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ABSTRACT 

We propose a model where the Hubble's law is slightly changed. We propose new interpretation of the covariant diver-
gence of the energy-impulse vector and this produce a new correction to redshift. Acceleration of the expansion of the 
Universe appeared as a pure observational effect. High values of the mass density are consistent with the experimental 
data on Supernova Ia within this FRW model without the cosmological constant  0  . 
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1. Introduction 

The equation of continuity with the classical linear 
equation of state  1P     [1-6] where  is the 
pressure, 

P
  is the density of matter and 1w    is 

the coefficient, leads to negative pressure values for  
. The CDM model predicts effective value for 

 which is negative [7,8]. Then for a small scale factor 
 in the beginning of the Universe the total amount of 

matter in the Universe would be negligible. When the 
scale factor increased the matter appeared literally from 
nothing. 

w
 0w 
w
a

 

We propose new correction to redshift which can be 
useful in cosmology. This explains the appeared acce- 
leration of the Universe. High values of the mass density 
are consistent with the experimental data on Supernova 
Ia within this model without the cosmological constant 

. We compared this model with the experimental 
data of the Supernova Cosmology Project Supernova Ia 
compilation. We assumed that 0  and 

 0  

1.01m  0 

v

, 
hence 0 0m  (yet  and curvature 
is positive). We assumed also that , where  
is the parameter of this model and  is the redshift. We 
found the optimal values  

1    0.01 0 
 w z 

z
vz

0.020.05v    

and  

0 5

km
66  

s Mps
H 


. 

The quality of this regression was as high as it was in 
the  CDM model. Yet the value of  was much less 
in the absolute value than in the CDM model. The 
acceleration of the Universe appeared to be a pure ob- 
servational effect due to the negative pressure.  

w


2. The Equation of Continuity 

The Einstein equations with the cosmological constant 
  are  

1
, , 0, ,3

2
R Rg T g           ,    (1) 

where 

26
2

8
1.8659218 10 m kgNG

c


    

 the Einstein gravitational constant [9, p.~347],  

 11 3 26.6725985 10 m kg cNG     

 the Newton gravitational constant.  
To solve these equations we should know the energy- 

momentum tensor T . For synchronous coordinates the 
energy-momentum tensor is 

   
, 0, ,3

Diag , , ,T P P P
  




   


,   (2) 

where   is the density of matter and  is the pre- 
ssure of matter. The covariant divergence of the energy- 
momentum tensor is zero:  

P
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3

0

0T
 

 
  , 0, ,3   . 

If  

0  ,  
3

0
0

3

0
1

s
s

s

T P



 



     

 . 

Considering (22) we obtain  

 3 0
a

P
a

   
  

for the 0
sT  component. Assume that the pressure is 

proportional to the density:  

 1P    . 

for the dust matter this value is 1   and the value for 
radiation is 4 3   [9, p.~123]. Therefore  

3 0
a

a
   

  

and  
3

1 .c a                   (3) 

Considering physical dimensions of values, the 
Equation (3) is better as  

  3

0 0a a
   . 

Hence  
3

1 0 0c a  . 

Let us compare this equation with the change of volu- 
me of the Universe for closed models. The Friedmann- 
Robertson-Walker metric in the cosmic time and in the 
polar coordinates is  

   

        

2 2

2
2 22 2

2

d d

d
d sin d

1

s t

r
a t r

r
  





 
   
  

2
,
(4) 

where  

0 1r   , 0    , 0 2    

and  is the curvature parameter . The 3-volu- 
me element at  is  

  0  
constt 

 3 2 2det 1 sin d d dg a t r r r      . 

The volume of the Universe at  is  constt 
3 2 2 3

1 2

3 20 0 0 2
sin d d d .

