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ABSTRACT 

In this paper, we present a generalization of the commonly used growth models. We introduce Koya-Goshu biological 
growth model, as a more general solution of the rate-state ordinary differential equation. It is shown that the commonly 
used growth models such as Brody, Von Bertalanffy, Richards, Weibull, Monomolecular, Mitscherlich, Gompertz, Lo-
gistic, and generalized Logistic functions are its special cases. We have constructed growth and relative growth func-
tions as solutions of the rate-state equation. The generalized growth function is the most flexible so that it can be useful 
in model selection problems. It is also capable of generating new useful models that have never been used so far. The 
function incorporates two parameters with one influencing growth pattern and the other influencing asymptotic behav-
iors. The relationships among these growth models are studies in details and provided in a flow chart. 
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1. Introduction 

Measuring biological growth has been important in many 
fields. Many researchers have contributed in developing 
relevant models: [1] for Brody function; [2] for Von 
Bertalanffy function; [3,4] for Richards function; [5] for 
Gompertz function; [6-8] for Logistic function; [6,9-11] 
for Generalized Logistic; [12,13] for Weibull function; 
[1,14] for Monomolecular function. 

The mathematical representation of the relative growth 
is described by the ordinary differential equation (ODE) 
or rate-state equation 

   
d

d t

f t
r f t

t
               (1) 

Here  f t  is representing growth function and t  is 
relative rate function at time . This ordinary differen-
tial equation has many solutions among which some are 
studied in this paper. The growth models have been 
widely used in many biological growth problems includ-
ing: in animal sciences [1,5,7,8,15,16] and in forestry 
[17,18]. Simulation studies by [19] indicates that such 
growth functions are so flexible to wrongly fit to given 
data set and recommends more care while selecting the 
models. 

r
t

A number of attempts have been made to generalize 

the growth models. For example, [17] modified the ODE  
(1) by including one parameter   as:  
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

   from which some growth models  

are derived. Moreover, they have shown that the model 
has upper limit but no inflection point when 1 

1
; and 

has both upper limit and inflection point for   . 
[18] defined 9-parameters model as: 

. The first two 
terms include all commonly known growth functions 
except Weibull, and so they included to the third term to 
account for it. 
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The generalized logistic function has been studied by 
some researchers [6,9-11]. Eberhardt and Breiwick [9] 
applied the models to growth of birds and mammals 
populations. 

In the current paper, we provide a new single general-
ized growth model as solution of the ODE (1) consisting 
of eight parameters. It can also serve for model selection 
purposes. We also study the mathematical relationships 
among the models presented herein. Inflection points of 
the models are discussed. 

2. Koya-Goshu Growth Function as a  
Generalization of Growth Functions 

In this section we define a new generalized growth func-  *Corresponding author. 
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tion, named as Koya-Goshu growth function and show 
how it accommodates the commonly known growth 
models such as: Logistic, Generalized Logistic, Gom- 
pertz, Brody, Monomolecular, Mitscherlich, Von Berta-
lanffy, Richards, Generalized Weibull and Weibull func-
tions. 

The new generalized growth function, Koya-Goshu 
growth function, is defined as 

      1 e
m

k t
L Lf t A A A B        

     (2) 

Here the parameters are defined as follows: 
1
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    
 is derived from  , , ,LA A A m  

 : limtA f t  f , A is upper asymptote of  f t  

LA : Lower asymptote of  f t  
 A f 

:
 Growth rate parameter 

  Time shift, a constant 
:  Time scale, a constant 
, :m  Shape parameters of the growth function, 
0, 0m    

2.1. Description of Koya-Goshu Growth Model 

The Koya-Goshu growth model is 8-parameter  
 , , , , , , ,L A A A k m   

0.

 function. The model is a more 
general solution of the ODE (1). Note that 0  and 
equal at time 

A A 
 

0B  m
 Regarding the quantity , 
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 as ;  
as . The quantity  can assume any value in 
the open interval 
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B
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 for Richards, and in (0, 1) for 
both Von Bertalanffy and Brody. For both Logistic and 
Gompertz,  can take any positive real number. For 
Weibull,  while for generalized Weibull case, 

