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ABSTRACT 

At the fundamental level, the 4-dimensional space-time of our direct experience might not be a continuum and discrete 
quantum entities might “collectively” rule its dynamics. Henceforth, it seems natural to think that in the “low-energy” 
regime some of its distinctive quantum attributes could, in principle, manifest themselves even at macroscopically large 
scales. Indeed, when confronted with Nature, classical gravitational dynamics of spinning astrophysical bodies is known 
to lead to paradoxes: to untangle them, dark matter or modifications to the classical law of gravity are openly consid-
ered. In this article, the hypothesis of a fluctuating space-time acquiring “at large distances” the properties of a 
Bose-Einstein condensate is pushed forward: firstly, it is shown that a natural outcome of this picture is the production 
of monopoles, dyons, and vortex lines of “quantized” gravitomagnetic—or gyrogravitational—flux along the transition 
phase; the minimal supported “charge” (and multiples of it) being directly linked with a nonzero (minimal) vacuum 
energy. Thus, a world of vibrating, spinning, interacting strings whose only elements in their construction are our topo-
logical concepts of space and time is envisioned, and they are proposed as tracers of the superfluid features of the 
space-time: the archetypal embodiment of these physical processes being set by the “gravitational roton”, an analogue 
of Landau’s classic higher-energy excitation used to explain the superfluid properties of helium II. The far and the near 
field asymptotics of string line solutions are presented and used to deduce their pair-interaction energy. Remarkably, it 
is found that two stationary, axis-aligned, quantum space-time vortices with the same sense of spin not only exhibit 
zones of repulsion but also of attraction, depending on their relative geodetic distance. 
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1. Introduction 

Spiral patterns extending over a large portion of the stelar 
disk of many galaxies are seen everywhere in the cosmos. 
Thus, it may seem as if these majestic structures were 
stable features over a time of many orbital periods. Yet, 
current theory has a hard time to come up with a con- 
vincing explanation of their origin and stability. From the 
“coffee-cup” theory suggested by von Weizsaecker [1] to 
the spiral density wave theory of B. Lindblad [2], C.C. 
Lin, and F. Shu [3,4], it is fair to say, this basic problem of 
formation and stability of spiral galaxies is still not fully 
understood. In this article, this very crucial question is 
reversed, by imagining the sort of features a space-time 
needs to fulfill in order to explain this apparent stability 
as a pure gravitational phenomena, without invoking-a 
priori-the need of cold dark matter. More precisely, V. 
Rubin’s discovery (of an almost constant velocity flow of 
cool hydrogen clouds outside the bright parts of large 
spiral galaxies) is pictured here as an indication that the  

geometry along these special regions is rather uniform, 
the test orbiting bodies receive the same code of instruc- 
tions, and the unexplained stiffness in the geometry is 
primarily due-according to the launched hypothesis-to a 
second order phase transition where the space-time ac- 
quires, at low curvatures, the properties of a superfluid. 
Basically, Weizsaecker’s “coffee-cup” analogy [1] is re- 
placed by a “superfluid-cup” one, where phonons and ro- 
tons can flow, see Figure 1. 

Can the geodesic motion of a radial alignment of test 
particles resist the winding process when the space-time 
is a superfluid [5,6]? How, in the first place, do quantum 
vortices behave if the space-time is a superfluid? In this 
article a research program is commenced by examining 
fully this second opening issue. 

It should be stressed that the catalog of spiral galaxies 
is indeed vast: the so called grand design spirals have a 
well defined two-arm structure, but some others present 
multiple arms not necessarily symmetrical spaced, while 
there are others-referred to as flocculent spirals-showing 
sporadic spiral arm segments [5]; spiral patterns of a very  *This paper is dedicated to the memory of Dr. J. Ize. 
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Figure 1. Left: coffee-cup analogy. Right: winding dilemma. 
Let  and  be respectively the radial distance to a cen- 
tral point and the local spherical radius. If a thin disk of 
matter rotates around such a point with an angular velocity 
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And when the local spherical radius  is assumed to chan- 
ge as the radial distance r , i.e.  it is 
concluded that for typical galaxies the spiral arm must be 
tightly wound, contrary to observation. A rotational velo- 
city  

 (i.e. 
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r   breaks down in spiral ga- 
laxies [6]. 
 
bizarre shape also show up in Nature: for instance, the 
spiral galaxy NGC4622 not only posses inner spiral arms 
that are trailing but also has a pair of outer arms that are 
leading, contrary to most expectations [7]. The oddest 
thing of all is that according to standard theory, if the 
material originally making up a spiral arm remains in the 
arm; then, the differential rotation of the galaxy will 
wind up the arm in a time short compare with the age of 
the galaxy. But most spiral arms (often logarithmic in 
nature) are far from being too tightly wound, with a pitch 
angle absolute value ranging from 6  to  [8-10]. 
How can this be? 

 27

This acute observation creates a fundamental challen- 
ge to theories on the origin of the spiral structure and it is 
referred to as “the winding dilemma” [11]. A description 
of this winding process, when there is an annular disk of 
material with a constant pattern speed-thus fulfilling the 
flat rotation curve criterion-is given in Figure 1. 

At first sight, these bearings seem no different if one 
assumes that the orbiting objects are governed by 
Kepler’s laws of planetary motion or if they move with 
an approximately constant pattern speed; that is why, in 

the 1960s, an hypothesis was advanced: where the spiral 
features were assumed not only to be long lasting, but 
also that they were the result of a quasi-stationary density 
wave that rotated rigidly, at a slow paced rate, through 
the galactic disk-meaning in particular that stars should 
stream in and out of the spiral arms as they orbit the gala- 
xy. This theory, however, has not been satisfactorily con- 
firmed as even the question of longevity of the spiral 
arms, whether they are short-live transient patters (per- 
haps breaking apart and reforming periodically) or not 
has not yet been settled [12,13]. In Binney & Tremaine 
comprehensive treatise on galaxy formation this peculiar 
situation is depicted as follows [5]: 

“The common thread of several of these mechanism is 
that because of the swing amplifier, galactic disk respond 
with remarkable vigor to a wide variety of perturbations, 
whether these be tidal forces, gravitational instability of 
some local pattern of gas or stars, or fresh leading 
density waves. In some cases there is clear evidence that 
Lindblad’s original conception of the spiral arm as a 
density wave is correct. However, there is little or no 
direct evidence for the hypothesis that the spiral pattern 
is stationary (i.e. that it looks the same in 109 yr or so).” 

Intriguingly, if the density wave theory were correct, a 
spatial ordering of different stages of star formation 
would be expected in the arms of galaxies: with very 
young objects on the leading edges of the arm (where 
star birth would be triggered by a compression wave) and 
the oldest ones on the trailing edge. However, research 
involving computer algorithms to examine twelve nearby 
spiral galaxies of different variety: such as the ‘whirlpool 
galaxy’ M51a, M63, M66, M74, and M95-an interacting, 
a flocculent, an arm-distorted, a grand design, and a 
barred spiral respectively-did not find such an ordering, 
leading to the conclusion that spiral density waves in 
their simplest form are not an important aspect of 
explaining spirals in large disk galaxies [14]. 

The purpose of this article is two fold: 
Firstly: to get a deeper understanding of the physics of 

rotating astrophysical bodies in models where the space- 
time exhibits non trivial macroscopic quantum effects. 

Secondly: to deduce, in some quantitative way, part of 
the relevant signatures (topological traces) which might 
help to reveal whether or not such exotic behaviour is 
present in our universe. 

Contents: the plan of the paper is as follows. The 
Euler-Lagrange equations for a quantum gravitational 
action are solve for vortexes and monopoles, in Section 4 
and 6 respectively, exhibiting in full the superfluid pro- 
perties of the space-time. The spin interaction of an array 
of axis-aligned quantum vortices is analysed in Section 5. 
Next, in Section 6.1, Dirac’s quantization condition is 
applied to quantize the size of the cosmological constant, 
which in the superconducting theory of gravitation plays 
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a role analogous to an electric charge. Finally, the basic 
results are discussed and summarised in Section 9, where 
future directions for research are indicated.  

2. Space-Time as a Charged Superfluid 

In the late 1930s, W. H. Kessom, P. Kapitza, J. F. Allen 
and A. D. Misener, initiated a series of low-temperature 
experiments that led to the discovery of superfluidity 
[15,16], a quantum many-body effect responsible of very 
striking properties in a superfluid, such as: an infinity 
heat conductivity, i.e. the boiling abruptly stops, a zero 
viscosity (superleaking with zero resistance), the fountain 
and mechanocaloric effects, to cite some appearing 
below a certain critical temperature (the  - point for He 
II) and strictly at speeds under some critical velocity  .cV

Is the space-time at galactic scales acting as a super- 
fluid? 

According to the prevailing view, at extragalactic sca- 
les the expanding universe is best think of as consisting 
of two parts: one luminous (obeying Newtonian mecha- 
nics in the limit of slowly moving bodies and large dis- 
tances) and the other dark, or to use perhaps a better 
word: invisible (which is several times more abundant 
than the first one, and from which the formation and sta- 
bility of the large scale structure of the universe pre- 
sumably rests upon). For this second component, the 
quality of being invisible (or dark) is bring at front since 
it is only through its gravitational interaction with other 
bodies that this hypothetical form of matter (so far) has 
been accounted for. 

In our view, the whole mystery of cold dark matter, 
and thus, the appearance of a two-fluid like model to des- 
cribe the universe, where one component is behaving 
normally, while the other posses very odd properties, is a 
symptom of a bigger crisis than the one usually cured by 
just adding a new type of particle: 

It is the failure of a proper understanding of how the 
quanta of mass-energy “there” rules inertia “here”. In- 
deed much is gained by flipping from the dark matter 
perspective into the realm of quantum gravitational phe- 
nomena, since there is now-as D. Hilbert could have put 
it, “a guide post on the mazy paths of hidden truths” for 
quantizing the gravitational field. “Quantum gravity is a 
very tough problem”-warned W. Pauli to B. S. De-Witt 
[17,18]. How are we going to unify “the strange world” 
of Max Born’s probability wave amplitudes  ‘s with 
the peculiarities of the Einstein’s four-dimensional curved 
space-time continuum ? 

