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ABSTRACT 

This paper aims at the development of an approach integrating the fuzzy logic strategy for a glucose and insulin in dia-
betic human optimal control problem. To test the efficiency of this strategy, the author proposes a numerical compari-
son with the indirect method. The results are in good agreement with experimental data. 
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1. Introduction 

The blood glucose in human body is controlled by two 
key organs: the pancreas and the liver. The key hormones 
are insulin and glucagon. In the pancreas, there are clus-
ters of endocrine cells scattered throughout the tissue. 
These are the α-cells and the β-cells. The α-cells produce 
glucagon and the β-cells produce insulin. The pancreas 
secretes these antagonistic hormones into the extracellu-
lar fluid, which then enters the circulatory system and 
regulates the concentration of blood glucose. For biolo-
gists, this is known as a simple endocrine pathway. Hu-
man bodies need to maintain glucose concentration level 
in a narrow range 70 - 120 mg/dl. If glucose concentra-
tion level is significantly out of the normal range, this 
person is considered to have the plasma glucose problem: 
Hyperglycemia (greater than 140 mg/dl after an Oral 
Glucose Tolerance Test, or greater than 100 mg/dl after a 
Fasting Glucose Tolerance Test) or hypoglycemia (less 
than 40 mg/dl). 

Diabetes mellitus is an endocrine disorder caused by a 
deficiency of insulin (Type 1 Diabetes) or a decreased 
response to insulin in target tissues (Type 2 Diabetes) [1]. 
The major long-term effects of diabetes are caused by 
hyperglycemia. Prolonged hyperglycemia can cause com-
plications, which may lead to kidney disease, blindness, 
loss of limbs, and so on. The hypoglycemia can lead to  

dizziness, coma, or even death. Type 1 diabetes was pre-
viously called insulin-dependent diabetes mellitus (IDDM) 
or juvenile-onset diabetes. It is an autoimmune disorder 
in which the immune system destroys the β-cells of the 
pancreas. Previously known as non-insulin dependent dia-
betes (NIDDM) or maturity onset diabetes, Type 2 dia-
betes is essentially a disorder of middle age onwards. 
However, with the increase in childhood obesity in recent 
years there have been increasing reports of this form of 
diabetes in much younger age groups. Therein lies a clue 
to the origin of this disorder, because Type 2 diabetes is 
closely linked to obesity. As the rates of obesity have 
soared over the last twenty years, so in tandem has the 
incidence of Type 2 diabetes. The underlying factor lead-
ing to Type 2 diabetes is a failure of the pancreas to pro-
duce sufficient insulin. This may be for one or both of 
two reasons. The first is that there are insufficient insulin 
producing cells in the pancreas to meet demands. The 
second is that there is resistance by the body’s target 
cells to the insulin which is produced, thus requiring in-
creasing amounts to ensure effect. Either way the ulti-
mate poverty of effect of insulin is related to over weight 
or obesity. One of the main actions of insulin is to help 
regulate blood sugar (or to be precise, blood glucose) 
levels. It achieves this in part by promoting uptake of 
sugar by cells, that is, muscle cells. Insufficient action of 
insulin leads to a reduction in sugar uptake and therefore  
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causes an abnormal rise in blood sugar. The result of this 
is the symptoms of diabetes (excessive thirst, passing of 
excessive amounts of urine, fatigue, frequent skin infec-
tions, e.g., boils, etc,). Type 2 diabetes often runs in 
families but even so the ways the patient can prevent its 
onset are: keep to a healthy weight, eat a healthy diet and 
ensure adequate levels of daily exercise. With regard to 
diabetes, regular physical activity aids weight manage-
ment, improves insulin sensitivity and therefore blood 
glucose control, aids blood fats control, and improves 
your overall sense of well-being. 