. 
When time  is non-negative, the Koya-Goshu func-

tion is well defined for modeling growths. The function 
represents sigmoid curve for m < 0 and 

t

  any positive 
odd integer. However, if m > 0 or (m < 0 and   is any 
real number other than positive odd integer), the function 
is well defined growth model for time Lt t  where  
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 . This implies that the function  

misses lower asymptote in some cases. To account for 
the asymptote, modification can be made by taking 
  Lf t A  for Lt t    or can be written as: 
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Thus, the Koya-Goshu function in (2) can be generally 
expressed as: 
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(3) 

Here * is used to denote multiplication. Also here 
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is a unit step function, where  

Lt    if 0 & odd positive integerm   or 

 
1

1
logLt B

k


      

 
 

if 

   0   or  0 & non positive oddm m    

Lt  is a lower bound for the time. Note that  L LA f t  
with  f   defined by the limit of  f t  as time t 
goes to  . It serves as a lower asymptote of  f t . 

Note that the Koya-Goshu function is defined at all 
points  ,m   in m -plane. All the commonly known 
growth curves lay along the line 1   or 1m   only. 
The function extends the inclusion of other points in the 
plane than these points. This means that it is so flexible 
that one can select any other curves than the commonly 
used ones. 

We show that the Koya-Goshu model accommodates 
all commonly known growth functions. We have given 
detailed analysis of the growth models and how they are 
related to each other. The Richards function is a general 
form of Brody, Von Bertalanffy, Classical Logistic and 
Gompertz. Brody is same as Monomolecular and Mits- 
cherlich functions. Brody is a special case of Weibull 
function. All the relations are illustrated by flow chart in 
Figure 1. Detailed derivations of the function  f t  and 
relative growth rate  are given in Appendix A. t

Some selected plots are illustrated in Figures 2-5. 
r

2.2. Properties of the Koya-Goshu Function 

The function represents both increasing and decaying 
growths (see Figure 2(a), 3(a), 4(a), 5(a)). It is increas-
ing for 0   and decaying for 0  . This means that 
increasing or decaying of the growth is influenced by 
sign (positive or negative) of  , irrespective of the val-
ues of m. 

The function represents increasing growths with upper 
asymptote but no lower asymptote: 

1) For all positive combination values of both  and m
  (see Figures 2(a), 3(a)) 

2) For all small negative values of  and large posi-
tive values of 

m
  (see Figure 4(a)). 

The function represents increasing growths with both 
upper and lower asymptotes: 

1) For all negative values of m and any (small or large) 
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Figure 1. Flow chart illustrating the relationships among the generalized and specialized growth functions. 
 

  
(a)                                        (b) 

Figure 2. Plots of (a) growth functions and (b) rate functions with  , , ,1 2 1m    2 . 
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(a)                                        (b) 

Figure 3. Plots of (a) growth functions and (b) rate functions with  , , ,2 2 1m    2 . 

 

  
            (a)                                            (b) 

 
(c) 

Figure 4. Plots of (a) growth functions and (b) (c) rate functions with  , , ,1 2 1m     2 . 

 
positive values of   (see Figure 5(a)) 

2) For all small negative values of  and small posi-
tive values of 

m
 (see Figure 4(a)). 

The occurrence of either lower and upper asymptotes 

or only upper asymptotes is influenced by only  but 
not 

m
 . Generally, the parameter   influences growth 

behavior, while the parameter  influences asymptotic 
behavior of the function. 

m
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(a)                                          (b) 

  
(c)                                                         (d) 

Figure 5. Plots of (a) (b) growth functions and (c) (d) rate functions with  , , ,2 2 1m     2 . 

