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ABSTRACT 

The fundamental equation of mineral production allows to model and design the dynamics of mineral production, how- 
ever complex they are or could be. It considers not only the case of a constant production to reserves ratio for given 
intervals of time, but with a piecewise approach, it is also enabled to account the variation on time of this ratio. With a 
constant production to reserves ratio, the limit expression of the fundamental equation takes the form of an Erlang dis- 
tribution with a fixed shape parameter. The rate parameter equals the scale factor. The discrete piecewise version, in- 
stead of considering the reserves and the production to reserves ratio being constant through certain intervals of time, 
updates both variables by units of time. This version, using either lineal or non lineal functions for the variables in- 
volved, let to model known production profiles or to forecast them by experimental design. The Hubbert’s lineariza- 
tion updated with recent data and the p-box method applied to determine ultimate recovery of U.S. crude oil reserves 
indicate official accounts underestimate them. The analysis of the ideal model of production based on Hubbert’s lin- 
earization and curve, can be made by decomposing it in the distribution with time of the reserves and of the production 
to reserves ratio. The distribution of reserves with time is synchronized for both the ideal Hubbert’s curve and real pro- 
files, disregarding whether they match or not. The departure of real profiles from the ideal Hubbert’s curve lies on the 
differences or correspondences of the distribution with time of the production to reserves ratio. The MonteCarlo simula- 
tion applied to forecast US crude oil production for the next five years points to a slow decline, with average annual 
yields presenting a difference lower than 10% between the start and the end of the simulation. 
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1. Introduction 

In the first part of the present work [1], the equations of 
mineral production forecast were introduced, showing its 
capability to model and forecast the production of any 
mineral, either solid or not, at a widespread range of 
scales. However, the limitation of a formulation linked to 
a constant production to reserve ratio through time im- 
poses limits on more general scopes of applications. In 
the present paper, it will show how such limitations can 
be overcome, upgrading their field of uses to model and 
forecast complex patterns of mineral production. In the 
way, it will show the link between the fundamental equa- 
tion of the set and Hubbert’s formulas to model mineral 
production. The classic Hubbert’s method to model or 
forecast of mineral output presents an ideal trend of rise, 
maintenance and decline [2,3]. Its difficulties to approach 
real and complex production profiles led researchers to 

modify the original concept of the Hubbert model to em- 
brace complicated ranges of production profiles [4]. 
They tackle the need of both modeling the past and pre- 
dicting the future of minerals under exploitation. In that 
sense and scope, during the last decades since the dis- 
close of Hubbert’s proposals [2], the use of its classic 
methodology for the modeling and prediction of mineral 
production at large scale has been habitually applied for a 
diversity of cases. If the ideal and the real profile keep 
approximately close, as happens with crude oil produc- 
tion in USA [2,3], the Hubbert’s curve fairly succeeds in 
its task. However, additions and refinements to give it the 
capability to go beyond archetypal production profiles 
have also been developed. This situation has led to the 
development of elaborated methods amplifying the 
original definition and possibilities of the Hubbert pro- 
posal, as the combined generalized Hubbert-Bass model 
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[4] or the probabilistic model of the Hubbert curve [5]. 
The reason is that outside an initial rough appraisal, 

ideal models like Hubbert’s are not suitable to be applied 
directly to replicate or to predict patterns of production 
where there is a complex profile. These profiles, as we 
could see in the case of gold mining in Canada (as pre- 
sented in the webpage 24 h gold), differ from the sym- 
metrical Hubbert’s curve since they display scattered 
intervals of rises, falls or even average constant values 
through time.  

This raises several questions pending to answers [5], 
among them, what factors lay deep in the roots of the 
dynamics of mineral production that makes ideal models 
to work or not, and how to grasp it? 

The methodology and results presented offer answers 
to such questions. They are based on the link between 
mineral production and several concomitant variables, 
provided by the fundamental equation of the set of equa- 
tions of mineral production forecast [1]. With a novel 
approach and reformulation, the fundamental equation of 
the set becomes the fundamental equation of mineral 
production, able to handle a universal range of produc- 
tion profiles. We shall see evidences of a highly advan- 
tageous modeling and predictive tool, whose potential 
relies, among other aspects, on being capable to lever 
variation in time of the production to reserve ratio. 