1

a r a
V r

r


  



  
 


     (5) 

Since our Universe is homogeneous, the total amount 
of matter in the Universe at some  is  constt 

2 3 2 3 3 2 3
3

1 1 13/2 3/2 3 2
,

wa a a
V c a c c



  

 
   

      (6) 

where 1w  

V

. Hence for  and a  sufficiently 
small the total amount of matter in the Universe will be 
negligible: 

0w 

0   when  and 0a  0w  . Cos- 
mology with 0w   violates the law of conservation of 
matter (conservation of leptonic and baryonic numbers 
[10]). The idea that matter originated from radiation is 
not a good idea because  is too large. The matter - 
antimatter asymmetry also cannot be explained in this 
way. Cosmology with negative pressure  contain- 
ed a “smooth bounce” from the collapsing to expanding 
stage and this was also due to the same fact. Since the 
matter disappeared, the gravitation force was negligible 
and we obtained the smooth bounce with the horizontal 
tangent [11-13]. The only equation which is fully consis- 
tent with (5) and conservation of leptonic and baryonic 
numbers is  

2c

0w 

3

0 0

.
a

a





 

  
 

             (7) 

This is due to the equation constV  . The Equation 
(3) could work for the appropriate epoch only. 

Let us try to interpret the covariant divergence of the 
 0 ,p j  4-vector. If currents are negligible (as in the 
comoving frame), then  

0p

t




 

will get an additional nonzero component and  will 
increase or decrease additionally. It seems reasonable 
because  is the energy and its change is the redshift. 
Hence this equation should give a contribution to the 
redshift (and not bound the matter components). Since  

0p

0p

 
3

0
0

3s
s

s

a
T P

a
 



   
  

and 

  3

0 0a a    

due to (5), this covariant divergence is  
3

0
0

3s
s

s

a
T P

a

 


 

where  is the pressure. Assume that  P

03
pa

P
a t





 




.
V

           (8) 

Here  

0p
E

V





   

is the energy density per unit volume. Integrating  

3
a

P E
a

  


E  
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with P w  , we obtain  
3

0 0

.
w

E a

E a


 

  
 

           (9) 

Since the Hubble law is  

 
 

observedemitted

observed emitted

a tE

E a t
  

and both contributions seem to be multiplicative, we get 

 
 

1 3

observedemitted

observed emitted

.

w
a tE

E a t


 

   
 

      (10) 

Hence the redshift depends on the matter equation of 
state. This correction to redshift e o1 z E E   may be 
useful in cosmology. 

3. Correction to the Distance Due to  
Pressure 

3.1. The Hubble Diagram 

Recall the distance formula. Define  -coordinate by  

   2
2

2

d
d

1

r

r






, . 1  

Then arcsin r   if  and 1  asinhr   if 1   . 
Hence sinnr   where  

 
 
 
 

sin , 1 0 ,

sinn , 0 0 ,

sinh , 1 0 .

  
   

  

   
  
   

  (11) 

The Friedmann-Robertson-Walker metric in the cosmic 
time becomes  

   

          
2 22

2 2 2 2 22

d d

d sinn d sin d

s c t

a t     



    .



 

The space part of the metric is  

            2 2 2 2 2 22d d sinn d sin dl a t        . 

If 0   and 0   then  dl a t d  and 
 tl a  . For a photon , therefore ds  0  tdc t a d  

and  

 
 0 0 0 0 0

2
0

dd d d
,

e e e e

t a a a

t a a a

a at a a c
c c c

a t aa a Ha H
        

 

(12) 
where  

   3 2

0 0 0 0 0mH H a a a   

Now we use our main hypothesis:  
1 3

01
w

a
z

a


    
 

. 

Then  

   1 1 30 1
wa

z
a

  . 