 
2.3. Inflection Point of Koya-Goshu Function 

We now introduce the definition of inflection points of a 
curve, and describe the procedure to find inflection 
points for the growth functions we discuss in this paper. 
Suppose that the function  f t  is continuous on an 
open interval containing the point . Then the point 

 is called an inflection point of 
' 'a
' 'a f t  provided that 

 on one side of  and  on the 
other side. At the inflexion point  itself either 

 or 
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 f t  does not exist [20].  
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Here, we observe that 

 

   

 

 

1

1

0

1 1

1
1 0

1 1
1 0

1 e

m
L

L

L

t
k

f t

A A
m

f t A

t
k

m t
m k

B











 


    

 

 

 
           

           
     

 
                       

 
  
   
  












 (6) 

Clearly, point of inflection exists in Koya-Goshu func-
tion provided the relation (5) is satisfied, since 

  0f t   at that point and also   0f t  and 
  0f t   are satisfied on the increasing and decreasing 

sides of that point. 
Here it can be observed that the inflection points of 

Koya-Goshu function, when the parameters are fixed as 1) 
1, 1   , and 2) 1m   perfectly matches with the 

cases of Generalized logistic functions and Generalized 
Weibull models, respectively. 
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For the other cases when 1, 1m   , the inflection 
point for the Koya-Goshu function can be obtained by 
approximations. For example, using Taylor series expan-
sion up to first order term, the time of inflection is ap-
proximated as: 
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  (7) 

3. Biological Growth Models and the  
Parametric Relationships 

In this section we studied the parametric relationships 
among all the biological growth models considered in 
this paper viz., Koya-Goshu biological growth model, 
Generalized Logistic, Particular case of Generalized Lo-
gistic, Richards, Von Bertalanffy, Brody, Logistic, 
Gompertz, Generalized Weibull, Weibull Monomolecu-
lar, and Mitscherlich functions. The relationships identi-
fied have been exhibited through a flowchart. 

3.1. Generalized Logistic Function 

The Generalized Logistic function as given in [21] is 
expressed in its original notations as  
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The Generalized Logistic function (7) is hereby a spe-
cial case of Koya-Goshu function with 1, 1,    and 

. The parameter B takes the form  0m 
1

1
m

L

L

A A
B

A A
  

    
 . The expression for the relative 

growth rate function can be computed as  

 
 

1

1
( )

m
LL

t
L

f t AA A
r mk

f t A f t

 
              

 . Similarly, the  

expressions for  f t  and  f t  are, respectively, 

given by 

       
1 111
m mm

L Lf t mk f t A A A f t A


L

            
 


 

and      
1

1
1 1

m
L

L

A A
f t mk f t

m f t A

 
               

 

.  

The single point of inflection occurs when the organism  

reaches the growth     1
1

m

L Lf t A A A
m

      
 at 

time

1

1
log 1

m
L

L

A A
t m

k A A


               

  

where  0,1m  . For 0 , inflexion point 
does not exist. 
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3.2. Particular Case of the Generalized Logistic  
Function 

A function called Particular case of the Generalized Lo-
gistic function is defined [21] as  
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point of inflection occurs when the organism reaches the 

growth   1
1

m

f t A
m

    
 at time 

 

1

1
log 1 ,

0,1

mA
t m

k A

m


  

             
 

1



 

For , inflexion point does not exist. 0 m 

3.3. Richards Function 

The Richards function is defined as in the usual notations 
(Richards, 1959) as 

  1 e
mktf t A B              (10) 

Here 

1

01
mA

B
A

    
 

. The Richards function can be  

directly derived from the ODE or rate-state Equation (1)  

with relative rate function
 

1

1

m

t

A
r mk

f t

  
       

. The  

Richards function becomes special case of Koya-Goshu 
growth model with 1, 1, 0, 0LA      . Here the 
parameter m can assume any non-zero real number. The 
expressions for  f t   and f t  are given by respec-  

tively      
1

m m m

1 1 1

f t mkf t A f t


   
 

 
 and  

         
1 1

1  m m

1

mf t kf t f t m A m f t
 

   






 The sin-

gle point of inflection occurs when the growth reaches 

1
m

m

m



 


  of its final growth, i.e.   1

m
m

f t
m

   
 