Since the 1960s, mathematical models have been used 
to describe glucose-insulin dynamics [2]. Bergman et al. 
[3] proposed a three-compartment minimal model to ana-
lyze the glucose disappearance and insulin sensitivity dur-
ing an intravenous glucose tolerance test. Modifications 
have been made to the original minimal model to incor-
porate various physiological effects of glucose and insu-
lin. Cobelli and co-workers [4] developed a revised mini-
mal model in order to separate the effects of glucose 
production from utilization. The overestimation of glu-
cose effectiveness and the underestimation of insulin 
sensitivity by the minimal model were addressed in yet 
another publication by Cobelli et al. [5] where a second 
no accessible glucose compartment was added to the 
original model. Hovorka and co-workers [6] extended the 
original minimal model by adding three glucose and in-
sulin sub-compartments in order to capture absorption, 
distribution, and disposal dynamics, respectively. Anir-
ban Roy et al. presented a three compartmental model to 
capture the changes in glucose and insulin dynamics due 
to exercise [7]. This model incorporates the effects of 
physiological exercise into the Bergman minimal model 
[3] in order to capture the plasma glucose and insulin 
dynamics during, as well as after, periods of mild-to- 
moderate exercise. 

In this paper we are interested in the role of physical 
activity, and how it plays a crucial role in controlling 
plasma glucose level and increasing insulin sensitivity in 
Type 2 diabetes is highlighted through a bicompartmen-
tal model such that the controls are those of cardiovascu-
lar-respiratory system. Therefore, the formulation of op-
timal control problem is done. There are numerous me- 
thods that allow solving this kind of problem. We prefer 
to make a comparative study of direct method with an-
other approach based on the fuzzy logic strategy. 

This paper is organised as follows. Section 2 presents 
the model equations and optimal control problem. A short 
description of strategy approach by fuzzy logic for solv-
ing optimal control problems is discussed in this section. 
The Section 3 is interested in the application of the direct 
approach and the approach integrating the fuzzy logic for 
solving an optimal control problem of glucose-insulin in 
diabetic human. The numerical simulation is presented in  

Section 4. Finally, we present conclusion remarks in Sec-
tion 5. 

2. Methods 

2.1. Setting of the Problem 

Taking account of the physiological properties of glu-
cose-insulin system, we propose a model elaborated in [8] 
where we consider a two compartmental model composed 
of the liver compartment (LC) and the pancreas com-
partment (PC). The diagram is shown in the Figure 1. 

It is well known the arterial pressure  leads the 
tissues to receive the blood from cardiovascular respira-
tory system whereas the blood comes to cardiovascular 
respiratory system from tissues due to arterial pressure 

 AP

 VP . The cardiac rhythm  H  and the alveolar venti-
lation  AV  are the parameters that influence the car-
diovascular-respiratory system to control these pressures. 
During the physical effort, the cardiac rhythm is adjusted 
via the baroreceptor controls while alveolar ventilation is 
adjusted by the respiratory control. The respiratory con-
trol system varies the ventilation rate in response to the 
levels of dioxide CO2 and oxygen O2 gases. Conse-
quently, it arises the ventilation rate and cardiac output 
influence mutually. It is then obvious that exchanges 
between LC and PC are controlled by heart rate  H  
and alveolar ventilation  AV  functions. The mechanism 
of this control is not direct and can be represented by 
outflow functions between systemic arterial and venous 
compartments that depend on heart rate alveolar ventila-
tion (Figure 1). 

 

 

Figure 1. A schematic diagram of two compartments for 
modeling human glucose-insulin. Ql and Qr are left and right 
cardiac flow respectively. H is heart rate and  denotes 

alveolar ventilation. PA and PV represent arterial and ve- 
nous pressure respectively. 


AV
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These functions represent the mass transfer between 
these compartments where the exchanges are represented 
by the arrows in the Figure 1. Let us consider that the 
parameters H  and  reach their equilibrium values 
respectively 

AV
eH  and , the optimal control problem 

during a physical activity can be formulated as follows. 

e
AV

Find H  ,  solution of AV 

 

    

     
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      

      
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d
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d
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A
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t
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t





    

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




 (2) 

where 

  0.0346 0.7329, 0.7604 0.8627A A Af H V V V H H        (3) 

and 

  0.3011 0.0262, 0.0191 178.9206A A Ag H V V H V H H       

(4) 

with 1  2  1  and 2b  the real constants. The vari-
ables of the mathematical model are glucose 

,a ,a b
 G  and 

insulin  I . 