The value of  is the function of , therefore  w z

 0d dw

a
f z z

a
  

where  

    

 
    

1
1

1 3

1

1 3
2

1
1

1 3
3

1 ln 1
1 3

w
w

z w

f z z
w
w

z z
w






 



 


.
   (13) 

Finally  

 
 

1
10

0 1

d ,
z wf zc

z
a H z

            (14) 

where  

         3 1 3 2 1 3

0 0 01 1
w w

mH z H z z
 

       

(15) 
Suppose a source has an absolute luminosity , its 

luminosity (bolorimetric) distance is defined in terms of 
the measured flux   





2 .
4Ld 




             (16) 

The measured flux is  

 22 2
0

,
4 1a r z


 


         (17) 

one factor of  1 z  arising from the decrease in total 
energy due to the red shift of the energy of the individual 
photons, and the other factor of  arising from the 
increased time interval between the detection of in- 
coming photons due to the fact that two photons se- 
parated by a time 

1 z 

t  at emission, will be separated by a 
time 0t  at the time of detection, where   

0 0t a t a   [14, p.~41]. 

hence  

 0 1t t z    

and  

  01 sinnLd z a    . 

applying our main hypothesis (10) we get  

     1 1 3

01 sinn
w

Ld z a    . a . 
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recalling the definition of  
2

0 2 2
0 0

c

H a


    

we get  

0

0 0

c
a

H 




 for . 1  

therefore the luminosity distance is  

   
 

1
1

1 3
0 10

1 00 0

1 sinn d
z w

w
L

f zc
d z z

H z HH





 

      


(18) 

We compared this model with the experimental data of 
the Supernova Cosmology Project Supernova Ia compi- 
lation1. In general no more than two parameters can be 
determined from these statistical problems [15]. We as- 
sumed that  and 0 1.01m  0  , hence  

0 01 0m     .01  

(yet  and curvature is positive). We assumed also  0 

  ,w z vz              (19) 

where  is the parameter of this model. We found the 
optimal values  

v

0.020.05v    

and 

0 5

km
66  

s Mps
H 


. 

the Hubble diagram with these parameters is presented 
on the Figure 1. The quality of this regression is as high 
as it is in the ΛCDM model. High values of the mass 
density are consistent with the experimental data on 
Supernova Ia within this model. Yet the value of  is 
much less in the absolute value than in the ΛCDM model. 

w

The Taylor expansion of the luminosity distance (18) is  

   

0
0 2

0 0

3

d
12 2 2

d

4

0 .

m
z

L

w
c

zc
d z

H H

O z z




 
    
 

 

z



   (20) 

The optimal values for this simplified case for 0.3z   
are  

0 2

km
69  

s Mps
H 


 

and  

0 0.4
0

d
12 2 0.9

dm
z

w

z  


      . 

 
(a) 

 
(b) 

Figure 1. The hubble diagram. 

3.2. Comparing with the Riess Expansion 

In the flat Universe  0 0   we can compare (20) 
with the Equation (10) in [16, p.~25]: 

   2
0

0

1
1 1

2L

cz
d q z

H
     
 

.O z     (21) 

therefore the retardation parameter  

0
0

=0

d
6

2 d
m

z

w
q

z 


   . 

If the parameter introduced in this paper  

0

0

d 1

d 6 2
m

z

w

z 


    
 

, 

we obtain acceleration. Hence the acceleration of the 
Universe appears as a pure observational effect due to the 
negative pressure. 

3.3. Fate of the Universe 

Note that we have chosen 0  and 1.01m  0   
while interpreting the Supernova Ia experimental data. 
We had to make some assumptions on these parameters 
because large number of unknown parameters cannot be 
obtained from this simple regression. Yet since experi- 1http://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt 
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mental data are consistent with 0  and 1.01m  0  , 
then one can say that there is a solution of the Friedman 
equation wich accelerates for a short time in the beginn- 
ing but there is a limit for the scale factor a . We can 
smoothly glue another solution where the Universe shrinks. 

The question of the fate of matter at the end of the 
Universe is the most complicated. We assume that the 
matter does not disappeared at the end of the Universe. 
The matter with some unknown critical density should 
reproduce the hydrogen and provide condition for ano- 
ther Big Bung. The remnants of the Big Bung are black 
holes. We assume that all their singularities are topo- 
logically equivalent and lead to the same space-time 
moment in the past where the collapsing stage of the 
previous Universe ends and the new Big Bung begins. 