A  

at time 

1

01
log 1 , 1.

mA
t m m

k A

  
                  





 

3.4. Von Bertalanffy Function 

Von Bertalanffy is defined (Bertalanffy, 1957) as 

   3
1 e ktf t A B              (11) 

It is a special case of Richards function (5) with 
 and a special case of Koya-Goshu growth model 

with 
3m 

1, 1, 0, 0, 3LA m       . Here  
1

3
01

A
B

A
    
 

. It can also be derived from ODE (1) with 

relative rate function 
 

1 3

3t

A
r k

f t

  
 1      

. For Von  

Bertalanffy function  f t
 

and  f t  are respectively  

given by      
2 1 1

3 3 33t kf t A f t
 

  f  
 

 and  

       
1 1 1 1 1

2 3 3 3 3 33 2 3f t k f t A f t A f t
   

      
   

. Here  

the single point of inflection occurs when the growth 
reaches  8 27  of its final growth, i.e.  

   8 27t A  at time 

1

3
01

log 3 1
A

t
k A

  
                  

. f

3.5. Brody Function 

Brody is defined (Brody, 1945) as: 

   1 e ktf t A B               (12) 

It is a special case of Richards function (9) with 
1m   and a special case of Koya-Goshu growth model  

with. 01, 1, 0, 0, 1, 1L

A
A m B

A
         . It can 

also be derived from ODE (1) with rate function 

 
1t

A
r k

f t

 
  

  
. Here  f t and  f t  are respec-  

tively given by    f t k A f t      and  

   2f t k A f t    . Brody growth function does not 

possess a point of inflexion since   0f t   is not sat-

isfied for any value of . t

3.6. Logistic Function 

The classical Logistic function (Nelder, 1961) is defined 
as: 

  A

1 e kt
f t

B 


             (13) 

Here 
0

1
A

B
A

 
 
 

 . The Logistic function is a spe-  

cial case of 
1) Richards function (9) with  1m  
2) Particular case of logistic function (8) with  

0, 1m     
3) Generalized logistic function (7) with  

0, 0, 1,LA m k        
4) Koya-Goshu function (2) with  

1, 1, 0, 0, 1A mL        . 
The Logistic function can be derived from the ODE (1) 

with rate function 
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 
t

A f t
r k

A

 
  

 
. Here,  f t  and  f t  are respec-

tively given by     
 1k f t

f t
f t

A

 
   

 
 and  

     2
1

f t
f t kf t

A

 


 
   . The single point of inflection 

occurs when the growth reaches half of its final growth 

 
2

A
f t   at time 

0

1
log

 
 
 

1
 
 
 

A

k A
 t . 

3.7. Gompertz Function 

The Gompertz function (Winsor, 1932) is defined as 

   expe B ktf t A               (14) 

where 
0

log
A

B
A

 
  

 
. 

It is shown to be a special case of 1) Richards function 
(9) with  2) Particular case of logistic function 
(8) with  3) Generalized logistic function (7) 
with 

m
m
0, L 0,A m     ,  

0, L

 4) Koya-Goshu 
function (2) with 1, 1, 0,A m       . The 
Gompertz function can be derived from the ODE (1) with  

rate function 
 

 logt

A
r k

f t


 

 




. Here,  

     
 log

A
f t k f t

f t

 
    

 
,  

     
log 1

A
f t kf t

f t

  
        

   and the single point of  

inflection occurs when the growth reaches  1 e  of its  
final growth, i.e.,    1 ef t  A  at time 

0

1
log log

A
t

k A

        
     

. 

3.8. Generalized Weibull Function 

The Weibull function is generalized and named here by 
Generalized Weibull function as 

  1 e
t

K

f t A B



   

 
 
 
 
 

          (15) 

where 1
A

B
A
  . The generalized Weibull is a special  

case of Koya-Goshu growth function (2) with 
. Generalized Weibull functions can be 

derived from the ODE (1) with rate function  

1, 0Lm A 

 

1

1t

k t A
r

f t


 

        
     

. For Generalized Weibull, 

 f t  and  f t  are respectively given by 

    t
f t k f tA

 
 

       
   
 



 

 and  

   
1

1
1

t t
t k f t

  
  

       f         
      

. The 

single point of inflection occurs when the organism 

reaches the growth  
1

1

1 ef t A B 
   
 

 
  

  
 at  

time

1

1
t



k

 

    

 
. 

