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ABSTRACT 

In [Perturbation of Spectrums of 2 × 2 Operator Matrices, Proceedings of the American Mathematical Society, Vol. 121, 

1994], the authors asked whether there was an operator  0 ,C B K H  such that     
0 ,C CC B K HM M     for a 

given pair  ,A B  of operators, where the operator  CM B K H   was defined by 
0C

A C
M

B

 
  
 

. In this note, a 

partial answer for the question is given. 
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1. Introduction 

In the last decades considerable attention has been paid 
to upper triangular operator matrices, particularly to 
spectra of operator matrices, see [1-8]. H. Du and J. Pan 
firstly researched the intersection of the spectra of 2 × 2 
upper triangular operator matrices, and also proposed 
some open problems. In this note, we mainly study these 
problems. 

For the context, we give some notations. Let H  and 
 be Hilbert spaces, ,  and K  B H  B K  H,B K  

denote the sets of all linear bounded operators on H , 
and from  into K K H , respectively. For  A B H , 

, , define an operator   B B K
C

 ,K HC B
 M B K H  by 

0C

A C
M

B

 
  
 

. 

Let        , , , pN T R T T T  , ,  ap T  T , 
 and  denote the nullspace, the range, the 

spectrum, the point spectrum, the approximation point 
spectrum of the resolvent set, the nullity and the defi-
ciency of an operator , respectively, where  

 n T  d T

T

   dimn T N T  and     dim *d T N T

use  lF H ,  rF H  and  SF H  to denote the sets of 
left Fredholm operators, right Fredhlom operators and 
semi-Fredholm operators in  B H , respectively. If T is 
a semi-Fredholm operator, define the index of T, , 

by 

indT

   indT n T d T  . Note that  indT  
 *N T

 
and it is necessary for either  or  to be 
finite dimensional in order for (1) to make sense ([3]).  

 N T

For  A B H ,  KB B , denote 

         
 

, :B n

n   0 ,

d A

A

0

and

kU A B A

k d

B

B

    

 

  

 

 

  


 

      
C B

  .CM
 ,K H
,A B A B     

Under the situation that do not cause confusion, we 
simplify  0 ,kU A B U as . 0

k

In [2], H. Du and J. Pan have proved that, 

 
 

   
,

C
C B K H

ap

M

A B



n B    : ,d A     



 



 
   (1) 

for given  A B H  and , the author asked 
a question that whether there exists an operator 

B B K 

 ,C B K H0  such that 

 0
   ,K HM M 

n
U
 C C

0

C B ? 

In this note, when  , 0 kA B k
 (n is a natural 

number), an affirmative answer of the question has been 
obtained. 

 

2. Main Results and Proofs 

To prove the main result, we begin with some lemmas. 
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Lemma 1. ([2]). Given  A B H


, , then  B B K

 
0

, 0 kA B k
U


  . 

Lemma 2. ([9]). Let  be an open connected subset 
of 

G
   eA A   and suppose 0 G   such that 

, then there is a finite-rank operator  0 0A  ind F  
such that 0A F    is invertible, and also A F    
is invertible for every G  . 

For any , it is clear that  ,C B K H 
         , C CC B K H M M A       B








. 

If there exists a  such that 0 ,C B K H

   0 ,C A BM   , 

then 

     
0 ,C CC B K HM M   . 

But how to construct the operator such that  

   0 ,C A BM   ? 

In the next theorem, we give a necessary condition of 
the answer of the question. 

Theorem 3. For a given pair  ,A B  of operators, 
where  A B H

 ,K H

, , if   0k
 (n 

is a natural number) and each  has finite simple 
connected open sets, then there exists an operator 

 such that  

 B B K 0n

kU,A B 
0
kU

0C B

     
0 ,C CC B K HM M   . 

Proof. For convenience, we divide the proof into two 
cases. 

Case 1. If n = 0, that is, , let  
0

, kA B U    0 0C  .  

It is easy to see that  from 
lemma 1. Thus 

     CA B M   

        0 , CC B K H
M A B M   


   , 

so the result is obtained. 

Case 2. If , that is, . Then  0n   
0

, 0

n

kA B k
U


 

 ,A B  has finite simple connected open sets, now reor-
dering and denoting by 


 1,2, ,kU k s 
km

. Thus there 
exists a natural number  such that 

       
    

:

and 0 .

k

k

U A B n B d A

m d B n A

   

 

    

    

 

k

 

For each  choose a kU k U  , then k  is a finite 
subset of  and   ,A B

     
0C k k kind M ind A ind B       . 

Next, the rest of proof is divided into two steps. 

Step 1. We construct  as follows: 0C

Let   11

1

m

j j
f


 and  11

1j

m

j
g


 are orthonormal basis for  

 1N B   and  1R A   , respectively and denote 

   0 1N B N B 1    ,    0 1R A R A 1    . 

First define an operator  from 11V 0N B  onto 
0 1R A    by 1 1

1 j jV f g , . Then define 
 by 

1m1 j 
1C

 
 

1 1 0 1

1 0

, ,

0, .

C f V f f N B

C f f N B 1





  


  
 

It is clear that  is well defined and 1C  1 ,C B K H . 
If 1s  , then let 0 1C C . 

If 1s , let   21

1j

m

j
f


 and  21

1

m

j j
g


 be orthonormal  

basis for  2N B   and  2R A   , respectively.  