2.2. Description of Fuzzy Logic Strategy  
Approach 

Let us consider the following problem. 
Find,  *

0 1, ,
T N

NU U U   
1N

 , that minimizes 

   T T
0 1

0

, , N k k k k
k

J U U x Rx U QU


 


     (5) 

subject to 

 1 ,
,    0, , 1

,
k k k k

k k

x f x U
k N

x U
 


 

        (6) 

where  and  are positive defined matrices. R Q
The problem (5)-(6) can be solved by the dynamic 

programming method. This method has a fast conver-
gence, its convergence rate is quadratic and the optimal 
solution is often represented as a state of control feed-
back [9]. However, the solution determined by this method 
depends on the choice of the initial trajectory and in 
some cases this solution is not optimal. It is for this rea-
son that the integration of the fuzzy logic [10] can permit 
to determine quickly the optimal solution. We develop a 
linearization strategy of the subject system by an ap- 

proach based on the fuzzy logic. This approach had been 
developed by Takagi-Sugeno [11,12]. The model that has 
been introduced in 1985 by Takagi-Sugeno permits to get 
some fuzzy linearization regions in the state space [13]. 
While taking these fuzzy regions as basis, non linear 
system is decomposed in a structure multi models which 
is composed of several independent linear models [14]. 
The linearization is made around an operating point con-
tained in these regions. 

Let’s consider the set of operating point ,iX   
1, ,i S  . Different fuzzy approximations of the non-

linear term  NL x  can be considered. 
1) The approximation of order zero gives: 

     0 iNL x NL x NL x            (7) 

2) Using the first order of Taylor expansion series we 
obtain: 

        
T

1

d
.

d
i

i i

x

NL x
NL x NL x NL x x x

x

 
    

 
  (8) 

To improve this approximation, we introduce the fac-
tor of the consequence for fuzzy Takagi-Sugeno system. 
This factor permits to minimize the error between the 
non linear function and the fuzzy approximation. If  
designates this factor, the approximation (8) can be for-
mulated as the following form: 



       

     

0 1

T

1

d
,

d

with 0 1.
i
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x
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x







  

 
   

 

 



  (9) 

If one replaces the term  by its value approached 
in (6), the linearization around 

NL

ix  leads to 

1 , , , , 1, , ; 0, , 1k i k k i k k i kx A x B U C i S k N         

(10) 

where ,i kA  and ,i k  are square matrix which has N × 
N order and  matrix with  order. 

B

,i k

Therefore, the optimal control problem (5)-(6) becomes 
a linear quadratic problem which the feedback control is 
given by the following expression [15,16]: 

C 1N 

, , 1, , ;  0, , 1i k i kU K x i S k N ,         (11) 

where  

  1T T ,i i i i i i iK Q B E B B E A


         (12) 

is the feedback gain matrix and i  discreet Riccati equa-
tion solution of the following form 

E

  1T T T T 0.i i i i i i i i i i i i iE Q A E A A E B R B E B B E A


       

(13) 
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It is obvious that the linearization around every oper-
ating point gives the system for which the equations have 
the form (10). Because there are  operating points, we 
have  systems which have this form. Therefore, ac-
cording to the relation (11)  controls are determined. 
The defuzzyfication method [12] permits to determine 
only one system and only one control . 

S
S

S

k

Then, this transformation gives the following equation: 
U

1 ,   0, , 1,k k kx Ax BU C k N          (14) 

,   0, , ,k kU Kx k N             (15) 
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Let us set the following variable change 

,

   (16)   T T
,  and  ,e e e e

A AX G G I I U H H V V        . (18) 

Therefore, the system (17) is written as the follows 
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



and where  i ix  designates membership degree part-
ner to the operating point ix . 

f

g

 (19) 

3. Numerical Approaches for Solving the 
Optimal Control Problem (1)-(2) 

Using explicit Euler scheme on an uniform grid N , 
the system (19) is approximated by the following (see 
Equation (20)) 

3.1. Fuzzy Logic Strategy 

To approximate the optimal control problem (1)-(2), we 
propose to use the explicit Euler scheme. The stability of 
this scheme constitutes an advantage to approach some 
ordinary differential equations. 

where maxT
h

N
 . 