We shall see the fundamental equation of mineral pro- 
duction, in its limit expression, offers an (viable) alterna- 
tive methodology to address this matter, based on the 
concept of the production to reserve ratio. The EMPF 
provide the added value of being based on a time related 
functional relationship between reserves and the rate of 
production, rather than the classic approach that relies on 
trend analysis supported by the available data or the more 
sophisticated and newly arrived methods using elabo- 
rated curve fitting by detailed intervals of time. This gives 
grounds to compare both approaches and to take the best 
of them to get a more complete picture in order to predict 
or model mineral production. 

The deduction of the EMPF via mathematical induc- 
tion from the assumptions of a constant PRR, known 
initial reserves and the law of conservation of matter are 
departing suppositions. They can be lately treated with 
flexibility to get insights in cases away from ideal points 
of departure. In that sense we shall see that a piecewise 
approach can be set up with the EMPF to model early 
stages of production, a plateau and even irregular trends, 
without breaking the core of the postulations behind the 
EMPF.  

The importance of such forecasting techniques is 
pointed as the wealth of corporations, countries or re- 
gions is under scrutiny. Strategic plans rely on produc- 
tion commitments, and among the great urges there is the 
need of reliable forecasts to be ready to prevent crisis 

triggered by mineral depletion [6]. As the fundamental 
equation considers the variations of the PRR with time, 
addresses the issues of the real dynamics of mineral pro- 
duction. It is capable to yield an exact fitting of produc- 
tion profiles, however complex they could be. This gives 
a viable alternative to skip the discrepancies between real 
production profiles and ideal models of production with 
symmetrical curves. For forecasting purposes, the vari- 
ables of the fundamental equation can be operated to 
yield the result on production profiles of different future 
likely scenarios and conditions. 

The modality of research applied to find out the con- 
nection between the variables involved in the EMPF is in 
essence correlational, but once the functional link among 
the variables is stated, experimental design could take 
place by inspecting the effects of controlled variables on 
the output of production or on other variables set up as 
dependant. Some explanatory research can be ascribed to 
the elucidation of the meaning of the production as a 
result of its dependence on the variables included in the 
EMPF. 

General Objectives of the current study are: 
To disclose the fundamental equation of mineral pro- 

duction (FEMP); To present evidences of its general 
character, exposing its universal range of applications to 
model or predict mineral production; To establish the 
distribution of PRR with time as a key factor to unravel 
the dynamics of mineral production; To establish condi- 
tions of equivalence between the FEMP and the Hub-
bert’s curve; To show how the study of the variation of 
the PRR with time explains whether or not ideal mineral 
production models match real production profiles; To 
develop and release a methodology to model or predict 
complex patterns of production based on the trend analy- 
sis of the variables that give shape to the FEMP 

Specific objectives are: 
To analyze the results of decomposing a real produc- 

tion profile in terms of the distribution with time of its 
reserves and PRR; To apply the link of the FEMP with 
the PRR to model a selected example of mineral produc- 
tion; To compare a interval of complexity of a classic 
pattern of production with the models based on the fun- 
damental equation and the one provided by the Hubbert 
linearization and curve; To provide a comparative exam- 
ple of forecasts based on applying the fundamental equa- 
tion and the Hubbert’s curve. 

And finally: 
To provide a full development of the mathematical 

background behind the fundamental equation of the set 
of EMPF via mathematical induction (in Annex 1), The 
procedure followed in the development of the current 
project first consist on the set up of the theoretical basis 
and then on the unraveling and application to the case 
under study of a practical methodology based on these 
results.  
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2. Set up of Theoretical Basis 

This section embraces: 
1) Derivation of the fundamental equation of mineral 

production (from the fundamental equation of the set of 
EMPF); 

2) Set up of the discrete piecewise version of the FEMP; 
3) Comparative study between the FEMP and the Hub- 

bert’s curve. 

2.1. Derivation of the Fundamental Equation of 
Mineral Production  

Lets first recall the starting set of the Equations of Min- 
eral Production Forecast (EMPF): 

The fundamental equation of the set of EMPF, as in- 
troduced in [1], is the first one of a set comprising the 
following: 

    1

0 1
n

P n CR C
             (1) 

   0 1
n

R n R C              (2) 

    0 1 1
n

PA n R C            (3) 

where: 
n: years of production; 
R0: volume of original reserves; 
 P n
 R n

: production at the nth year; 
: volume of remaining reserves at the nth year; 

C: average production to reserves ratio;  
 PA n : Cumulative production at nth year.  