It is clear that   21

1

m

j j
f


 and   11

1

m

j j
f


 are linear inde-  

pendent. then there must be unit vectors 

  12 1
1 1

m

j j
f f


  ,    12 1 2

2 11

m

j j
f f f


   ,···, 

   1 2

2

12 1 2

1 1

m m

m j jj j
f f f



 
    

such that 
1

1

1 2

2 2

2 1 2
1 1 1

1

2 1 2 2
2 2 21 1 2

1

1
2 1 2

2
1 1

,

, ,

.

m

j j
j

m

j j
j

m m

m mj j j j
j j

f f f

f f f f

2
mf f f



 

 







 

 

   

   





 



f

2
1

 

Define an operator  as follows: 2V
Let 

2 2
1 1 1g g C f    and , 2 2

2 1 1V f g 

2 2 2
2 2 1 2 21 2 1

2g g C f V f     and , ,  2 2
2 2 2V f g  

2

2 2 2

1
2 2 2

1 2
1

m

m m m j j
j

2
2g g C f V f





      and 
2 22 m mV f g2 2  . 

Since   11

1

m

j j
g


 be and   22

1

m

j j
g


 be are linear inde-  

pendent,  
1j

22 m

j
g


  is linear independent. Let  

    22
0 2 1

m

j j
N B f


    

and  

    22
0 2 1

m

j j
R A g 


   . 

Then    1 0N B N B 2     and  is an opera-  2V

Open Access                                                                                             AM 
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tor from 0N B 2  onto . Define  
by 

0 2R A   


0 1

2C

    
   

2 1 2 0 1 0 1

2 0 1

, ,

0, .

C f V V f f N B N B

C f f N B N B

 

 

     


    
 

The process can be similarly done continuously. 

Let  
1

sms
j j

f


 and 
1

sms
j j

g


 be orthonormal basis for  

 sN B   and  sR A   , respectively. It is clear  

that   1 1

k
smk

j j k

f
 

 is linear independent. Then there must  

be unit vectors 

 1
1 1 0' s s

k kf N B 
   , 

   1
2 1 0 1 , ,s s s

k kf N B f
       

    11
1 0 1

s

s

ms s s
m k k j j

f N B f


 
     

1

 

such that 

1 1
1

1 1 11
1

,
s

kk
m

ms s s k
j j j jj

j

sf f f 





      f  

1 1
1

2 2 2 1 1 21
1

, ,
s

kk
m

ms s s k s s
j j j j sj

j

f f f f f  





          

1 1

2

1
1

1

.
s

kk

s

m
ms s s k s

m sj j sj j sj jj
j

s
mf f f f  






       f   

Define an operator sV  as follows: 
Let 

1 1 1 1
s s s

sg g C f    and 1 1
s s

sV f g  , 

2 2 1 2 21 1
s s s

s s
sg g C f V f     2 2 , ,s s

sV f g   and  

1

1
1

s

s s s

m
s s s

m m s m sj s j
j

sg g C f V f





      and 
s s

s s
s m mV f g  . 

Since   1

1 1

k
sm

j j k
g

 
 is linear independent,  

1

sms
j j

g


  is 

linear independent. Denote 

   0 1

sms
s j j

N B f


    and    0 1

sms
s j j

R A g 


   . 

Then 

   0 0i jN B N B    , 

1 i j s    and sV  is an operator from  0 sN B   
onto 0R A s

 . Define sC by 

   
 

1 1 0

1 0

, ,

0, .

s s
s k k k k

s
s k

C f V f f N B

C f f N B k





 



    


   
 

Let 0 sC C . It is clear that  is well defined and 

bounded with finite rank. By directly computation, we 
can get 

0C

 
0

0 1 0

, 1 ,1 ,

0, .

k k
j j k

s
k k

C f g k s j m

C f f N B 

     


   
 

Step 2. We prove that  defined as 
above such that  

0 ,C B K H 

     
0 ,C CC B K HM M   . 

It is sufficient to prove that for any  ,A B  , 

0CM   is invertible. From Lemma 2, it is only to 
prove for any k , k0CM   is invertible. To finish it, it 
is to prove that 

0C kM   is injective and surjective. 
If there exists a vector 0 0x 0y z   with 

 0 0 0C kM x  , 

where 0y H  and 0z K , then 0 kz N B    and  

   0 0 0kC z zA R A k     . By definition of ,  0C

then 0 0 kC z R A    , thus . On the other  0 0 0C z 

hand, since 0C  is injective on  kN B  , then 0 0z  , 

and so,   0 0kA y  . By assumption that  k ap A  ,  

hence 0 0y  . Therefore 
0C kM   is injective. 

For any vector x y z  , where y H  and z K .  
Since  k B   and  k ap A  ,  kR B K    

and  kR A   is closed. Thus there is a vector 1z K   
such that   1k zB z  . Because , there  0 1y C z H

exist  kR A  
z

 and  such that   kR A    

0 1y C     . Hence there exist  2 kz N B     

and 1y H  such that 0 2C z   and   1kA y  
0C

. 
The last equality is possible, because  is onto 
 k R A   . Therefore, 

   
  0

1 1 0

1 2 1 2

0 1 .

k
C k

k

 1 2y A y C z z
M

z z B z z

C z y

z z






 

    
           

    
    
   

 

As x  is arbitrary, 
0CM k  is surjective. 

Hence, for any  ,A B  , 
0CM   is invertible, i.e., 

   0 ,C A BM    . So .        
0 ,C CC B K HM M  

The proof is completed. 
Example 4. If A U  and ,  is the shift 

operator on , let 
*B U U

1l

   0 0 1 2 0, , , ,0,0,C      , 

then 
0CM  is invertible. From directly computation, 

 ,A B D   and    A B D   , where  is the  D
interior of unit disk. For any  ,A B  , 

0CM   is  

Open Access                                                                                             AM 
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invertible. Thus      10C CC B l
M M D 


  . [4] X. H. Cao and B. Meng, “Essential Appoximate Point 

Spectra and Weyl’s Theorem for Operator Matices,” 
Journal of Mathematical Analysis and Applications, Vol. 
304, No. 2, 2005, pp. 759-771.  
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