3.9. Weibull Function 

The Weibull growth model (Rawlings et al., 1998) is 
given as 

  1 e
t

f t



  

               (16) 

The Weibull function can be derived from the ODE (1)  

with rate function 
 

1

1t

k t A
r

f t


 

        
     

.  

Weibull a special case of Generalized Weibull (13) func-  
tion with 1, 1, 1A B k    and that of Koya-Goshu 
growth function (2) with  

1, 0, 1, 1, 1Lm A A B k     . For Weibull,  f t and 

 f t  are respectively given  

by    1
t

f t f t
 

 
             

 and  

     
1

1
1

t t
f t f

  
  

       
t        

      
. For  

Weibull, the single point of inflection occurs when the 

organism reaches the growth  
1

1

1 ef t 
   
 

 
  
  

 at 

time 

1

1
t

 

    

 
. This fact can be verified by  

directly substituting 1, 1, 1A B k    in the inflection 
point of Generalized Weibull. 

3.10. Monomolecular and Mitscherlich  
Functions 

Here we show that Brody, Monomolecular and Mitscher-
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lich growth functions are the same, except that the names 
and notations used are different. Hence, all these three 
functions exhibit the same properties and behaviors and 
also they represent the same growth patterns. 

Monomolecular growth function is defined (France et 
al., 1996), in its original notations, as  

    0
0 e 1 1 et t

f f f
f

w
w t w w w w

w
  

  
           

 

where  w t  is the growth function at time , t fw  is  
the final (mature) value, 0  at  is the initial 
value and 

w w 0t 
  is rate of growth. This function can be 

expressed as Brody function (7) with notations  

  0
0 0, , , 1 ,f

w
w f t w A w A B k

w
        

as    1 e ktf t A B   . Monomolecular growth function 
can be derived from the ODE (1) with rate function  

 1t fr w w   or 
 

1t

A
r k

f t

 
   

 
.  

Thus, Monomolecular growth function, just similar to 
Brody growth function, does not possess a point of in-
flexion since   0f t   is not satisfied for any value of 

. t
Mitscherlich growth function [22] is defined, in its  

original notations, as  1 e ty      
  where  is  y

the growth function at time , t   is the final (mature) 
growth,  is a constant and    is rate of growth. The 
Mitscherlich function can be expressed with notations  

  , , , e ky f t A k B      


 as Brody function  

  1 e ktf t A B    given by (7). It can be derived from 

the ODE (1) with rate function  

t

y
r

y


 

  
 

 or
 

1t

A
r k

f t

 
   

 
.  

Not that the integral constant becomes  
 log logAB     . Thus, Mitscherlich growth 

function, just similar to Brody growth function, does not 
possess a point of inflexion since   0f t   is not sat-

isfied for any value of . t

4. Other Relationships 

Here we derive explicitly and present few more relation-
ships, other than those mentioned in Section 3, among 
the growth models considered in this paper. 

4.1. Relation between Richards and Logistic  
Functions 

Let us now see how Richards and Logistic functions are  
related. Using the Richards function (9), we can derive 
Logistic (12) as follows: 

   
1

0

Richards 1 e

1 1 e

mkt

m

m
kt

f t A B

A
A

A





       

  
              

  (17) 

  
1

1

0

1

0

0

Richards  with  1

1 1 e

1 1 e

1 e
1 1 e

kt

kt

kt
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f t m

A
A

A

A
A

A

A A

BA

A











 

             

  
    

   
         

 

         (18) 

where 

1

01
mA

B
A

    
 

. Hence, Richards growth function 

with  1m    leads to the Logistic function. 