For the purposes of the present study, the production- 
reserves ratio (PRR) for every year is defined as the re- 
spective production of that year divided by the reserves 
available at the beginning of the year. In the equations, it 
will be designated with a capital C. 

The Fundamental Equation of Mineral Production  
“Eternity lasts no time” [7].  

Let’s consider an examination of Equation (1) applied 
in a piecewise fashion. This can be done by using it at 
intervals of time where the data of remaining reserves is 
updated at the start of each interval and time is reset to 
one at the beginning of the interval: 

Be Ri−1 the value of the estimated reserves at the be- 
ginning of a period (i) covered by the piecewise function. 
Notice it is used the sub index i − 1 to follow the fact the 
reserves precede the beginning of production at every 
interval. 

If  means the production at the first year of the 
period, we then have a consequent PRR as: 

 1iP

  11i i iC P R                (4) 

As reserves varies from year to year due to revisions, 
discoveries or other reasons, at year n it is proposed the 
use of a factor  that will adjust the reserves  a n 

 1iR   at the beginning of the period:  

  1 1i ia n R R n              (5) 

But at year n, by applying the factor  to adjust 
the reserves, we will also have a modified PRR: 

 a n

 
     

1

1i i
i

i

P C
C n

a n R a n

 
   

 
       (6) 

So, as stated by Equation (1), by year n the production 
 iP n  corresponding to the reserves adjusted by the 

factor  a n  will be: 

   11 1
1

i
i i i

C
P j C R

a j

 
    

        (7) 

To simplify the results of the following deductions, a 
change of variable, n = j + 1, allows to conveniently get n 
− 1 = j, so Equation (7) becomes  
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
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     
             
     



P n

a n

 

(8) 

Further examination of Equation (8) lead to consider 
what would happen after n years of production. Most 
likely, with enough time running, the update of the de- 
pleted reserves would involve a decrease from the initial 
amount Ri−1. In this case  handles the propor- 
tion of the decrease. 

 1a j 

Become aware, for the sake of the following deduction, 
that there are conditions where if the reserves are devel- 
oped beyond certain degree, as n increases, then  1a j   
most likely should decrease.  

It is found [8] the following limit of Equation (8) when 
time goes to infinity  j   and  goes to 
zero 

 1a j  
  1 0a j   :  

 
 

 
 
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j
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Ci
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j C R C R
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
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
  

 

 
      



P   (9) 

For each interval of time considered, Equation (9) can 
be seen as an Erlang distribution with a fixed shape pa- 
rameter. The rate parameter equals the scale factor [9].  

Equation (9) gives a general law linking mineral pro- 
duction of an interval of time with time itself, the re- 
serves at the beginning of the interval and a constant 
production to reserves ratio over the interval. It can be 
quoted as: 

The profile of the production with time equals the 
multiplication of a scale factor  by the natural 
exponential number (e) raised to the multiplication of the 
negative value of time by a ratio of the scale factor. The 
ratio is the scale factor divided by the reserves available 

 1i iC R 
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at the start of the interval of time  1 1i i i iC R R C   . 
Notice when j = 0 then n = 1, and at the very first in- 

terval (i = 1), the production at year one equals the mul- 
tiplication of the PRR by the initial reserves R0, as stated 
in Equation (1), since e0 = 1. 

Notice also that for every new interval after the very 
first, the first production of the interval can be obtained 
setting up j to zero. 

Equation (9) can be viewed as a platform to introduce 
the notion of reserves and of PRR as time dependent 
functions. To that end it is enough to account with a dy- 
namics of production comprising several consecutive 
intervals of time of arbitrary lengths with the reserves 
and the PRR following a functional law over the intervals. 
Going further, even if each interval of time is reduced to 
be of unit length, there are several ways to set up func- 
tional connections between time and the distributions of 
reserves and of production to reserves ratios. Polynomial 
fitting, to quote one example, is one of these ways. 

Lets design them as  and C , respectively.  1i  i
So, for a piecewise discrete approach (with unity as 

time interval), Equation (8) can be reformulated as Equa- 
tion (10) and quoted as: 

R 

The profile of the production with time equals the 
multiplication of a time dependent scale factor  1i iC R 


 

 
by the natural exponential number (e) raised to the nega- 
tive value of a ratio of the scale factor . The ratio 
is the scale factor divided by the reserves  avail- 
able at every -th discrete point of time  

  iC

 iR 1

 1i 

        1 1R C  i i i i

The scale factor is directly proportional to the (linear 
or non linear) time dependent function of the PRR. The 
constant of proportion is the reserves available at every 
discrete point of time.  

