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In this paper, we price the valuation of double barrier Parisian options, under the Black-Scholes frame-
work. The approach is based on fundamental partial differential equations. We reduce the dimension of 
partial differential equations，then using finite difference scheme to solve the partial differential equations. 
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Introduction 

It is well known that valuation of financial derivatives, such 
as options, is one of the major topics in quantitative finance 
research. A Parisian option is a special kind of barrier options 
for which the knock-in or knock-out feature is only activated if 
the underlying price remains continually in breach of the barrier 
for a pre-specified time period. The valuation of Parisian op-
tions can be done by using several different methods: Monte 
Carlo simulations (Baldi, Caramellino, & Iovino, 2000), lattices 
(Avellaneda & Wu, 1999), Laplace transforms (Zhu & Chen, 
2013) or partial differential equations. An approach based on 
partial differential equations has been developed by (Wilmott, 
1998; Haber, Schönbucher, & Wilmott, 1999). The options we 
study in this paper are called double barrier Parisian options. 
The paper (Chesney, Jeanblanc-Picqué, & Yor, 1997) intro-
duced the standard Parisian options with two barriers. Double 
barrier Parisian options are options where the conditions im-
posed on the assets involve the time spent out of the range de-
fined by two barriers. Double barrier Parisian options have 
already been priced by (Baldi, Caramellino, & Iovino, 2000) 
using Monte Carlo simulations corrected by the means of sharp 
large deviation estimates, by (Labart & Lelong, 2009) using 
Laplace transforms. We use partial differential equations to 
price double barrier Parisian options. There are two different 
ways of measuring the time outside the barrier range. One ac-
cumulates the time spent in a row and resets the counting 
whenever the stock price crosses the barrier(s). This type is 
referred to as continuous double barrier Parisian options. The 
other adds the time spent in the relevant excursions without 
resuming the counting from 0 whenever the stock price cros- 
ses the barrier(s). These options are named as cumulative 
double barrier Parisian options. In practice, these two ways of 
counting time raise different questions about the paths of 
Brownian motion. In this work, we only focus on continuous 
knock-out double barrier Parisian call options. We establish 
the partial differential equation systems for the prices of dou-
ble barrier Parisian options, and reduce the dimension of par-
tial differential equations, then using finite difference scheme 
to solve the equations. 

The State Space and Boundary  
Conditions Unavoidable 

The pricing of double barrier Parisian options requires the 
value of a state variable (clock) J , which dictates the time 
underlying price outside the barrier range (Zhu & Chen, 2013). 
When the underlying price  is outside the barrier range, the 
state variable 

S
J  starts to accumulate values at the same rate 

as the passing time , and when the underlying is inside the 
barrier range, 

t
J  is reset to zero，and remains zero: 
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where  1 2L L  is a preset lower(up) barrier of the underlying.  
According to (Zhu & Chen, 2013), pricing domain can be 

defined as:  
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 J    is the barrier time triggering parameter. When the 
variable J  reaches J  the option becomes worthless.  is 
the expiration time. For simplicity we suppose that  does 
not jump from 1

T
S

L  to 2L  and does not jump from 2L  to 

1L . The value of a double barrier Parisian option depends on 
the underlying price , the current time t  and the barrier 
time 

S
J , the volatility, risk-free interest rate and the expiry 

time etc.. Under the Black-Scholes framework, the volatility 
  is a positive constant, r  denotes the risk-free interest 
rate，the parameter   is the dividend rate if the underlying is a 
stock or the foreign interest rate in case of a currency.  is 
given by  

S

 d dt tS r S t S W    dt t  

where  is a standard Brownian motion. Let tW  1 ,V S t , 
 2V S , ,t J  and  3 , ,V S t J  denote the option prices in the 
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region ,  and  respectively. By applying the Feyn-
man-Kac theorem (Simon, 2000), 

I II III
 1 ,V S t  should satisfy the 

classical BS (Black-Scholes) equation 
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. 

In region  where the underlying price rises above the bar-
rier 2

II
L , in region  where the underlying price moves 

below the barrier 
III

1L , the barrier time J  starts to accumulate. 
As a result,  2 , , ,V S t J  3 , ,V S t J  are governed by a modi-
fied Black-Scholes Equation (Haber, Schönbucher & Wilmott, 
1999) respectively,  
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We show below how the solutions are linked in these three 
regions. At barrier we impose pathwise continuity of option 
price, which means the option price does not jump at a barrier. 
The continuity of the price across the barrier 2L  demands  

   
2 2

2lim m 0
S L L

V1 li
S

t
 

,V S , ,S t

1

. The continuity of the option price  

across the barrier L  demands    
1 1

1 3lim , lim , ,0
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Appropriate boundary conditions are also needed. In most 
general form, the option is specified as follows: If the knock out 
option has not been triggered by expiration , then the option 
has the price contingent payoff which might also depend on 

T
J  

at expiration; if the knock out option has been triggered during 
the lifetime of the option，the option pays off the option value at 
point  , , JS t . The terminal condition in pricing domain  
can be given by the payoff function of a European call of ma-
turity T and exercise price ,  

I

K

   ,T S K
 1V S . 