To approximate the objective function of the problem 
(1), we use the rectangular method. Hence, we obtain From the function f  and g  given by (3) and (4) 

respectively, the Taylor expansion around eH  and  
allows the system (2) to become 
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The system (20) has two following nonlinear factors: where 
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 
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The objective is to linearize these terms. This mecha-
nism allows determining the Takagi-Sugeno fuzzy sys-
tem. For this, we apply the fuzzy strategy and we con-
sider the case of health person who exercises most regu-
larly by jogging. We take Ge = 90 mg/dl and Ie = 30 
μU/dl. The equilibrium of cardiovascular respiratory pa-
rameters values eH  and  for someone who does 
physical activity are given by the table (See [17]). 

e
AV

We consider a universe of discourse X  which has 
two linguistic variables: glucose (GL) and insulin (INS). 
Taking account of the physiology, we consider  

 60,140G  and  20,40I  . Therefore, the glucose 
(resp. insulin) is low if 60G  mg dl  (resp. I = < 20 
μU/dl). If  (resp. I) is included between 60 and G
140 mg dl  (resp. 20 and 40 U dl ), we suppose that 
the glucose (resp. insulin) is normal. While if  
(resp. ) we say that the glucose (resp. insulin) is 
the highest. Then, GLB (Low glucose), GLN (Normal 
glucose) and GLE (the highest glucose) constitute the 
terms (fuzzy sets) of the linguistic variable GL. In an 
analogous way, INSB (Low insulin), INSN (Normal in-
sulin) and INSE (the highest insulin) are the terms of the 
variable linguistic INS. 

140G 
40I 

According the relation (18) and equilibrium values 
given by the Table 1, we have  1 30, 50X    and 

 2 15, 5X   . During the physical activity, the glucose 
(resp. insulin) varies such that we can consider a universe 
of discourse X  where the labels are centered at −30, 10 
and 50 (resp. −15, −5 and 5). Then, we suppose that the-
ses centers constitute the operating points values of the 
system (20). We designate these points as Mi, 1,i 2,3 , 
for the first equation of the system (20) and as  

 for the second. It is obvious that these points 
take the corresponding values in the labels centers of a uni- 
verse of discourse 

,iN
1, 2,3,i 

X  [10]. Membership functions asso-
ciated to this labeling are represented in the Figure 2. 

To simplify, we consider only the Taylor expansion of 
first order around the operating points iM  and i . We 
obtain three systems of the following form (see Equation 
(22)) 
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Finally, the optimal control problem (1)-(2) can be 
formulated as follows. 
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Table 1. Equilibrium of card ratory system 

Parameter G  (mg/dl) I  (μU/dl He (Beats/min)  (L/min)

max 10T 
g results are 

0

found  

.9 0
,   1, 2,3

0 0.9iA i


  
 

 

1 2

3

0.2133 1.9578 0.1550 1.4225
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Figure 2. Triangular membership functions associated to operating points −30, 10 and 50 (resp. −10, 0 and 10) for the linguistic 
variable GL (a) (resp. INS (b)) according to the variable change (18). 40 and −5 are the values of entries obtained thanks to the 
formula (18). 

 
It is easy to note that the problem (23)-(24) is a linear 

quadratic (LQ). Since there are three linear state systems, 
the solution leads to three feedback controls of the form 

          (25) , ,   1, 2,3;k i k kU K X i    

where iK  is a gain feedback. 
The implementation can be made in several platforms. 

Here we use MATLAB package. If  and  are 
identified matrixes of the second orde

 s 

   (26) 

where 

1R
r, we obtain 

2R

1 2

1.1712 0.0081 1.2868 0.0055
,   

0.0081 5.2631 0.0055 5.2631
K K

    
        

3 .0042 5.2632 

1.3928 0.0042
.

0
K

 
  

 

The defuzzification transformation allows to obtain 
one system. Consequently, for the system (23) thi tech-
nique gives the following system 

1 ,   0, , 1,k k kX AX BU C k N       

A  and  are  matrices and  a B 2 2 C 2 1  
matrix. 

In the same way, from the matrixes 1,K  2 ,K  and 

3K  
K

the defuzzication process allows to ha atrix ve one m
. We propose the following procedure. 
The first (second) line of matrixes , ,i i iA B C  and ,iK  
1, 2,3,i   is defuzzified using the de mbgree of me ership 

2 f  and 3 f  [see the Figure 2(a)] (resp. 2g  and 

3g  [see 
he

the Figure 2(b)]). This ma
reaso

 consider the degree of membership of the entry 
gl le change
thi

nner of procedure is 
due to t  two following ns. 