Perhaps, as the dark mater conundrum seems to imply, 
we have various clues already: 

There is an electrically neutral, QCD colourless, quasi- 
substance with local (or non-local) mass that is in a cold, 
stable (or long-lived) unexcited state far away of any 
strong field; it flows freely (without resistance) but only 

at non relativistic speeds-as if there were a limiting velo- 
city that it cannot surpass, it has a negligible nongra- 
vitational interaction with ordinary baryonic matter or it- 
self. 

What could it be? To cope with the subtleties imposed 
by the above scenario let us turn to mathematics since as 
Max Born put it [19]: “When in conflict, mathematics— 
as often happens—is cleverer than interpretative thought.” 

3. Quantum Mathematical Model 

In 1956 W. Pauli remarked [20]:  
“The question of whether Kaluza’s formalism has any 

future in physics is thus leading to the more general un- 
solved main problem of accomplishing a synthesis be- 
tween the general theory of relativity and quantum me- 
chanics.” 

A deep connection between Einstein’s law of gravity 
(with a nonzero cosmological constant) and quantum phy- 
sical phenomena better associated to the theory of super- 
conductivity was explored in [6], where the Kaluza- 
Klein idea of splitting the space-time metric as:  

 2 42 2d d d dk
k ij d ,i js N t A x x x           (1) 

and thus: 
2 2
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42 2

0
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   
          


k

  (2) 

was adapted to offer a phenomenological, Ginzburg- 
Landau model of a 4-dimensional “quantum space-time”. 

kA  is the gravitomagnetic vector potential,  is a sca- 
lar field, and ij

N
  is referred to as the 3-space base me- 

tric. The novelty of this approach is that although all the 
metric components are held real,  is set to be a 
complex scalar field:  



 1 2 exp ,ie                (3) 

characterising the onset of order of a phase transition 
affecting the intrinsic features of the space-time itself, 
which-at galactic scales, it is imagined developing the 
properties of a highly coherent quantum system in 
parallelism with superfluids, lasers, and superconductors. 

,  in other words, is a measure of symmetry violation. 
  will play the role of a Goldstone boson field. 

Every direct comparison between this and the (tradi- 
tional) ADM setting should always kept in mind the dual 
transformation:  

; ADM
ADMg g g g 

   .         (4) 

More comments on this very issue are given in [6]. 
In this article, Greek and Latin indices are employed to 

mark 4-dimensional and 3-dimensional tensors respec- 
tively ( 0,1,2,3  ; 1,2,3k  ), as it is done in (2) and 
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(4). 
Key points of this bold proposal are briefly described 

next, leaving the details to the original article, where the 
theory was first developed [6]. First pay attention that by 
virtue of the complex nature of  the scheme by H. 
Weyl [21-24] to unite general relativity with electro- 
magnetism can be adapted to treat the gravitomagnetic 
field 

,

,kA  so that in theory, the primeval gauge transfor- 
mations set by: 

 exp ,ie               (5) 

and  

; 1, 2,k
k k kA A A x k      3,      (6) 

become a symmetry of the physical gravitating system. 
Weyl’s original view of a 4-dimensional conformally 
invariant universe (described by a conformally invariant 
action where only purely real exponents get involved in 
the gauge transformation laws) was abandoned as a 
model for the actual state of the universe: for as much as 
the prediction that physical observables, such as the leng- 
ths and times of measuring rods and clocks, would de- 
pend of their prehistory, which would in turn introduce 
spectral blur effects which simply do not show up in 
reality [20,24]. Yet, gauge invariance (which has been 
very successful as guidance principle for formulating the 
electroweak and the strong nuclear interactions) can be 
incorporated into gravitation in another way [6] which 
seems more in unison with the principles of quantum 
mechanics. 

As it is argue in pages to come, an utterly natural, 
Ginzburg-Landau-action principle for gravitation is: 
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   (7) 

where the third term plainly depends on the Ricci scalar 
of the 3-space, base metric .ij  By keeping  fixed, 
the -term becomes a constant multiplying the physi- 
cal four-volume. Thus, 

N
6

2 2N

Equation (7) is expected to be valid in stationary 
situations, where the temporal variations of the gravito- 
magnetic vector potential iA  and the base metric ij  
can be neglected [6]. It is exactly in this case when the 
parallelism between gravitation and a metallic super 
conductor looks more straightforward, after all, stationa- 
ry space-times with horizons follow mechanical rules re- 
sembling the laws of thermodynamics [25]. In light of 
this, it can be stated that the infrared quantum macro- 
scopic effects inherent to gravity seem best fitted by a 
word introduced by Kamerlingh Onnes in 1911, namely 
“superconductivity”. 

Significant aspects of this action are immediately 
assessed by taking a look to the condensation energy: 
having both a sixth and inverse-square power terms, and 
depicted in Figure 2. Its shape is dictated by the Eins- 
tein-Hilbert action itself. Indeed, by varying   and 

,iA  the least action principle (7) leads respectively to 
the energy and momentum constraint equations of Eins- 
tein’s theory of gravity, as it was developed by A. 
Lichnerowicz, J. W. York, and Y. Choquet-Bruhat in the 
40s and 80s [26,27]. 

The mere existence of a phase in the ubiquitous 
complex gravitational potential introduced in (3) and (7) 
has the most amazing implications [6]: 

Firstly: it allows the generation of supercurrents:  

22
,k k

e kJ A
N

     
 

           (8) 

transporting vacuum energy while deforming the gravito- 
magnetic (or gyrogravitational) lines of force. Be aware 
that closed strings are natural carriers of vacuum energy. 

Secondly: second-order phase transitions controlled by 
 

 

Figure 2. Phenomenological condensation energy affecting 
the nature of the space-time itself. On the left, the gravito- 
magnetic field is switched off: in close analogy with the 
Meissner-Ochsenfeld effect of the theory of super conduc- 
tivity of metals. It is present, however, on the right side. 

There is a local minimum at   0  for    and at 3 R < 0

s    for  The negative blow up of the con- 

densation potential exhibited on the right is expected to be 
cut off by matter or hidden deep inside an absolute event 
horizon (in the black hole case 

 3 R > 0.

  vanishes at the sin- 

gularity). The vertical line indicates the value taken by   

at the event horizon, usually this becomes a minimum if the 
space-time is restricted to lie within an isotropic coordinate 
chart. 

e  can be identified with a 
vacuum energy, and  must be proportional to the 
only constant present in the classical Einstein’s field 
equations which surely, is completely determined by the 
microphysics of the gravitating system, expressly, 
Einstein’s (1917) cosmological constant. The gravito- 
magnetic field-stress tensor is given by , ,ik k i i k

2e

F A A   
and attention should be brought to the curious sign in 
front of the ik

ikF F -term (whose origin is traced back to 
the temporal nature of the fourth dimension). 
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the curving of space can set in, subtlety raising the mass 
of the gravitomagnetic vector potential ,kA  due to its inter- 
action with an all-pervading gravitational degree of freedom 
[6]: expressly, the modulus of the complex potential  . 

Thirdly: when a spinning point-like mass in empty 
space gets surrounded by supercurrents, the net effect is 
the generation of space-time superconducting zones, in 
which the associated rotation curves display non Kep- 
lerian features such as the ones exhibited in large spiral 
galaxies. Such rotations curves can be regarded as arising 
from the spontaneous breaking of -symmetry 
induced by the condensation of a Goldstone field coor- 
dinate 

 1U

  to an azimuthal angular value; thus, defining a 
preferred orbital direction of reference [see [6]]. 

Finally: at short distances, covering only a sufficiently 
small open neighbourhood of the space-time, when   
(and henceforth ) has not too much relevance, the pre- 
dictions of Einstein’s theory of gravity are recovered. 
The same is truth if  vanishes identically. 

e

e
How does this work? Well, the string and monopole 

cases are provided below. 
Notation and nomenclature—it is convenient to denote 

by ,s  the value taken by the modulus of the complex 
field  under the peculiar situation when:  at 
the minimum of the condensation potential. The identity:  

 0,ijF 

   24 31
6

2s N e R              (9) 

is then a direct consequence of this definition, see Figure 
2. Direct inspection to (7) suggest that  is physi- 
cally related to a measurable mass [6]. 

 3 R

Write next  
2
,s    s               (10) 

and set  

 2 22 24 e N ,               (11) 

also demanding that  

     1 2
3 32 ;R R


   0 .          (12) 

  is called the “London parameter” (or the penetration 
depth) and   is referred to as the “correlation length”.  

The physical significance of all these expressions will 
be worked out with examples later. 