C R . 

2.2. Set up of the Discrete Piecewise Version of 
the FEMP 

The use of Equation (9) in a piecewise manner can be 
thought in two ways. In one it is applied in discrete in- 
tervals of time. In another, each discrete interval of time 
are reduced to length one, and then Equation (9) becomes: 

     1P j R j C j             (10) 

As with this particular approach the Reserves and the 
PRR are updated every time, we have found an alterna- 
tive way to get a time dependent expression of the Fun- 
damental Equation without breaking the core of the pos- 
tulations behind the EMPF.  

The simplicity of Equation (10) could mislead and con- 
ceal its extraordinary capabilities to model historic dis- 
tributions of production data or to forecast future trends. 
We shall see how it is suitable to be applied to accom- 
plish both goals. But first, the reader is invited to explore 
in the next section the connection between Equation (10) 
and the formulas of the Hubbert’s curve and linearization. 

2.3. Comparative Study between the FEMP and  
the Hubbert’s Curve 

For the use of this article, is understood that initial 
reserves R0 is equivalent to the expression of ultimate 
recovery Qt, and PA equivalent to the cumulative pro- 
duction Q as meant in the formulas of the Hubbert’s 
curve and linearization model [3].  

Lets establish what is the nature of the PRR as implied 
by the Hubbert’s model. The linear expression of the 
PRR through time, as offered by the logistic curve for the 
case under study, is a reflection of a more general feature 
of this model: 

Since: 

         
 

0 0 0 0

0
0

1 1

1

PA n R n R n PA n
R n

R R R R
PA n

R
R

     

 
  

 

(11) 

Then, to obtain the PRR from the expression of the 
Hubbert’s linearization [3] it can be done in two steps as 
follows: 

First, a rewriting and rearrangement of the variables of 
the expression for the Hubbert’s linearization of pro- 
duction lead to: 

         
0

0 0 0

1 1
PA n aPA n PA n

P n aPA n R
R R R

   
      

   
 

(12) 

Second, we come out with the construction of an ex-
pression for the PRR based on the division of Equation 
(12) by Equation (11) 

 
   

   

 
 

 

0

0
0

0

1

1

PA n
aPA n

RP n
C n C n

R n PA n
R

R
a

PA n
R

 
 

   
 
 

 


 (13) 

So, the Hubbert’s curve, as stated by Equation (12), 
result is a PRR with a constant linear rate of growth 
given by multiples of the ratio 0a R .  

Notice in Equation (13), although equivalent to Equa- 
tion (10), there is synchronization of the time index for 
all the variables. In effect, the definition of Equation (11) 
allocates   00R R  and Equation (12) assigns P(0) = 0. 
From Equation (13), it is seen that the PRR as implied by 
the Hubbert’s curve is a linear function of the cumulative 
production. The slope of the line is the ratio of the “a” 
intercept [1] to the initial reserves R0. Equations (10) 
suggest to rethink the Hubberts curve as one composed 
by the multiplication of two intervening factors, the PRR 
and the reserves.  
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Equations (10) and (12) allows to rewrite the Hub- 
bert’s curve with the piecewise discrete version of the 
fundamental equation (Equation (10)) in terms of the 
ratio 0a R , and the distribution with time of the reserves 
and the cumulative production: 

 
       

       
0

0

P n a
C n PA n P n

R n R
a

C n R n PA n R n
R

  

 
     (14) 

So, the Hubberts curve, with the parameters of the 
ideal profile of production, is implicitly formulated in the 
expression of Equation (10) and vice versa. By splitting 
the formula of the Hubbert’s curve in the contribution of 
the two factors found, we can address the question of the 
departure of ideal from real profiles. We shall see that at 
time n, the difference between the ideal and the real pro- 
file comes by the difference between the real and the 
ideal production to reserves ratio.  