1) We
ucose (resp. insulin). According to variab  (18), 
s value is 40 mg/dl [see the Figure 2(a)] (resp. 

5 U dl 
get 1

 [see the Figure 2(b)]). After calculations, we 
0,f   2 0.25f   and 3 0.75f   (θ  = (0; 

0.2
GL

5; 0.75)) [resp. 1g 0,   2 0.5g   and 3 0.5g  . 
  0.5 . 

linear factor  
0;0.5S 

) The non
;IN

2

 NL X
         1.3285 0.6253

2 1resp. e eX I NL X X G
 

   

int quatio  the
sy

Consi
matr

ch 

To a us consider 

ervenes only in the first (resp. second) e n of  
stem (22). 

dering these hypothesis, we have the following 
ixes. 

0.9 0 0.146
,A B

  
 

2 1.3415 
0 0.9 0.00004 0.0015

5.5837 1.3186 0.00513
, .

2.9831 0.0046 5.2632
C K

   
   
    

        

 

3.2. Direct Approa

pproximate the system (2), let 

 , 1, ,N N
j j N             (27) 

a linear B-splines basis functions on the uniform grid 

max ,  0, , ,N kt k N
N

kT     
 

       (28) 

such that 

 N
i k ikt   

NWLet us introduce the vector space  whose the ba-
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sis is .N
dim N

W W
Let us co

olation o

 We have 
 
 

r and let us take the in-
terp perator 

W N  
1N N   

nside  0 0,W C T  

:N N

N

W W

 

 


             (29) 

satisfying  

    , 1,N
k kt t k    , .N       (30) 

We verify easily that 

0N
NE

E             (31) 

0
sup 1.

N

N E

EW









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0

Now, let us set 
N N

0

, and N N kf f f N N N k
k k

k

g g g N

k

   
 

  (33)   

with 

        ,  and ,k k A k,k k
k Af f H t V  t g g H t V t  

Theref
lowing form

ore, the system () can be ap
 

 solution of the system 

proached by the fol-

Find    2
,N N NG I W  

  1.3285d N

d
N N NG I f

t


    

G
      (34) 

  0.6253d N

d
N N NP

I G g
t


          (35) 

   ,0 ,00 ,    0N N NG P I I   ,N         (36) 

such that 
0 ,0 0N

N
G G               (37) 

0 ,0 0.N
N

I I               (

his approximation, we have the follow-

 
The tion sequence of the system (34)-(36) co

ve

38) 

According to t
sult. 

Proposition [8]
solu

ing re

n-
rges uniformly toward the solution of the system (2) on 

the interval  max0, ,T  
ximate the 

max 0.T   
optimTo ap al problem (1)-(2), let pro

 T
,

us set  

x G I  the state vector,  T0 0 0,x G I  the initial 

state vector,  T
,e e ex G I  t librium state  

vector, the control vector and

the equilibrium control v

he wanted equi

 T
, AH V   

,e eH V

  

 Te
A    ector; 

0, , ,e
i i ix x x i  and e

i  designate the  componentsthi  thi  
of the vector 0, , ex ,x x   and .e   

Therefore, the problem (1)-(2) can ta
compact form 

ke the following 

 
2
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Q
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

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 maxT Na x
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22 2
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1 1

i i i j j j
i j  

where  T
,N N Nx x x  is solution of the approximated 

so




(39) 

1 2

lution (34)-(36). 

We must determine  1 2,M M M M  ap- Q   
2M M

 an

proximate so
 that we can w

  (40) 

Therefore, w function 
by 

lution of (39) in . It is nec- 
essary to note rite 
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M
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e can approximate the objective 
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1 1 1

,N e M e
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
2 2M

a x
 

MNJ 

    
 

 
 (41) 



where maxT
t

N
  . The convergence of the discreet o

tive function (41) toward the continuous objective func-
en by the proble

al control problem (1)-(2) is a mini-
m raint. The discreet
tio  written as follows. 

bjec- 

tion giv m (39) has been shown in [8]. 
Finally, the optim
isation problem with const  formula-
n of such problem can be
Find    1 1, M MM       solution of 

          1 1

T
T

1 2min ,
M MM

M MNJ t Y R Y R


 
  

  
 

 M

(42) 

subject to 

  

  

1.3285

0.6253

d

d

d
,

d

N
N N N

N
N N N

G
G I f

t

I
I G g

t






  


   

       

where 

 (43) 

is a matrix  1 2M    M  such that the com-
ponents ,

M
j k  e those function N

j  in N  and Y is ar
the matrix such that the  , ponent is  

th
i k  com

  ,N e
i k ix t x  where  T

1 2,N N Nx x x  is the solution of  

(1)-(2) associated to N  . 