Equations (11) and (12) give a dimensionless Ginzburg- 
Landau (G-L) parameter:  

                     (13) 

equal to three halves, in line with type II super-conduc- 
tivity. The (G-L) parameter, however, changes its value 
if one allows the  2 6

e N  -term to be multiplied by a 
different coefficient than 12. This arbitrariness is dis- 
cussed in more detail in [6]. A space-time fulfilling a 
principle of least action of the form given by (7) will be 

said to be a charged, space-time superfluid. 
Space-time defects (mathematical preliminaries): Let 

the initial-data hypersurface  3,t ij    be a Riemannian 
space of constant sectional curvature; that is to say:  

  3 2 ,kl k l k l
ij i j j iR K             (14) 

where K  is a given constant. Then, according to the 
theorem of H. Hopf and W. Killing [28,29], locally that 
space is isometric to one of the following models: a 
3-sphere  3 , a 3-Euclidean space  , or an hy- 
perbolic 3-space 

3
 3

.K
, with the same Ricci-scalar 

curvature  Setting  3  12R K  as  appropriated 
line elements for the neighbourhood containing a given 
point 

2 ,l

3
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in the spherical, Euclidean, and hyperbolic instances 
respectively. By (17), the associated Laplace-Beltrami 
operator     3 3 R f   

 

 can be written as: 
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Defining r l  gives:  
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sin sinr r
f r r f f f 


 


, 

        

the following identity must be satisfied:  

 
  

     

3 3

3

3

2

2 44 4
, ,

12

1
,

3

l

r r

R f f
l

r l f r r f r l

       

           





 




 (19) 

likewise,  

 
    

   

3 3

3

23

2

44 4
, ,

12 1

3

.

l

r r

R f f r l
l

f r r f r l

        
          

 
 

 

  (20) 
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The nomenclature introduced in this passage as well as 
the pair set by (19) and (20), find an immediate applica- 
tion in the analysis of topological space-time defects, 
coming next.  

4. String Solution 

The most basic features of the line defects predicted by 
the quantum rule set down by (7) are determined by the 
set of equations: 

   
2 2

2
, , 2 2 , ,

1 lnrr r r r
s

r
r A rA A r rA

 
 
 

     
 

0,  (21) 

 
   

31 2 2 1 2

, ,

42

8 8 2

2 1 0,

r r

s

r r e A N H



2       

        


   (22) 

where A  is a scalar field; ,s  ,  and   are given 
by (9), (10), (11), and (12) respectively; H  is referred 
to as the gravitomagnetic field and it is given by 

 .H    A
This can be found as follows. As in the previous 

paragraph, let  be a Riemannian space of constant 
sectional curvature. Let 

3
t

1,r l    i.e. allow the cur- 
vature radius of the universe be large enough. Then, by 
(20), at leading order it must be true that  

 
    

3 3
3 3 ,

l
R f R f      

  
   

and similarly with other expressions having the di- 
vergence, the gradient, and so on-as it is intuitive from 
(15) and (17). Thus, it is seen that there exists a con- 
venient way to promote various calculations in flat space 
to curve space. Following this simplifying lead, make the 
subsequent choices. Employing cylindrical coordinates, 
write H  as  Then, in the corresponding 
orthonormal frame, the gradient of 

 ; ; .r zB B B 
  and the curl of 

H  (or any other vector field) have respectively the 
form:  

1
, , , , ,ˆ ˆ ˆ ; ;r r z r zr r              e e e 1

, ,   (23) 

and  


  

1
, , , ,

1
,,

; ;

.

z z r z z r

rr

r B B B B

r rB B

 

 





        

  

H
     (24) 

Assuming that not far away from the axis of symmetry, 
here symbolized by the z-axis, the “probability-like” 
current density:  

 2

1 1 1

2
,

k k k

k k

J eA
N i i

e
A

N



 

                
     

   

  

girdles always in the azimuthal direction, and moreover, 
that its magnitude at any given point  proximate 
to the centre line only depends on its geodesic distance to 
such line, let 

3
tq

A  take the form:  

 
  

1
ˆˆ ˆ, ,; ;

0; ;0 .

r r z zr

A r

 ,       



A A A A
    (26) 

These restrictions immediately imply:  

    1

,
0;0; ,

r
r rA    H A   (27) 

and henceforth: 

   1 2
, , ,0; ;0 0; ;0 .z r rr rB A r A r       H A  (28) 

Additionally, if only the radial part of the modulus 
field   is considered [see (3)], Combining (10) and 
(11) with the Euler-Lagrange equation: 

 2 2 2 2 24 ll l
l k k k k lN F e A N F n ,              (29) 

resulting from the variation  A  in the action principle 
set by (7), a differential relationship between the two 
unknown functions:     ˆA r


 A   and 

2
,    

follows immediately:  

   
2 2

2
, , 2 2 , ,

1 ln 0rr r r r
s

r
r A rA A r rA

 
 
 

.    
 

 (30) 

By letting further, the order parameter   to be a 
function of  only, the Lichnerowicz equation, obtained by 
the 

r
  -variation of the Ginzburg-Landau action set 

by (7), becomes at leading order [using (12) and (20)]: 

 
   

31 2 2 1 2

, ,

42

8 8 2

2 1 0,

r r

s

r r e A N H



2       

        


  (31) 

completing the system, where the relation: km
22kmF F H    

entailing the gravitomagnetic field ,H  has been used.  

4.1. Asymptotic Analysis near the String Axis 

The action principle set by (7) implies the following:  
Firstly: the vortex-gravitomagnetic flux is quantized.  
Secondly: the minimal flux o  is achieved by 

some regular 

keA
 (25) 

e  
II -vortex profile. Thirdly: the order  - 

parameter for such a vortex of minimal vorticity vanishes 
in a linear fashion, along cylindrical ring-like structures 
of nonzero finite radius. Fourhtly: near the vortex core, 
the asymptotic metrical aspects of the quantum, regular 
vortex of minimal vorticity are determined (say at the 
initial time 0t  ) by 

     
   

2 22 2
min

22 2 2 2 2

d d 2 d 1 3

2 d d d ,

s N c t rB r r r

N rB r r z





    1     

  


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B  is here the intensity of the gravitomagnetic field 
along the flux tube and it is assumed to be nonzero. 
Finally but not least-by (58), a natural way to express the 
fitting “charge” e  is in the form ,e q   where  
is Planck’s constant  joule-seconds, mean- 
ing that  can be regarded as introducing an 

h
346.626 10 

 2h  fac- 
tor into the main gravitational equations. 

Proof: For the sake of argument, ignore first the A-ρ 
coupling in (21). Then, at sufficiently close distance from 
the axis of symmetry, when  

 1 22 2r    

and = r l 1,   (21) implies: 

  2 ; 0A r Br C er r    ,        (32) 

where  and  are integration constants. Inserting 
(32) into (27) shows that the -constant physically gives 
the intensity of the gravitomagnetic field   along 
the -axis, i.e.  

B C
B

A
z

     ; ; 0;0;r zB B B B     B A .   (33) 

Setting  

4,NB                 (34) 

(22) reads, in the limit imposed by (32), as 

 42 2 2 2

, ,
0; 0 .

rr r
r r r C r            (35) 

Equation (35) is reminiscent of the Bessel differential 
equation; however, it contains the non-linear 

4 -fac- 
tor, multiplying 2  and spoiling an all-encompassing 
similarity. To solve (35), follow these simple steps: 

Firstly: verify the expression below is an exact, regular 
solution. 

 
 

1 2

1 2
1 42

; 1
1 4

r r C
C


  


2.      (36) 

Secondly: spot that clearly another regular asymptotic 
answer is given by:  

    2 22 ; 0 ; 1 2C
Cr r a r r C      :   (37) 

whenever  What about the distinctive 0 .r  1 2C   
value? Well, several transformations simplify the prob- 
lem. 

Last step: as suggested by (36) and (37), pick  

1 2C                   (38) 

and set    1 2 .r r f r   Then, (35) reduces to  

 2 2 2 2 3
, 0,r r

r r f r f   

r

        (39) 

which is symmetric under the specular transformation: 
 By the change of variables: .r  1,r    it trans- 

forms into  
2 3 2

, 0,f f              (40) 

complying with the canonical form of the so-called 
Emdem-Fowler (E-F) equation:  

, .m ny ky               (41) 

If 0,m   the E-F equation has the exact solution:  

    
     1 12 2 12 1 1
m

ny n n m k m 


       
m  (42) 

as it is readily verified. Unfortunately 3m    and 
2,n  

  

 thus no formal solution can be extracted from 
this previous knowledge, as the coefficient multiplying 

2 1n  m  diverges. To advance further, introduce the 
change of variable  exp ,t   then, (40) becomes ins- 
tead:  

2 3
, , 0,tt tf f f              (43) 

which has coefficients which do not depend explicitly on 
the independent t -variable. A standard trick is then to 
pick   , ,tu t f  hence , , ,tt ff uu  and (43) simplifies to: 

 2 3
, 1fu    ,f u           (44) 

which is intended to be solved for  Thus, pro- 
ceeding in the reverse order, 

 .u u f
 f f r  is obtained by 

inverting (if possible)  

 de .f u fr               (45) 

The general features of the solutions,   ,u u f  of 
(44) are depicted in the phase diagram:  versus u f  in 
Figure 3. The vertical axis not only gives a measure of 
the magnitude of   ,tu t f  but also of  as can 
be seen by the chain of relations , .

, ,rrf
, ,f t rrfu f    

  r f r
 

Thus, the locus of points of the form  where, 
as a function of , 

,
r f  is an extremum are mapped into 

the horizontal axis   ,0f r  of Figure 3; the points set 
by   ,f u f  where, as a function of ,f   u f

2 3u f
 is an 

extremum falls over the dotted curve   label- 
ed by the  latin symbol in Figure 3 Use next (44) to 
obtain  

a

2 6 3 2 2 3 2
, 3 .ffu f u f u f u             (46) 

The superior (and by the same note, inferior) branch of 
the “inflexion curve”:  

 1 1 4 2 26 12u f f f     ,      (47) 

drew from (46) by the condition ,  is labeled  
(jointly ) in Figure 3. The solutions  can be 
separated into two distinct classes, referred to as type I 
and type II for definiteness. A representative of each cla- 
ss has been found numerically and depicted in the same 
figure: type-I solutions do not cross the  

0,ffu 


u 

b
c  u u f

0 f -axis,  
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Figure 3. Phase space: tf,  versus f  ( u  versus f ). 

 
type-II make that cross. Let  be a type-I solution, 
clearly 

 Iu f

Iu  is bounded from below by some positive 
constant, lets say Iu f . By (44), as    2k f  approa- 
ch infinity, , fu  tends to 1. This means that  Iu f  
takes the asymptotic form  

   I Nu f f f u   N


 as , f 

where  ,N Nf u  is a point in   , I .f u f  Therefore, 
according to (45) one has  

   d
e

fN
Io ,

f u f
N N Nr u f f u

       (48) 

as  Meaning, by inverting the relation, that  .f  

     d1 2 1 2e ;
fN

Io f u f

I N N Nr f u r u r r
      0.  (49) 

The important point to make is that this is not a regular 
solution, since  

 d
e

fN
Io f u f

Nu
  

is obviously different from zero. Turning now to type-II solu- 
tions, consider the situation when one has both:  
and  

u 
0.f 

Applying l’Hôpital’s rule to (44), it is established that 
in this regime:  

 2 2 2
, ,1 3f fu u u   ,f          (50) 

which gives  

 
   

2 2 2
,

2 3 2 2 2

1 1 3

1 1 3

fu u f

uf u f



 

   
       .

