 2  ) such that 
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We define n as a dimensionless variable 
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where  is a special flow property of the fluid (for this 
analysis 1  ), α is dimenssioless constant and f is a pro- 
perty of the medium. Equations (13) and (14) reduce to: 
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The BPES solution is obtained by determining the  

non-null set of coefficients 
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The final solution is: 
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3. Analysis of Results 

From Equations (7), (9)-(13), we obtain for the value of α 
= 2, the following 
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Tables 1-4 show how the fluid velocity and relaxation 
parameters changes with x for different human tissues 
materials at 1.5 T. 

The tables show the usefulness of BPES to different 
tissues on MRI scan. They can also be used to observe 
the same tissue materials at different locations. 

Figure 1 shows the NMR transverse magnetization 
when the value of x is small, high and very high for the 
Boubaker polynomial expansion scheme (BPES). The 
number of pulses n have more influence on the NMR 
signal when the value of x is small that when it is high. 
This can be useful to determine the number of pulses 
needed for a particular NMR experiment. 

Figures 2 and 3 show velocity profiles for different 
tissues materials. The color bands represent the different 
magnitude of the fluid velocity for different tissue. For 
example in Figure 2, the velocity profile is 0.030 m/s in 
cerebrospinal fluid while it is 0.25 m/s in gray matter for 
the same color band with the T1 and T2 relaxation rates 
providing tissue contrast. 
 
Table 1. Values of the path length, velocity and the relaxa-
tion rate for cerebrospinal fluid at 1.5 T. 

4M x B
N






   xr    (18) 

Cerebrospinal Fluid 

x x2 τ = α/T0 T0 v 

0.046114 0.002127 0.332266 6.019278 0.138786 

0.044374 0.001969 0.307664 6.500591 0.144229 

0.042634 0.001818 0.284009 7.042029 0.150115 

0.040894 0.001672 0.261300 7.654041 0.156502 

0.039154 0.001533 0.239537 8.349447 0.163457 

0.037414 0.001400 0.218720 9.144115 0.171059 

0.035674 0.001273 0.198849 10.05788 0.179402 

0.033934 0.001152 0.179924 11.11578 0.188601 

0.032194 0.001036 0.161946 12.34980 0.198795 

0.030454 0.000927 0.144913 13.80134 0.210153 

0.028714 0.000824 0.128827 15.52468 0.222888 

0.026974 0.000728 0.113687 17.59216 0.237266 

0.025234 0.000637 0.099493 20.10193 0.253626 

0.023494 0.000552 0.086245 23.18975 0.272410 

0.021754 0.000473 0.073943 27.04779 0.294199 

0.000000 0.000000 0.000000 ∞ ∞ 
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Table 2. Values of the path length, velocity and the relaxa-
tion rate for gray matter of the cerebrum at 1.5 T. 

Gray Matter 

x x2 τ = α/T0 T0 v 

0.046114 0.002127 1.329063 1.504819 0.034697 

0.044374 0.001969 1.230657 1.625148 0.036057 

0.042634 0.001818 1.136036 1.760507 0.037529 

0.040894 0.001672 1.045200 1.913510 0.039126 

0.039154 0.001533 0.958147 2.087362 0.040864 

0.037414 0.001400 0.874880 2.286029 0.042765 

0.035674 0.001273 0.795396 2.514469 0.044851 

0.033934 0.001152 0.719698 2.778944 0.047150 

0.032194 0.001036 0.647784 3.087451 0.049699 

0.030454 0.000927 0.579654 3.450335 0.052538 

0.028714 0.000824 0.515309 3.881169 0.055722 

0.026974 0.000728 0.454748 4.398041 0.059316 

0.025234 0.000637 0.397972 5.025483 0.063407 

0.023494 0.000552 0.344980 5.797437 0.068102 

0.021754 0.000473 0.295773 6.761946 0.159695 

0.000000 0.000000 0.000000 ∞ ∞ 

 
Table 3. Values of the path length, velocity and the relaxa-
tion rate for white matter of the cerebrum at 1.5 T. 