4. The Section Curvatures 

For completeness let us review the Christoffel symbols 
for the Friedmann-Robertson-Walker metric (4) and the 
section curvatures. The Christoffel symbols for the 
timelike dimension (i,j = 1,2,3) are  

0 0
00 0 00, ,i i i .j j j ij ij

a a
g

a a
        
 

  (22) 

and , 00 . The Christoffel symbols for the 
spacelike dimensions are  

0
0 0i  0i 

 1 1 2 ,11 222
, 1

1

r
r r

r

 


     


2 ,

 

 1 2
33 1 sinr r      

2 2 2
12 21 33

1
1 , sin 2 ,

2
r        

3 3 3 3
13 31 23 321 , cot .r          

these are all the nonzero components. 
Let  be linear independent vectors of the 

tangent space for the manifold  at the point 
, xu v T N

N x . The 
section curvature u vK   is defined as  

 
2

, ,
,

, , ,
u v

R u v v u
K

u u v v u v
  


     (23) 

where  is the Riemannian curvature map [17, p.~94]. 
Compared with the Riemannian case we have changed 
sign in this formula because the signature of our space is 
Lorentzian. With local coordinates  

R

  , , ,
, , i j k l

ijkli j k l
R u v w z R z w u v  . 

Angle brackets mean scalar product. The denominator is 
the square of the area of the parallelogram based on the 
vectors  and . If we choose another basis in the 
same two-dimensional plane 

u v
  defined by  and v , 

then the section curvature does not change. Hence the 

value u v

u

K   depends on the plane   only. Therefore 
the value u vK   is assigned K  and is called the 
section curvature of the (pseudo)Riemannian manifold 

 at the point N x  in the two-dimensional direction  . 
In local coordinates the section curvature in the direction 

 −  is  i j

 2
ijijji ii jjR g g g  

(no summation for ). The section curvature of the 
FRW space in the directions 0 - 1, 0 - 2, 0 - 3 is  

,i j

a

a


. 

In general for any vectors  such as  ,u v
0 0u  , 1 2u u 3 0u   , , 0v 0

the section curvature u vK a a . The section curvature 
of the FRW space in the directions 1 - 2, 1 - 3, 2 - 3 is  

 

2

2

a

a

  
. 

Also for any vectors  such as ,v w 0 0v   and 
0w 0  (other components are arbitrary),  

 2 2
v wK a    a . 

Please note that for 0 0m   and  the section 
curvatures of the spacetime at present are zero. Indeed 
for the directions 1 - 2, 1 - 3, 2 - 3 the section 
curvatures  

0 

    

2 2

2

0 0 0 m

a H

H H H H


2

2

a

a
2 2






 

     



. 

It seems sensible that without matter the spacetime 
should be flat. The section curvatures for the directions 0 
- 1, 0 - 2, 0 - 3 are 2a a qH   where 2aq a  is 
the retardation parameter. At present time  

a   

0 0

3 2

2 m

 
q    .  

In the absence of matter at present for  it will 
be zero also. 

0 

5. Conclusion 

We propose new correction to the Hubble's law which 
can be useful in cosmology. This correction and our 
assumption  w z vz  produce a model which is 
capable to explain the acceleration of our Universe. This 
model is also consistent with the parameters 0m 1.01   
and 0   corresponding to nearly flat and topolo- 
gically closed Universe. The value 0m   means 
that the expansion of the Universe will change to 
shrinkage yet we should observe acceleration at present. 

1.01
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The assimmetry between matter and antimatter is also 
explained within this model. The matter does not appear 
from nothing at the beginning of the Universe; it is the 
same matter that worked at the previous cycle. The 
matter does not dissappear at the end of the Universe; it 
will just reproduce the hydrogen. The antimatter is not 
holes in the Dirac sea of states with negative energy; it is 
the matter with opposite set of quantum numbers. During 
the final state of the cycle (which is equally the first state 
of the new cycle) all properties of matter are equalized. 
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