0

     (51) 

Thus  and henceforth  2 2 3 23 f u f u   

     2 46 1 1 12 3 .IIu f f f f         
 

Inserting such an expression in (45), the following 
asymptotic formulae for the  -field are obtained, from 
which some characteristics observed on Figure 4 are de- 
duced:  

 

Figure 4. An inner, quantum, regular vortex of minimal 
flux, upheld by two-coaxial cylinders of different radii,  

and  Stick to the inner cylinder, the core of the vortex, 

extending even further by a distance controlled by the cohe- 
rent length 

rmax

rmin .

,  is shielded by an annular cylindrical domain 
where the space-time becomes superconducting: a quantum 
effect accurately described by the gravitational potential: 

 II r .  The space-time settles down to its normal state in 

the neighbourhood of the outermost cylinder, where  II r  

vanishes as an    r r
1 2

max1  power. 

 

       2

max

max

2 3 1

if 0; 1 2,

IIr r r r r

r r C

      

  

;    (52) 

       2

min

min

2 3 1

if 0; 1 2.

IIr r r r r

r r C

     

  

;    (53) 

Let  

 1 22 2
min0 r r      

and insert the (53) result into (21), it gives a linear non 
homogeneous equation whose general solution for  
is the sum of a particular solution, say 

0r 
  ,V r  to the solu- 

tion of the homogeneous problem given by (32) again, 
choosing a particular solution satisfying the initial condi- 
tions: , 0rV V   at cr r  (where c  is the value of 
the coordinate radius at some point of the permitted inter- 
val), it is seen then that the non particular solution can 
only bring quadratic -corrections to the previous 
answer. The 

r

 2

cr r 
C er  term in (32) still dominates the limi- 

ting behaviour at small radii. Thus, if  

  1
ˆ , 2 ; 0A r r Br C er r  ,     A  (54) 

it is consistent to set  

 ˆ 2; 0 ,r Br r
 A          (55) 

and also  
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   ; 0o oC e r          .    (56) 

Yet, the Friedmann-Lemaître-Robertson-W
sc

alker-like 
ale factor introduced in the Kaluza-Klein-like metric 

(1), that is to say, the 2e ie   piece, must be a 
single-valued function. N y restriction on the 
polar angle ,

ot having an
  it must be true, if 0,   that  

2;C n n         ,      (57) 

implying in turn a quantum law over the allowed values 
for the gravitomagnetic flux, namely  

d d     H S A s

d ; ,

flux

n e n





     s



 
      (58) 

in the understanding that is a planar, smooth, closed   
 ocurve of winding number ne, surrounding the axis of 

symmetry; each point of ,  it is assumed also, falls 
deep inside a large enough zone where the space-time be- 
comes superconducting, and thus where A  vani- 
shes identically. This type of flux quantization has exact- 
ly the same form than in metallic superconductors, where 
the carriers of electric current consist of pairs of electrons. 
A pair of charged quantum fields ,  actually a field 
coupled to itself, appears instead in the line element (1) 
from which the action principle (7) is based on. Here, the 
fitting charge, however, is in essence pure vacuum ener- 
gy. 

The law of gravitation (7) outlines the Bose-Einstein 
co

 the cause of those 
pr

 much rarer within the 
de

n is the intensity of what we call Gra- 
vi

4.2. Far Away Asymptotics 

beys the asymptotic for- 

ndensation of wave-particle pairs and it bring us closer 
to some of the most fundamental queries posed by New- 
ton about the origin gravity [30,31]: 

“I have not been able to discover
operties of gravity from phenomena, and I frame no 

hypotheses; for whatever is not deduced from the pheno- 
mena is to be called a hypothesis, and hypotheses, whe- 
ther metaphysical or physical, whether of occult qualities 
or mechanical, have no place in experimental philoso- 
phy.”—Principia 2nd edition.  

“Is not this Æthereal Medium
nse Bodies of the Sun, Stars, Planets and Comets, than 

in empty celestial Spaces between them? And in passing 
from them to great distances, doth it not grow denser and 
denser perpetually, and thereby cause gravity of those 
great Bodies toward one another, and of their parts 
towards the Bodies; every Body endeavouring to go from 
the denser parts of the Medium towards the rarer?” — 
Opticks Query 21. 

In what proportio
ty affected by an increase in mass of the gyromagnetic 

field which, by a Higgs-like mechanism, gets transfor- 
med as we move further and further away from macro- 
scopic dense Bodies like the Sun, Stars, Planets and Co- 
mets? Is the local spherical radius on the verge of 

becoming rather uniform so that orbiting test bodies like 
Stars at different radii move through paths of almost equal 
length? And how this rigidity (or uniformity) of the space 
distorts a beam of light when it departs from a point 
where gravity is normal, then—as it travels—the gyro- 
gravitational field becomes massive, to finally end at 
another point where the spacetime is not superconducting? 
Is this a step forward towards a consisitent solution to the 
stabilization problem of spiral galaxies? 

A regular, infinite, string line, o
mulae provided below if the conditions s    and 
r   are met:  

2
cos ,

4s o

r

r

 

 

       
 


    (59) 

   1 ,
2

A r K r
e







          (60) 

where  1K r   is the Macdonald function, decaying 
with distance at leading order as  

 2 expr r .   

To look for the asymptotic distance decay of the gravi- 
ta

 

tional  -potential, turn back to the basic system of 
cylindrically symmetric equations:  

     
2 22

, , 2 , ,
1 ln 0rr r r r

s

r A rA r A r rA 


    
 

 

(61) 



 
4

1 2
4, ,

32 2 2 2

8 2 1

1
8 0

2

r r
s

r r

e A N H

 



 
    
  

    

 

,



    (62) 

As the gravitomagnetic vector potential becomes pure 
gauge, as the space-time becomes superconducting, the 
 -field becomes, to a high degree of accuracy, given 

an asymptotic expansion of the form:  by 

     0 1 2       

     0 1 2, ,s       
    (63) 

the system (61) and (62), in the limit 



r   , ,   
simplifies to:  

2
2

, , 2
1 0rr r

r
r A rA A


 

,    
 

     (64) 

and 
2

2
, , 2

0 0rr r

r
r r  


 

.    
 

      (65) 
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Put attention that the A   
nd order

th

coupling implied by
is relevant only at seco  and be alert
sim e coefficient a

 (61) 
 on the dis- 

ilarity in sign between ccompanying 
our correlation length   and the one encountered in 
standard superconductivity: our sign, one may say, is 
anomalous. Nevertheless, this does not seem to represent 
a severe problem; on the contrary, it is necessary to dis- 
play some of the features observed for the shape of the 
galactic rotation curves, as it is argued in [6]. (64) is just 
the modified Bessel equation:  

 22 2 2 2d d d d 0.z w z z w z z w         (66) 

and it has as one of its solutions: the Macdonald function 
  ,K z   decaying exponentially to zero according to 

the asymptotic representation [32]: 

 

  
 

   
 

24 1
e 1

2 1!8
zK z

z z



  

2 2 2

2
2

2 2 2 2 2

3
3

4 1 4 3

2! 8

4 1 4 3 4 5
1 .

3! 8

z

z
z

 


  
  

 


  
  



 

(67) 

One discards the other independent solution, the hy- 
perbolic Bessel function of the first kind 

  
  



  ,I z   sin- 
ce it grows exponentially with ,z  giving an apposite 
effect not in line with (63), unless s  be unbounded. 
In the next section a rough estimate of the vortex-vortex 
interaction energy is obtained with the help of some iden- 
tities satisfied by the Macdonald function, which for con- 
venience’s sake are listed here: namely, its divergent be- 
haviour at the origin:  

     2 If 0, 0 ,
2

z z
 

ln 2 If 0,z

K z

  
  

  
 

 


 

1

1
lim ln ,

n

kn
n

k




   
 

           (68) 

where   is the Euler-Mascaroni consta
ly given by  

nt, approximate- 

0.5772156649015328606065121,   

and the differential identities:  

    1
1

d
,

dz z K z z K z 
    
    (69) 

    1
1

d
.

d
z K z z K z

z
 

  
   

In the same train of thought, (65) is just the Bessel 
o.d.e: 

  (70) 

 22 2 2 2d d d d 0,z w z z w z z w      

w

 (71) 

hich has as solutions the cylindrical harmonics  J z   
and  .Y z   An asymptotic representation of them for 
large real arguments is given respectively by 

  2
cos

2 4
J r

r 


     
     

and  

r   
  (72)

  2
sin

2 4

r
Y r

r
 


  

  
 


      (73) 

if  2 1 4 .r  
tory an

  Their distance decay is thus oscilla- 
d modulated, in part by the two-dimensional na- 

ture of the problem, by an inverse square ro
the separation distance from the source. No

ort radii: 

ot power of 
netheless at 

sh

  2
ln 2 if 0oY z z z       

   (74) 

holds.  
Now, consider the Green’s identity:  