4. Numerical Simulation 

W te cardiovascular tory response 
to glucose and insulin dynamic for a 30-year-old trained  

e consider the acu  respira
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women whose mean values are given in Table 1 [17  
The solutions of the optimal control problem (23)-(2
and (42)-(43) can be determined in several platform.

n of these solutions is made using M
ges. 

To solve the problem (23)-(26) by fuzzy logic strategy 
only one program is enough. Using direct approach, the 
solutions of the problem (42)-(43) are give
sion of programs based on MATLAB function used in 
optimization that is fmincon. This function is a MAT-

rogr ws solving

e by A
pproach integratin  

and direct ap onsequently, t
r the execution of main MATLAB 

DIR r . The results are 
tel(R) core (TM)2 Duo 

fu

].
4) 

 The 
AT-implementatio

LAB packa

n by a succes-

LAB p am which allo  minimization prob-
lem with constraints. 

In this section, we not HLF, ADIR to designate 
respectively the hybrid a g fuzzy logic

proach. C he Table 2 gives us 
the results found afte
program for AHLF, A espectively
obtained using a Processor In
CPU, 2.20 GHZ. 

Table 2 shows that the time execution of the main 
program to solve the problem (1)-(2) by AHLF is very 
small compared to one of ADIR. This argument justifies 
the precision of the fuzzy logic strategy. 

Considering jogging as physical activity for a 30-year 
old trained woman, the variations of the optimal parame-
ters is obtained using the hybrid approach integrating 

zzy logic and the direct approach. The results are given 
in the curves represented in the Figure 3. 

 
Table 2. Minimal values of the objective function (Jopt) and 
the execution time (T) of main program for the resolution of 
the optimal control problem (1)-(2) by AHLF, ADIR. 

 AHLF ADIR 
Jopt 10.0524 35.8572 

T (Second) 5.8125 20.286 

 

 

Figure 3. Optimal parameters for a 30 year old woman with 
jogging as her physical activity. The curve in solid line 
represents e wanted valu curve in das di-
cates the imal parame e hybrid a  inte-
grating the fuzzy logic strategy

Fo r-old wom rate and alveolar 
ventilation play a crucial ro  in the control of the car-
diovascular-respiratory system. Consequently, their sta-
bility ensures the performance of sportsman in general 
and of woman in particular. For a woman of 30 years old 
where jogging is her regular physical activity, we see that 
2.5 minutes after the starting of the exercise the variation 
of the heart rate reaches the value close to the equilib-
rium value before having its oscillation around this value 
(Figure 3(a)). The solutions from AHLF and ADIR show 
that after 5 minutes of the starting time the optimal al-
veolar ventilation (Figure 3(b)) increases to reach the 
wanted equilibrium value and the glucose (Figure 3(c)) 
decreases gradually to reach the wanted value in 10 min-
utes before its oscillation around this value. The use of 
these approaches allows also the optimal insulin to in

/j.1365-2362.32.s3.5.x

 th
op

e. The hed line in
 t ter for th

. 
pproach

r a 30-yea an, the heart 
le

-
crease and to reach the maximum that is close to the 
wanted value at 3th minute before its oscillation around 
his value (Figure 3(d)). Comparing the results using 
AHLF and ADIR, it is important to see in the Figure 3 
that they are much closed. 

5. Conclusion Remarks 

In this work, we compared two approaches to determine 
the optimal trajectories of glucose and insulin as response 
to controls of cardiovascular-respiratory system subjected 
to a physical activity. The finding results for two used 
methods are satisfactory and closed. But the hybrid ap-
proach integrating the fuzzy logic strategy has an advan-
tage over the direct approach in term of time. Conse-
quently, it constitutes an important approach for the 
resolution of the optimal control problem. In particular, it 
gives the optimal trajectories of glucose-insulin system in 
the same way so thet it ensures their performance. 
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