4.2. Relation between Richards and Gompertz  
Functions 

We now show how Gompertz is related to Richards 
function, i.e., the relative growth rate function of Rich-
ards as  leads to that of Gompertz, which is now 
shown. Note that the relative growth rate functions of 
Gompertz and Richards are given respectively by  

m 

 
logt

A
r k

f t

 
 

 
  and 
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A
r mk

f t

 
      
   

. 

By applying the limit as  on Richards , we 
get the following: 

m tr

 

 

 

1
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lim 1

1
exp log 1
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1

m t
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A
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m f t
k
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

  
        

     



   
                   

      (19) 

Here the last expression is obtained by a simple alge-
braic rearrangement of the expression. In this expression  

evaluation of limit leads to 
0

0
 
 
 

 and to avoid that we 
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applying L-Hospital rule to get 

 

   

   

   
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log Gompertz  
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A A
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m f t f t

A
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   

  
       

 
   

    
(20)  

Thus, the limiting value of the Richards relative rate 
growth function as  reduces to the Gompertz 
relative rate growth function, and hence these two func-
tions are related. 

m

4.3. Relation between Particular Case of  
Generalized Logistic and Gompertz 

We now show how Gompertz is related to the particular 
case of generalized Logistic function, i.e., the relative 
growth rate function of the particular case of generalized 
Logistic as  leads to that of Gompertz, which 
is now shown. Note that the relative growth rate func-
tions of Gompertz and the particular case of generalized  
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By applying the limit as  on tr  of the par-
ticular case of generalized Logistic function, we get the 
following: 
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Here the last expression is obtained by a simple alge-
braic rearrangement after the inverse functions viz, loga-
rithmic and exponential operations are used. In this ex-  

pression evaluation of limit leads to 
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that we apply L-Hospital rule to get 
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(22) 

Thus, the relative rate growth function the particular 
case of generalized logistic function as  re-
duces to the Gompertz relative rate growth function, and 
hence these two functions are related. 

m

4.4. Relation between Brody and Gompertz  
Functions 

We have shown in the flow chart the relationships among 
the growth functions by setting the parameters suitably. 
However, Gompertz and Brody functions can be related 
through a transformation of time coordinate and that goes 
as follows: 

Let the time variables of Brody and Gompertz are rep-
resented by and t  respectively. Now consider the 
Brody function as 
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and the Gompertz function as 
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Now on equating the  f t  and  f   from (23) 
and (24), we get 
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which is the coordinate transformation equation between 
the time variables of Brody and Gompertz functions. 

5. Illustration for How Relative Growth Rate  
Function Behaves—Richards Case 

The relative growth rate function t  is significantly dif-
ferent for the models at early ages and converges to zero 
for the later ages. The relative growth rate t  is an in-
creasing function of  while it is a decreasing with 
time t. However, t  grows with  in the early ages 
allowing the parameter m to play a significant role. Sub-
sequently, t  dies at later ages irrespective of . We 
consider Richards function as example to illustrate this. 
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Consider the Richards relative growth rate function 
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is a function of parameter  and time , and limit 
gives: 
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Equation (28)  is increases with m  at early times. t

Also, on taking the limit of  in (27) as t , we 
get 

r
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showing that  vanishes at time of growth maturity for 
all . 

tr
m

6. Conclusion 

This paper introduces a new generalized mathematical 
model for biological and other growths, named as Koya- 
Goshu growth model. It is a generalization of the com- 
monly used growth functions such as: Brody, Von Ber- 
talanffy, Richards, Weibull, Monomolecular, Mitscher- 
lich, Gompertz, Logistic and generalized Logistic func- 
tions. Koya-Goshu model is constructed as a solution of 
ordinary differential or rate-state equation. The function 
incorporates two parameters where one influences grow- 
th pattern and the other influences asymptotic behavior. 
The model is so flexible that it can be useful in model 
selections. Moreover, it generates new and useful growth 
functions. All of the growth models considered under the 
study are related to each other as illustrated in the flaw 

chart. As further studies, we will take up applications of 
this model for data fitting and prediction. 
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