A knock out double barrier Parisian call option is lost if un-
derlying price  made an excursion outside the barrier range 
older than 

S
J  before ,  T

 2lim
J J

, , 0V S t J  , 

 3lim
J J

, , 0V S t J  . 

That it would take infinite amount of time for an infinitely 
large underlying price to fall back to the barrier 2L , the option 
must be worth nothing when  becomes very large gives  S

 2lim , 0
S

t J


,V S . A call option becomes worthless when  

the underlying price approaches zero, gives  3lim , , 0
S

V S t J


 .  

The boundary condition at barrier is specified by the so called 
“reset condition”,  
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PDE Systems for Pricing Double Barrier  
Parisian Options 

Under the Black-Scholes framework, the PDE (partial dif-
ferential equation) systems for the prices of double barrier Pari-
sian options with above boundary conditions have already been 
established in (Haber, Schönbucher, & Wilmott, 1999): 
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The above PDE systems are in 3-D and can implified to 2-D 
PDE systems. 1  is already in 2-D. We need to deal with the 
system governing 2 , 3 . To reduce dimensionality of a PDE 
system usually requires the application of some sorts of trans-
formation techniques, such as the Fourier transform, the 
Laplace transform, and so on. Without applying any transfor-
mation methods，the pricing domain  is a parallelepipedon, 
and can be decomposed into infinite many cross-sections 
(which will be referred to as “slides” hereafter)，all of which are 
of 45˚ to both of the plane, t = 0 and J = 0 (Zhu & Chen, 2013). 
In the pricing domain , the positions of the regions are 
reversed. It is clear that the option value 2 , 3  at any given 
point 

V
V V

III

II

V V
 , ,S t J  can be uniquely determined as long as enough 

information along the every slide passing through that static 
point is known. In other words，the original 3-D problem can be 
decomposed into a set of 2-D problems defined on each slide，
if viewed from a 45˚ rotated coordinate system. Mathematically, 
to obtain the PDE governing , , in the rotated coordinate  2V 3V

system. We can use the directional derivative 2

2

2
V

l


 


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 which represents the instantaneous rate of change of  

the function 2V , 3  at the point V  ,t J , in the direction of 
( 2 2 , 2 2 ), to replace the sum of the two partial deriva-  

tives 2 2V V

t J
, 3V V

t J

   
 3 , respectively. Furthermore, let  
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2 2 2l l  , 3 3 2l l  . As a result, the governing equation 

in the new coordinate system can be written as 
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which is the BS equation. In the new coordinate system, 
   2 2 2 2 2, ; , ,V S l t V S t l l    , ,  

serves as a parameter. The boundary conditions sets for 
  3 3 3 3 3, ; , ,V S l t V S t l l    t

 2 2, ;V S l t  can be extracted from the corresponding boundary 
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conditions that  2 , ,V S t J  needs to satisfy (Zhu & Chen, 
2013): 
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Therefore, the2-D PDE systems that govern the price of double 

lim , ;V S l t

barrier Parisian options can be now summarized as: 
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for 0,t T J    , 2 0,l J     , 3 0,l J     . 

Algorithm 

The numerical solutio (1)-(3) is implemented 
us

are discretized as

n to Equations 
ing a finite difference scheme in 2-D. Although explicit finite 

difference schemes are similar to the binomial numerical me- 
thod in spirit, they are more general and thus more flexible. The 
method is time-efficient because it is extremely easy to pro-
gram，and the programs run very quickly. It is suitable for many 
types of contracts including most common path-dependent de- 
rivatives and is trivially—with one extra line of code—exten- 
ded to American-style early exercise. 

In Equation (1), the price S  and t   S , 
 bet , respectively. For stabili  of the scheme, t  has to  

sen small enough. We denote ,i jV  by the erical ap-
proximation to the option value at i S , t j t  . We call 
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The price is discretized using equ  steps in and 
no

e prices of a double barrier Parisi  call 
w

, 1 , ,
3

k j k j k jV V l L    .

S  
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al ln S  
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t in S . 
We pcom

ith 0 100S K  , 1 90L  , 2 110L  , 0.095r  , 0   
and 1T   obtained with our method o method 
with 0 samples. The programs of finite difference schemes 
run very quickly. Comparison corrected Monte Carlo and finite 
difference: 
 

 and Monte Carl
1000

MC Price FD Price 

0.645 
1.142 
2.747 
2.214 
3.065 

0.632 
1.121 
2.732 
2.352 
3.031 
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