 
   

 
   

,

.

o o
R

f K r K r f

K r
,

o
oR

f
f K r

n
 

n

 






  

 
 






    (75) 

over the contour 



 depicted in Figure 5, letting f  be 
a regular functi onon   ,R  —we already 
(68), that 

know, by 
 oK r

g 
 is i gular there. Ad

subtractin
ndeed re ding and 

 2
ofK r   to th e integrand on lef nd t ha

side of (75), and usi g (66), we get:  
 

n

 

Figure 5. Contour path  R ,  

ac delta di

of zero winding number, 

used to define the Dir stribution  r2

urve 

 in a 

cylindrically symmetric e planar c space. Th  R,  

is composed of two concen rcles  S  and tric ci 1   S R

of arbitrarily small and large ii respectively, as well as of 
two antiparallel segments along the nonnegativ semi- 

1  

rad

 
e x  

axis, joining both circles.
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 
   

 
   

,

2

,

.

o o
R

o
R

f K r K r f

K r f

 

 







  

   








    ) 

But the right-hand sid

 (76

e of (75) is the sum of two con- 
tour integrals: one along the circle of very large radius 

where the asymptotic representation o
 the other along the circle of small radius 

 1S R  
lies, and

f (67) app- 
 1S   

ing the where (
lim

68) holds asymptotically. Therefore, tak
it    , ,0R    gives 

    
    2

,0 0,

lim 2 lim ,o
R

K r f f 




 

    


 (77) 

on the assumption that not only  

,R  

 2 2C  0f    

is bounded from above  f M  outside a disk 
of sufficiently large radius, but also that  

2  B 

0
lim ln 0.
r

f
r r


r



          (78) 

chwartz’ butions,

   

Following Laurent S s theory of distri  
a linear map  

   2 : ,oK r       

from a proper space of test functions to the reals can 
th

  
en be defined with the help of (77), symbolically 

written as:  

     2 22 ,oK r r             (79) 

ta where  2 :r    is Dirac’s del distribution with 
support at the polar origin. Likewise (73) and (74) leads 
to  

     2 4 2
oY r r      

ware, however

 of boundary terms in the far field regime, in more 
diverse applications, stronger assumptions tha
required for making sense of (79) must apply 
a 

t, 

.      (80) 

Be a , that as the natural space of test 
functions   should be in tune with the vanishing hypo- 
thesis

n the ones 
(if needed, 

change of measure under which the given integrals are 
carried ou say by adding proper weighting factors be- 
comes a natural way to follow). Proceeding on such 
grounds it must be true, by (66) and (67), that 

   1 ; ,
2 sA r K r

e



   


      (81) 

which by (27), (69), and (79), immediately gives 

     

   

1 ,, , ,

2

2 2

.
2 2

z o rr r r

o o

r e e

K r K r
e e



 


    
 

ression 
is expected. Combining (72) and (73), we get  

1 11
B rA r rK r rK    

 

 (82) 

The minus sign appearing at the end of this exp

   1 2
cos ,

4
o

s o

r

r

 

 

            
 (83) 

where o  (determining the first order of the perturba- 
tion amplitude) and   (the angular phase) are integra- 
tion constants. An immediate application of (59) and (60) 
is the estimation of the vortex-vortex and vortex
vortex interaction energies. 

by: 

 (84) 

-anti- 

5. Spin Interaction 

Imagine a large pattern of quantum, space-time vortices: 
each vortex labelled by a unique number ,i  whose axes 
are all aligned, as depicted in Figure 6. Let the Lagran- 
gian of the system be given 

     0 1 2 .int int int
       system free   

 0  denoting the free Lagrangian: free , approximately 
given by a sum over disjoint regions of space  ir  
(hereafter referred to as terminals or ends) of compact 
support centred at each space-time quantum vortex: each 
vortex treated at leading order as if it were in com
isolation, plus a remainder; that is to say: 

 (85

 an interaction 
energy given by:  

plete 

 free remainder
iri



   
 
      ) 

where   is given by (7). To a good degree of accuracy, 
two stationary, axis-aligned, quantum space-time vortices 
with the same sense of spin, interact with

   32 .int
ij o i j o i jE K r r Y r r

e

N N  
 
 

    
  

 (86) 

 



 

Figure 6. An array of axis-aligned quantum vortices inte- 
racting with each other. A vortex-antivortex pair pops out 
at the left upper corner. Quantized-gravitomagnetic-flux 
excitations looping back on themselves to form rings might 
also form on the space-time background, and they could be 
interpreted as a sort of gravitational roton. 
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where i jr r  
he rest

selves) and 

is their relative geodetic distance (accor- 
ding to t  frame of reference attached to the strings 
them  oY r   

distance as 
is a cylindrical harmonic whi- 

ch decays with 

 2 sin 4r r     .

To first order of approximation, the form of the extra 
piece in square brackets is dictated by the require- 
ment that the perturbativ tion, say of the umpteenth 
vortex of the pack, roughly described by the triplet  

int  
e mo

            ,0 ,1 ,0 ,1 ,0 ,1; ;i i i i i iA A        
be given by the solution for an isolated vortex  

      ,0 ,0 ,0; ;i i iA    

plus a correction term       ,1 ,1 ,1; ;i i iA    satisfying: 

        0 ,1 ,12 8 ,i j

j i

  



          (87) 

        2 2

j i





where  

0 ,1 ,12 ,i jA N J        (88) 

   2,1 ,1 ;i i   

whereas  ,1j  and  ,1jJ  are source terms, one for ea- 
ch vortex of the bundle. Compare these equations with 
(64) and (65). The try in the superscript first en  ,1j  of 

 ,1j  and  ,1jJ  lab e vortex to whichels th  it is referred 
n to, while the second entry (as well as the (0) i  0 ) 

establishes the degree of the perturbation. 
In view of this, set 

 
 

 1 2
i

i

i

 


 
  

 

J A 9) 

where the sum spans over all the vortex singularities; the 
equations of motion then become:  

,   (90) 

and  

det d ,int N V    (8

   2 2 2 24 2 il
l k k k k

i

N F e A J         

     

 
 

2

2 2

3 3

0 8

2
.

2

i
i

i

e R
N

N H  

       

    
   

 J A



(91) 

Next, assume that in the neighbourhood  r  o e 
i ple, the asymptotic co

2
2 532 8 3

8
e

   A  

f th
s: 

        (92) 

and  

i

ndition-th vortex of the sam

   ,0 ,1 ; ,i i
ir r     

     ,1 ,0
ˆ ˆ ,ij jJ 

J e              (93) 

hold. Here  ,0ˆ j
e  is the unit vector on the zero-order 

space-tim ground, surrounding the j-th vor
pointin e associated azimuthal direction

0) an erturbatively. At zero order, one gets 
em ions studied previously: (21) and (22). 

Up to seco  terms one recovers the system given 
by (87) and (88), as requested. To compute the first
order-correct rms of the -vortex solution,

e back
g along th

d (91) p
 of equat
nd order

ion te

tex and 
. Solve 

then (9
the syst

- 
 ,1ii    

and they are the direct result of an exter- 
nal  linear superposing each of the
or f the 
in

 ,1 ,iA  suppose 
field obtained by  zero- 

der fields, as seen from a long distance, o remain- 
g  j i  vortices; this can be done by setting:  

  
2

,1 2

,2
j

j
r

N
J r

e 



  r          (94) 

and  

   ,1 232
,jr r 


            (95) 

since one must have both  

j

   1
1,o r

K r K r      

and (60) holding simultaneously, see (69), whereas the 
exact coefficients in front of the delta distribution and its 
distributional derivative are a di ect consequence of  
and Henceforth, in the neighbourhood of the i - 
vortex, the increment in energy ijE  due to the external 
field produced by an axis-aligned j -vortex moving with 
the s nse of rotation is given by: 

r  (79)
(80). 

ame se

 
      1 2,1 ,1 de

i

j j
ij r

E N 


      J A

 good degree of approximation  using  

t d .V  (96) 

To a ,ijE

     1,
1o r

K r K r     

and 

      ,or K r1 ,r
rK r     

reduces to  

 

   32 .int
ij o i j o i j

N N
E K r r Y r r

e
 

 
 

    
  


 (97) 

Here jr  gives the location of the j -vortex; the de- 
nominator of the first term of (9 ) is evaluated using 

.
6

s   For small   the typica shape of this static 
potential is depicted in Figure 7; the first

l 
 term, by (67), 

lsive con ribution; the second term, in com- 
h the fi one, induces in rtue of (7

 of local stationary 
ghly sepa ed by a dist  o  order 

give
parison
attraction at s
oth
minima

s a repu
 wit

 rou

t
rst 

rat

 vi

ance

3) an 
ome places, but gives a strong repulsion at 

ers quarters, leading to an spectrum
f 2 .  

A vari
from

ety of interesting solitonic phenomena may arise 
 (86), perhaps leading to voids where no vortices are  
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Figure 7. Interaction energy ijE  between two-axis-aligned- 

spatio-temporal vortices moving with the same sense of ro- 

tation as a function of their relative distance i jr r .  

 
expected. Finally, the complete increment in energy, say 

 associated with the external fields  ,1i
extE  ,1j  and 
 ,1jA  acting on the -vortex is obtained by ming 

r all the interactin ergies, giving: 

            (98) 

In generic situations one may expect to lose some of 
the finer details resulting from second term of (86), lead- 
ing to a net repulsive force. 