White Matter 

x x2 τ = α/T0 T0 v 

0.046114 0.002127 1.772084 1.128615 0.026022 

0.044374 0.001969 1.640877 1.218861 0.027043 

0.042634 0.001818 1.514715 1.320380 0.028147 

0.040894 0.001672 1.393599 1.435133 0.029344 

0.039154 0.001533 1.277530 1.565521 0.030648 

0.037414 0.001400 1.166506 1.714522 0.032074 

0.035674 0.001273 1.060529 1.885852 0.033638 

0.033934 0.001152 0.959597 2.084208 0.035363 

0.032194 0.001036 0.863711 2.315588 0.037274 

0.030454 0.000927 0.772872 2.587751 0.039404 

0.028714 0.000824 0.687078 2.910877 0.041791 

0.026974 0.000728 0.606331 3.298531 0.044487 

0.025234 0.000637 0.530629 3.769112 0.047555 

0.023494 0.000552 0.459973 4.348078 0.051077 

0.021754 0.000473 0.394364 5.07146 0.055162 

0.000000 0.000000 0.000000 ∞ ∞ 

Table 4. Values of the path length, velocity and the relaxa-
tion rate for white matter of cystic tumor at 1.5 T. 

Cystic tumor 

x x2 τ = α/T0 T0 v 

0.046114 0.002127 0.189866 10.53374 0.242876 

0.044374 0.001969 0.175808 11.37603 0.252400 

0.042634 0.001818 0.162291 12.32355 0.262701 

0.040894 0.001672 0.149314 13.39457 0.273879 

0.039154 0.001533 0.136878 14.61153 0.286050 

0.037414 0.001400 0.124983 16.0022 0.299353 

0.035674 0.001273 0.113628 17.60129 0.313954 

0.033934 0.001152 0.102814 19.45261 0.330052 

0.032194 0.001036 0.092541 21.61216 0.347891 

0.030454 0.000927 0.082808 24.15235 0.367768 

0.028714 0.000824 0.073616 27.16819 0.390054 

0.026974 0.000728 0.064964 30.78629 0.415215 

0.025234 0.000637 0.056853 35.17838 0.443846 

0.023494 0.000552 0.049283 40.58206 0.476717 

0.021754 0.000473 0.042253 47.33363 0.514848 

0.000000 0.000000 0.000000 ∞ ∞ 

 
Based on Equation (19) and Tables 1-4, the analysis 

of fluid velocity, relaxation rates and the path length x 
can be described within the following three limits: 
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Equation (21) is the short time limit where the particle  

does not flow far enough during time 
o

n
T


 to feel the  

effect of parameter . When f  1, as shown in equation 
(22) some of the particles feel the effects of restriction 
and the value of  measured within this time scale will be  

a function of 
o

n
T


. Equation (23) shows that the time  

is long enough for all the particles to feel the effects of 
restriction and the displacement of the particle depends  

not on time 
o

n
T


, but only on path length x. This indi-  
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Figure 1. Plots of the NMR transverse magnetization against (a) Small values of x; (b) Higher values of x; (c) Much higher 
values of x for the Boubaker polynomial expansion scheme (BPES). 

 

  
(a)                                                               (b) 

Figure 2. Plots of the fluid velocity against the relaxation rate and the path length x for cerebrospinal fluid and gray matter 
within the human brain at a static magnetic field of 1.5 T. 
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(a)                                                             (b) 

Figure 3. Plots of the fluid velocity against the relaxation rate and the path length x for white matter of human cerebrum and 
cystic tumor at a static magnetic field of 1.5 T. 

 
cates that the value of n and not , in Equations (13) and 
(14) as solved by the Boubaker polynomial expansion 
scheme is very significant for the analysis of flow in re-
stricted geometry where the measured fluid velocity de-
pends of the relaxation parameters as shown in Figures 2 
and 3. We may conclude that f, has a memory of the 
chemical differences within the spin’s immediate envi-
ronment or the magnitude of the static magnetic field Bo. 
Therefore, selecting a particular value of x may corre-
spond to selecting certain magnitude of Bo field or the 
molecular imprints of the tissue containing a flowing 
spin. The values of  used in this study, is for computa-
tional purposes. 

4. Conclusion 

A mathematical concept of magnetic resonance imaging 
for flow analyses in restricted geometries has been pre-
sented by solving the Bloch flow equation using the 
Boubaker polynomial expansion scheme (BPES). These 
demonstrate the usefulness of Bloch NMR flow equation 
and the Boubaker polynomial expansion scheme for 
studying fluid flow in restricted geometries to obtain the 
NMR transverse magnetization for the analyses of flow 
in anisotropic fluid flow. The relationship between fluid 
velocity, the NMR relaxation rates and the path length x 
for cerebrospinal fluid, white and gray matter of human 
cerebrum as demonstrated provides tissue contrast for 
different tissues materials. This can prove to be a very 
good starting point for building more sensitive and less 
expensive magnetic resonance imaging sequences. 
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