6. Monopole Solution 

 18

uum the 
lleged harmony is known to exist: as particles carrying a 

electr oinc
J. Th y

 [34]. In the 
years of 1931 and 1948, a consisten
magnetic monopoles was put forwa
who arrived to a very significant conclusion; namely, that 
if 

s of some smallest charge. 
n on the existence of the 

ressed in this famous 1931 

 

i
g en

 sum
ove

 ,1 .i int
ext ij

j i

E E


   

Ever since its inception in 61, Maxwell’s equations 
raised a mystery that is still with us. While they seem to 
emphasize a complete symmetry between the phenomena 
of electricity and magnetism, only in the vac
a
single magnetic charge (the magnetic analogue of the 

on) so far have not been found [33]. Yet P aré, J. 
omson, O. Heav side, and P. Curie contemplated 

the idea of an exact symmetry at least once
t quantum theory of 
rd by Dirac [35,36], 

monopoles (or just one monopole) exist, this would 
amount of an explanation of why electricity is quantized 
and given in exact multiple
Dirac’s own initial convictio
monopole is succinctly exp
statement ([35], p. 71): “Under these circumstance one 
would be surprised if Nature had made no used of it.” 

Contrariwise, Bohr was and remained very skeptical of 
this whole affair [34]. The monopole theory in fact did 
not seem to generate much interest until 1974, when it 
was discovered, by Gerard ‘t Hooft and Alexander M. 

Polyakov [37,38] independently, that monopoles are an 
inevitably prediction of certain Grand Unified Theories 
(GUT’s) which rely on the spontaneous breakdown of 
symmetry. Namely, those in which the electromagnetic 
group  1U  is taken to be a subgroup of a larger group 
with a compact covering group, like  5 ,SU  which 
contains the standard model: 

       5 3 2 1 .
L

SU SU SU U        (99) 

The GUT monopoles are exceedingly massive, with a 
mass, say monM , larger by an inverse square gauge cou- 
pling constant than a typical vector boson mass: 

15 1610 -10 GeVWM  , 24 .mon WM e M   

They would act as catalysers for the proton decay 
predicted by grand unified theories [39,40], and would be 
produced in copious number at the very early stages of 
the universe. Being highly stable particles, the GUT mo- 
nopoles would survive as relics to the present epoch. But 
in order to not enter into conflict with what is observed, 
it would be necessary that their density be diluted 
consider by some unknown mechanism (say inflation) 
during the cosmic evolution [41]. It is also  that in 
the so-called Prasad-Sommerfield limit some of these 
non abelian monopoles can b

able 
 known

e converted by their mutual 
interaction into dyons [42,43]: hypothetica
carrying both electric and 

ounda- 
tions of physics. 

l particles 
magnetic type charges that 

were first proposed in 1969 by J. Schwinger.  
Be that as it may, even if no monopole has been found 

yet, it brings considerable insight regarding the f

The action principle (7) not only leads to the existence 
of a gyrogravitational Meissner-Ochsenfeld effect, one of 
the most fundamental properties expected to arise for a 
model where the space-time acts like a superconducting 
body, but also indicates that the cosmological constant, 
first introduced to gravitation by Einstein in 1917, is not 
only quantized but also that its square root is given in 
exact multiples of some smallest value. 

To see if this is true, adopt an orthonormal, spherical, 
coordinate grid of reference outlined by the triplet 
 , , ,r    defined by radial, zenith-angular, and azimu- 
thal-angular variables respectively. The gradient of ,  
in the corresponding orthonormal frame, is given then 
by  

, , ,

1 1
ˆ ˆ ˆ

sinr r r r

, , ,; ; ,
sinr r r

1 1

      


   e e e

 

   


  
 

while the curl of any vector field, say  ; ;rB B B

 

 H  
for definiteness, assumes the form:  
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   
      

11
,,

11 1
, ,,,

sin sin ;

sin ; .r rrr

r B B

r B rB r rB B

  

   

 





 

   
 

      

H
 (100) 

Suppose only one component (the azimuthal one ) of 
the density current (25) is nonzero, and moreover, that it 
does not depend on the azimuthal  -variable; the pro- 
blem reduces then to the evaluation of an scalar potential:  

    ˆ, ,A r


  A           (101) 

taking values on the real line and having poles or singu- 
larities, so that the divergence of the gravitomagnetic 
field be different from zero, as depicted in Figure 8. By 
(100) and the working hypothesis  

  0;0; , ,

r r

A r

ˆ ˆˆ , , ,

1 1
; ;

sinr r   
   


      A A A A

 (102

it is deduced that:  





) 

 
 

 , 1

,

sin
; ;

sin r

A
r rA

r








 
     
 
 

H A 0 .  (103) 

Consequently, the curl of the gravitomagnetic field is  

 

   

,,

1
0;0; rr

rB B
r  

       
H

2
, , ,

s1r r
r A A 

  
2 2

,

0;0; ,
sinr r




        

and (29) immediately reduces to:  
 

in   (104) 

 

Figure 8. A gravitomagnetic vector potential , well be- 
aved at the south hemisphere (except at the ) for a 

gravitomagnetic monopole with a Dirac str unning 
along the nonnegative 

SA
 origin
ing r

h

z

   

   
 

 

2 2
,2

,2 2 2 2,
,

,

2, , ,

sin1 1

sin

sin1 1
ln ln 0.

sin

r r

r r

A A
r A

r r

A
rA

r r









 
 


 



 
  

  

  

 (105) 

Assuming:  

         ; ,Q S r A r g R r       


;   (106) 

apply the method of separation of variables by letting the 
A -function to be given in terms of radial and angular 

enfunctions, eig  R r  and   ,g   satisfying respec- 
ely:  tiv

       
2 2

2
, 2 2 , ,,

1 lr r rr

r
r R R r rR S




 
    
  

    n

(107) 
and  

 semi-axis. 

 
 


 

,

sin
1 ln .

d sin sin
g Q, ,

sind g g
 



  

  
   

  


   

For now let 
(108) 

  be a function of  only. Then, by 
setting 

 r
     sing P u    and ma ing the change of 

va
 

,
k

riable: cosu   (108) in turn tran ates into the form:  sl

   2
,1 1uuu P P 0.          

Thus, if is the polynomial series  

ients 

  (109) 

P  

   , ,
n

n
n

n

P u u


            (110) 

its coeffic

0

 ,n   must satisfied the recurrence relation:  

 
   
    , 2 ,

1 1
;

1 2n n

n n

n n
 

  


  

 
    (11  

furthermore, since  

1)

 , 2 0; ,n n             (112) 

it is deduced that has a finite number of terms whe  
ever become nteger. The ’s are in fact a lim
ti  of the so led Jacobi p nomials, denoted by 

 wher  assume

P  
s an i

 cal
e one

n-
i-   

ng case
 P u

P
oly

s that  , ,n
    and   are 

bigger than minu one, that is:  

 
     

s 

 
 ,

   

The ’s fulfils the Rodrigue’s fo

, 1, 1

1, 1
lim .n nP u P u P u 



 

  
 (113) 

   1, 1
nP u  rmula:  

       1, 21 d
1 1

n n

P u u u  
    11 2 .

2 ! d

n

n n nu


   (114) 

They are connected with the Gegenb
also through the relation:  

auer polynomials 

Copyright © 2013 SciRes.                                                                                 JMP 



W. SANTIAGO-GERMÁN 1461

     1 2lim .n nP C u C u        (115) 
1 2

u




     1, 1 1 2 .n nP u cte C u        

lar functions 

    (116) 

A small set of angu ,g  
nce r

obtained by the 
repeated application of the recurre ela
directly through the Rodrigue’s formula (1

tion (111) or 
14), is given 

bellow: 

        0 1 0,0 1,1

1
cos ,

sin
g g    


     (117) 

    2,0 2
2 1 cosg   2,0 sin ,

sin


    


     (118) 

     3,1 3,1sin cos sin 2 ,
23

1
g     )       (119

    4,0 2 4
4 1 6cos 5cos ,

sin
g 


 


        (120) 

    5,1 2 4
5

cos
3

3sin
g 10cos 7 cos ,

 
     (121) 


 

     6,0 2 4 6
6 1 15cos 35cos 21cos ,

sin
g


     


  

(122) 

     7,1 2 4 6
7

cos
5 35cos 63cos 33cos ,

5sin
g

 
   


     

(123) 
and so on. The zero eigenvalue is degenerate and
trary linear combination of the corresponding eigen- 
functions is presented in (117). In general, they not lead 
to (weighted) squared integrable functions, in
the integral: 

 an arbi- 

asmuch as 

  2
1 2

0
d ; 0,

sin

iC
i






    1.      (124) 

is divergent for the  and cases. The
ever, satisfy the identity 

0i  1i    rest, how- 

       1 2 1 2

0

cos cos
d ; , 2,m  

1sin
2

n m mnC C
n

n n

  




 


 
   
 



(125) 
having finite limits at the north and south poles. In fact,  

 0,lim 0g     

if By an appropriated choice of parameters 
(1 ade regular, either at the north or the 

2.  
17) can be m south 

pole, but not both! Regularity at the north pole (when 
0  ) implies 

   0,0 1,1g       

whereas regularity at the south pole (when    ) re- 
quires  

   0,0 1,1 .g      

Turn next to the radial part. is a s
uatio

 R r  olution of the 
linear differential eq n: 

 

   

2 2
2

, , 2 2

, ,

2 1

ln .

rr r

r r

r
r R rR R

r rR






 
    
  



  



 
   (126

Two special limits call for inquiry, namely, the 

) 

beha- 
 viour of the R -field at near and far distances from the

source. Suppose firstly that, at spatial infinity,   tends 
to .  Then, (126) reduces to the modified, s rical 

ssel equa

t

phe
Be on, which besides being linear and homo- 
geneous: at infinity has as regular solutions the modified 
spherical Bessel functions of the third kind, often 
deno ed as 

ti

 .nk r   A few of them are listed below:  

    1

0 e ,rk r r               (127) 

     2

1 e 1 ,rk r r r       (128)     

       3 2

2 e 3rk r r r r     3       (129) 

     

   2
6 15 15 ,

r

r r

4 3

3 ek r r r  

 

 

   

       (130) 

       

   

4 4

4

2

e 10

45 105 105 .

rk r r r r

r r

 3  

 

   
   

 


  (131) 

ntThe differe ial identity  

    1

d

d
n n

n nk r r r k r
r

  
      (132) 

generates the rest. The exponential decay with distance 
shown in Equations (127)-(131) and inferred from (132) 
is nothing m  the mathematically embodiment of 
the gyrogra  

ore than
vitational Meissner effect.

On the other hand, in the vicinity of
the relation 

 the source-where 
r 

n such
 is expected—the term in (126) 

depending o  a parameter can be negl
moreover, if 

ected, and 
  has a minimum at some spherical core 

but it does not vanish there, the r.h.s. of (126) can
ignored up to terms of quadratic order. The radial func- 
tion, under these assumptions, must take the form: 

 also be 

 

 

1
1

1 22 2

;

.core

R r B r B r

r r  


  

 


  


 



      (133) 

Then, it is seen immediately, by restricting attention to 
the degenerate case:   0 1R r R r    1,0 ,  that if 
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0,g   
dence lead
metry, t
potential 

the combination of the radial and angular depen- 
s, in the neighbourhood of the centr

he following asymptotic behaviour for t
e of sym- 
he vector 

 , :r A  

 
ˆ

1 cos
,

sin
N g

A
r





          (134) 

 
ˆ .

sin
A

r

1 cosS g 


           (135) 

The first (the second) expression of the pair allows for 
a gravitomagnetic vector potential that is well defined at 
north (south) latitudes but not in the sem



i r -axis: 

 , 0 0, 0 ,r r    

referred to as the “Dirac string”. As it has been depicted 
in Figure 8. By direct comparison with (100), it is seen 
immediately that both 

 

NA  and SA  lead to the same 
Hedgehog-like gravitomagnetic field:  

2
ˆ,

g

r
  H A r            (136) 

 implies that whose exact form g  is the gravitational 

mits a scription i  
an

 di

alogue of the “magnetic charge”. Thus, the gravito- 
magnetic field of (136) ad n terms of 
two fferent gravitomagnetic vector potentials N

de
A  and 

,SA  each of which is not singular (except at the origin) 
when they are assigned to a chart dividing the north and 
south hem pectively. Using the former con- 
struction,

ispheres res
 Stokes th

at the total flux
 such a fiel

 2
2ˆ

S
H n

rkscrew’s r

eorem, and ), it is read eri- 
 around t ce

of d is given by

tained 
ule. Moreover, nt of the 

(136
he 
  

ily v
fied th

0r   

 

wh

by the c

ntre of symmetry 

  ˆd dN SS s    A A T 
4 .g    (137) 

ere  2S   is a sphere of radius   with centre at the 
origin and   is its equator, as defined by the north and 
south poles; n̂  is a unit normal to  2S   pointing out- 
wards, and T̂  is the unit tangent vector t    obo

e fulfo  th ilme
mathematical expression:  

   1 34 ,g r g r g r          H  (138) 

also establishes in differential form the existence of gra- 
vitomagnetic monopoles whenever g  0.  

6.1.   and Dirac’s Quantizatio

ta

n Condition 

Gauge invariance, implicit for ins nce in (136), implies 
that the gravitomagnetic vector potentials NA  and 

,SA  given by (134) and (135) respectively, must in fact 
be related by a nonsingular gauge transformation. In effect 

2 ,N S Sg      A A A        (139) 

where φ is the Goldstone boson field introduced in (3). Hence  

 2 ,g o                (140) 

and consequently:  

 4i ge    e .o            (141) 

Moreover, by (2), which contains the combination 
,    t is inferred that the gravitational potential 

amplitude 2
  i

  must be a single valued function, not 
changing by arching out, going ar the origin one 
or more tim  and arriving to the same spac -temporal 
point of departure. Thus, if 0,

m
es,

ound 
io

   

2 2g e n; .n              (142) 

It is seen, therefore, that Dirac’s quantization co

 that t  cosmologi- 
cal constant is not only quantized but also that its square 

s g e! 

ndition, 
given in [35], means that the existence of just one gravi- 
tomagnetic monopole would imply he

root i iven in exact multiples of some smallest valu

6.2. Macroscopic   for Monopoles 

 time to reflect on the underlying mathematical as- 
pects of the companion, modulus field ;   techni- 
It is

cally a sort of symmetry violating dial sa
nerowicz’s like equation [6]: 

tisfying a Lich- 

 



3 2 20 8 8R e A       

  5 32 2 2 2N H  

To get the leading order terms, in
setting, insert the monopolar Equatio
In

8 3e N .   (143) 

 the hedgehog-like 
n (134) into (143). 

 the asymptotic limit    when r  goes to 
 the r

the 
, esulting equation becomes separable and a 

solution of form: 

         

ections

,
,

,

cos

higher order corr

m l
s m lm l

m l

S r Q       




 (144) 

is feasible, where  ,m l  are constant coefficients. The 
azimuthal, the radial, and the zenith equations that follow 
straightforwardly from applying the method of separation 
of variables are: 

2
, 0,m                 (145) 

   
2

2
, 2

1 0,r

r
r S l l S

 
,r 
             (146) 
 

and 

 
 

2
, ,

sin

sin

Q m
l l

 




   

2

2 2

2

1
sin

1 cos
0

sin

Q Q

eg
Q






 


 

    (147) 

re



spectively.  

   exp im     
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solve evidently (145). If t 1 -term i  ignored, 
) leads to  

 

he s
(146

l l 

   0S r cos ,r r          (148) 

compare with (59). To unravel the solutions of (147), set 
  Q Q u   and  cosu   , it transforms then into:  

    

   
 

2
,

,

2 22

2 2

1
.

1 1

u
u

eg um
Q Q

u u


 

 

      (149) 

0 1 1u Q l l Q   

For 1,u   a solution to (149) c
ing the series expansion method. Pu

   

49) and defining, for notational convenience,  

      (151) 

the recurrence relation:  

an be found by apply- 
tting thus 

   ,

0

l m n
n

n

Q u u




          (150) 

into (1

     22 1 ,m m eg l l      

     

      

2
2

2

1 

1
2

2 1

0 2 5 ,

n nm n
n

eg
n n

  

  

 

  

   


    22 n n

n

 


limited by the 

 (152) 

rule 2 1 0     is obtained imme- 
diately; 0  and 1,  however, are arbitrary given num- 
bers. D’Alembert’s criterion and the inferable property 

1limn n

for 
  imply that the resulting series converges 

1  siu  nce  
1 1

1 1lim lim lim
n n

n n
n nn n n

nn

u u
u

u u

 


 
 

  
 

Henceforth,  

1.   (153) 

     

     

    

  

     

    

2 2
2 3

4 5

1 1
0 (

12 2

30

2
6

1 1
2 0 2

120 6

18 .

Q u

m

g e
m u u

m

m u u



  



 



 



 





  


 

   
    



rture to 

2 2
, 2 3

0

1
1

2 3
l m g e

m u u


 



48m u  
2 2

5 62 9
g e

m u u


   

1

1
1

6
u 


  (154) 

In this way, the depa s  is obtained. 
at small radii, the dominant 

n arises fro

As for the limit of   

contributio m the H H -term. By (136), (143) 
reduces, in such a limit, to:  

 2 2 2 ,r r 
, ,r r

    

4.Ng   Using the change of variable: where 1 ,u r   
tants   it is easily seen that when the integration cons

and zero, then corer  are non

       22 2 2 2
1 1corer r             (155) 

solves the problem, and thus, if 4 0 :Ng     

 
,

lim ln 0.
corer r r

            (156) 

7. A Note on Dyons 

From the multipolar expansion (106) of the A -scalar 
ed un- field-which it must not be forgotten, it was ob

der the assumption of an orthonormal, spheri m- 
metric grid, the gravitomagnetic form 

tain
cally sy

dA   
29), it is seen

can be ex- 
tracted. By combining (118) and (1  imme- 
diately that the dipolar  2  o the contribution t

dA   differential encom he follow- 
rm:  

pass, for instance, t
ing fo

     



2 2

2



4 sin 2 d ,g  

d e 3 3rA r r r
          (15


7) 

for r   and s  . H  0 ,r owever, if  (118) 
and plie (133) im s (for l 2 ) that: 

 2d 4 sin 2 dA g .          (158) 

es
he

Both expressions, one when the space-time becom  
superconducting and the other valid in the vicinity of t  
source, contain the  

 2d 4 sin 2 dA g     

piece of the Taub-NUT space: an exact, spatially homo- 
geneous solution of the vacuum Ein
first discovered in 1951 by A. H. Taub and 

by E. Newman, L. Tamburino, 
Taub-NUT solution has topo- 

pr

stein’s equations, 
extended ana- 

lytically a little bit later 
and T. Unti [44,45]. The 
logy 1 3.R S  It determines the gravitational field oduced 
by a gravitational dyon of mass M  and gravitating mag- 
netic mass g  [46]. Its metric, in gravitomagnetic units 
and isotropic coordinates, can be written, if 2,M  as: r

 

 2 2 2 2 2 2

4

d d sin d ,

g

r r r

22
242 2

2

4

d 1 d sin 2 d
4

M
s t

r
   

  

       
 

 

 (159) 

 

where .      reduces to:  
4 2

4

2
1 .

2

M g

r r
     
 

        (160) 
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Here , ,t   and   are E onuler coordinates  while   3 ,S
r  denotes the isotro radial pic coordinate mmon 
point een 5) and (160) can be 

. Co
s betw (15 established at 

2r M . The T ub-NUT space-time is be
by

a tter visualized 
 the product of the Hopf fibering 

1 3 2S S S  

with the r -axis 1. R  2r M  corresponds to an ho- 
rizon and 0r  an irremovable curvature singularity  to 

 3 [46]. In (159) 0;R   however, any establishment of 
space-time superconducting requires  3 0R    0   
as depicted in Figure 2. Current observation limits  3 R  
to a rather small value. 

8. A Note on Topology Change 

When 0g   but oB  does not nish, (117) and (133) 
imply:  

 va

 ˆ 0

1 cosN ,
sin

A r B






          (161) 

The factor of (134) has utterly disappeared
lar com ents apply for 

1r  
m

 (simi- 
SA ). In that case, by (100):  

1 1;or B   


A
1 cos

;0 ,
sin





  


H     (162) 

implying at once:  

  2 2 2 2cos 2 .oB rH      (163) 

ch gravitomagnetic field is singular along the nonpo- 
sitive 

    

Su
z -semi-axis and it can be interpreted as a tear or 

ed a  in Figure 9) in the very fabric of the 
space-time. The lines of force crea
cut (la

te a family of para- 
bolic curves cutting orthogonally the equipotential surfa- 
ces: a coaxial set of paraboloids of revolution. In the fig- 

r agne  in

pology c

ast several billions of galaxies. An 

bel

ure, the g avitom tic-field tensity can be read off 
from the arrow’s length. Space-time ripping opens the 
possibility of to hange in quantum gravity. 

9. Remarks and Conclusions 

The universe has at le
 

 

Figure 9. Spatio-temporal ripping of the space-
The figure shows an artistic representation of th

on effecting the nature of space and 
-Einstein condensation outlined by the 

law of gravity set by Equation (7). 

explanation of their origin and stability re
uncertain. And it rises two of the most fundamental open 

b

 such 
rhaps inflation 

rsued) are not enou- 
gh

 achieve complete clarification, like the unification of 
quantum mechanics with the general theory of relativity, 
certainly calls for a revision of our most cherished ideas, 
concerning the nature of space, time, and matter. It is in 
this spirit, that we have set to explore the likeliness that 
“even at large scales” the space-time might exhibit some 
very striking properties of purely quantum origin, which 
might well have passed unnoticed, in favour of other 
powerful possibilities that have become very tight to ou

m lies the problem of 

However, at the 
fu

the analogy of an stable atom  

time fabric. 
e second 

order phase transiti
time due to the Bose

mains, however, 

problems in Physics, like one time ago were the structure 
and sta ility problems of the atom, that led to the quan- 
tum revolution. In the present state of knowledge, no man 
of our age, no inflationist, no dark matter theorist, can claim 
to know for sure the identity of the primeval mechanism 
giving rise to the rich galactic tapestry observed across 
the cosmos, or the way that the dismantling of the largest 
structures of the universe is avoided.  

The lack of a fully satisfactory explanation to
basic issues, and the impression that pe
and dark matter (although actively pu

, because there are still relevant missing pieces needed 
to

r 
way of thinking, like the lightest supersymmetric particle 
idea which depends on the assumption of R-parity con- 
serving supersymmetry. 

The point of view adopted in this article is that at the 
core of the dark matter conundru
finding how to develop a consistent law of inertia for a 
discrete, quantum fluctuating, space-time background, 
and not necessarily the presence-in some exact propor- 
tion-of an entirely new class of particle per se, such as 
the neutralino or the invisible axion, that may or may not 
exist in the required amounts. 

According to the Einstein-Hilbert action, asymptotic 
flatness seems like a very natural  restriction to follow 
for the classical geometry due to an isolated, static, 
point-like source in empty space. 

ndamental level, the 4-dimensional space-time of our 
direct experience might not be a continuum [47] and 
discrete entities (“space-time atoms”) might rule its 
dynamics [48,49]. This possibility might be enough to 
radically change the picture provided by classical theory, 
and to put into question the “relevance” of the asymptotic 
flatness hypothesis: all the entities that we know about in 
Nature, at least the ones which are linked (in one away or 
the other) to indistinguishable particles, follow well defined 
statistical rules: Bose-Einstein or Fermi-Dirac statistics. 
Therefore, it seem natural to speculate that perhaps such 
“space-time atoms” could suffer from a similar identity 
crisis than the one known to exist in superfluids [6,50], 
specifically in a situation where phrases like: “low 
temperature” and “the lowest state of energy” apply. All 
these reasons, including 
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su

are taken into account, bu
al

rrounded by superconducting currents, but more 
strongly, the precise mathematical form, piece by piece, 
of the Einstein-Hilbert action led unavoidably to the 
exploration of the “space-time as a superconductor” 
paradigm [6]; an exercise that it is not only useful to 
provide a fertile arena for contrasting (and estimate) how 
classical ideas about the nature of the space-time can get 
altered when quantum affects t 

so to translate the main difficulties encountered in the 
dynamical study of galaxies in a completely new 
language, where different technical tools can be put in 
practice with the hope of getting better insights about 
how to handle the fundamental unsolved questions of 
their dynamics, such as the well known “winding dilem- 
ma”.  

This article focuses primarily on finding out the dis- 
tinctive, physical consequences of modifying, in precise 
accord to a gauge principle [see (5), (6), and (7)], the 
l.h.s. of Einstein’s field equations, by the addition of a 
phase factor to one of the gravitational potentials: 
Equations (2) and (3). The first thing that comes across is 
the similarity of such gravitational theory with the theory 
of superconductivity, which surely cannot be an accident. 

It was highlighted that: 
• Firstly: The cosmological constant (which in terms of 

Planck units is as small as 12210 ) can be linked with 
the minimal gravitomagnetic (or gyrogravitational) 
flux supported by a spinning string [see (58) and 
(142)]. 

• Secondly: the appearance of supercurrents around 
rotating astrophysical bodies can modify the space- 
time geometry in such a way that the aforementioned 
complex potential gets a modulus which remains very 
close to a characteristic value [e.g. (59), (144) and 
(148)], while the gravitomagnetic vector potential 
acquires mass causing an exponentially decay (with 
distance) of the gravitomagnetic field [e.g. (127)- 
(131)]; this picture, as discussed in [6], provides an 
alternative to the dark-matter-halo hypothesis, see 
Figure 9. 

• Thirdly: vortex and monopole solutions can be found 
[Section 4 and Section 6] exhibiting in full the super- 
fluid properties of the space-time; the critical point of 
the quantum phase transition, where the order  - 
parameter vanishes, takes place at space-time singu- 
larities, see Figure 9. 

• Fourthly: the close enough mathematical similitude 
that can be established with subatomic models where 
hadrons are viewed as being made up of quarks 
bound by dual strings [51,52], suggests the appli- 

just presented to the study of cation of the scheme 
open strings having gravitomagnetic monopoles at 
their ends, or where, spinning strings (open or closed) 

break or join when they interact. 
• Finally: but not least, two crucial differences when a 

comparison is made with the type of supercon- 
ductivity found in metals like Nb is that, firstly, our 

a

theory is not renormalizable, and secondly, that two 
axis-aligned quantum vortices with the same sense of 
spin not only exhibit zones of repulsion but also of 
attraction, depending on their relative geodetic dis- 
tance [see (86)]; this in itself is an invitation to reflect, 
in this new setting, on the spin-statistic theorem and 
supersymmetry. 

It might seem fitting to recall (as a matter of reflexion 
or even as an historical panoramic view) Einstein’s own 
remarks, set in the 1920s, regarding the revolutionary 
impact brought in by the discovery of superconductivity 
[53]: 

“The theoretical oriented scientist cannot be envied, 
because Nature, i.e. the experiment, is a relentless and 
not very friendly judge of his work. In the best case 
scenario it only says ‘maybe’ to a theory, but never ‘yes’ 
and in most cases ‘no’. If an experiment agrees with 
theory it means ‘perhaps’ for the later. If it does not 
agree it means ‘no.’ Almost any theory will experience a 
‘no’ at one point in time-most theories very soon after 
they have been developed. In this paper we want to focus 
on the fate of theories concerning metallic conductivity.” 

In summary, the list on the left assembles some of the 
features-topological traces if you will-that should be pre- 
sent in our universe if the space-time behaves, in some 
pl r: obeying (say) an 
action principle like (7). According to the train of 
thought pushed forward: when this happens, the 

ces and times, as a superconducto

 3 2     space-time is quite capable of produc- 
ing quantum vortices of (minimal) quantized gravito- 
magnetic flux ,o e    looping back on themselves to 
form rings, see Figure 6. At a first rough approximation, 
such entities should obey the Nambu-Goto action to take 
into account any relativistic Lorentz contraction of their 
vortex core, or better yet, a sort of Kalb-Ramond 
ffective action to ine corporate the topological coupling to 

the Goldstone boson field; what is more, by virtue of (86), 
they also self interact. All these features, together with 
the “hydrodynamical” Magnus effect, are expected to be 
crucial to correctly obtain their effective equation of 
motion: these distinctive “hula-hoop” structures not only 
are capable of reproducing spin-2 effects [52] but also 
are the natural analogue of the higher energy excitations 
referred to as “rotons” in helium II [54,55]. Such looped 
excitations, let’s call them gravitational rotons, can form 
supercurrents: which can persist for very long times, as 
Cooper pairs do in a superconducting wire, or photons do 
in a laser, or electrons in an atom, affecting the inertia of 
test orbiting bodies by a frame-dragging effect and 
producing places of uniformity in the spatial geometry 
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[see Figure 4 and Equations (59) and (148)]. 
Thus, a crucial question arises: Could these theoretical 

ideas: superfluidity of the space-time, supercurrents of 
gravitational rotons, quantization of vacuum energy, 
frame dragging, as well as a Higgs mechanism for gra- 
vity-located in the borderline typified by the shifty split 
between micro-macro, reversible-irreversible, and quatum- 

us closer to identify the nature of cold 
dark matter? 

Is the space-time a superconductor? 
We do not know the answer yet, but surely Nature will 

tell us. 
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