3. Methodology and Results 

Once the theoretical basis is determined, it is conven- 
ient to proceed with the application of the abstract results 
to the cases to be studied following the next general pro- 
cedure: 

1) Estimation of R0. The working scale is a fundamen- 
tal factor to decide a methodology to follow to determine 
R0. If the case of study consists of individual reservoirs, 
R0 can be estimated by several techniques supported by a 
geologically driven appraisal [10-13]. If the working 
scale includes several reservoirs, and their combined pic- 
ture present an early development of mineral resources, 
where the Hubbert’s linearization is not the best choice to 
apply, probabilistic approaches are of common usage 
[5,14]. The Hubbert’s linearization [2,3] can be applied if 
the degree of development of resources is advanced 
enough and the working scale is greater than individual 
reservoirs (fields, basins, corporative assets, countries, 
regions, etc.). In this latter case, in the plot P PA  ver- 
sus P, use peak points of the dataset to define an enve- 
lope or range of values. This will help to identify a lower, 
an average and a upper estimate of R0.  

2) Having R0, the historical distribution of the reserves 
and the PRR with time are determined. Equations (9) and 
(10) are applied if there is requested to model the historic 
distribution of production. Equation (9) works for inter- 
vals where the PRR keeps a constant profile, otherwise 
Equation (10) comes into use.  

4. To Forecast Future Outputs of Production 
the Procedure Is as Follows 

1) From a suitable starting point, count the points above, 
on and below an average line inside the envelope of the 

dataset. They provide the statistical input for the assign- 
ment of probabilities of occurrence of the upper, middle 
and lower estimates of initial reserves. References of this 
way to assign probabilities according to the distribution 
of points inside the extrapolation of an envelope of data 
could be found in [15-17]. In the current study, it will be 
of ample use for the analysis of correlation between 
variables with dispersion of data not easily modeled by 
conventional means. 

2) With the real data of production, and using the offi- 
cial, the upper and the lower estimates of initial reserves, 
build up two sets of distribution with time, one of re- 
serves and another of the PRR. 

a) Modeling of the distribution of reserves. Using the 
dataset obtained in (2), and the method explained in [1], 
the statistical parameters (average, standard deviation, 
coefficient of variation) of the distribution of reserves are 
found. For the years to simulate they are useful to set up 
a normal distribution. The definition of proven reserves 
also lead to restrict the distribution to a range of values 
from 90% to 110% around the average.  

b) Review and modeling of the distributions of PRR. 
The last trend the data outline can be used to get a win- 
dow of future values inside an envelope or P-Box [17]. 
As described in the first step of the methodology, the 
envelope could be also based on the peak points encom- 
passed by the set. Again, the distribution of points inside 
the envelope of the dataset provides the statistics for the 
assignment of probabilities of occurrence of the upper, 
middle and lower estimates of the PRR 

3) If from the previous analysis the future tendency of 
the PRR is to be kept as a constant value, use Equation (9) 
and the method presented in [1] to calculate the output of 
production. If the analysis indicates the PRR is not con- 
stant, use Equation (10) and a probabilistic range of PRR 
inside the envelope devised to forecast the production. 
Discrete probabilities of occurrence, based on the counts 
made from the average line inside the envelopes are as- 
signed to the factors in Equation (10) to give its imprint 
to the simulation runs. The MonteCarlo simulation pro- 
vides probabilistic forecasts, as illustrated in [1], giving a 
bidimensional picture of the likely outputs of production. 

Case Study: Crude Oil Production in USA 

With the purpose of introducing the analysis of produc- 
tion oriented to the value of understanding their dynam- 
ics lets take Oil production in USA as our case under 
study. USA’s crude oil production is considered not only 
as an example of a fair match with the Hubbert’s curve 
model [3], but also an interesting arena to apply models 
to match disruptions or differences with ideal profiles 
[18]. So, this versatility makes it an appropriate case to 
display the connection of the Hubbert’s curve with the 
FEMP. The input data for the following results comes 
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from an official source [19]. The first step is the diagno- 
sis of a range of the initial reserves, or ultimate recovery, 
using an approach based on the Hubbert’s linearization. 
To that end will suffice the extrapolation of an envelope 
of the distribution of points of the plot of cumulative 
production versus the ratio of production to cumulative 
production. In Figure 1, the points from 1958 to 2012 
are used to make this task. 

The upper boundary (black segmented line) rest on the 
peak points of 1970 and 2012. The lower boundary 
(green segmented line) is aligned with the peak points of 
1976 and 1999. They point to 235.8 and 256.3 billion 
barrels of ultimate recovery (initial reserves), respec- 
tively. The line of bet fit of the whole distribution (brown 
segments, Figure 1), keeps inside the envelope for most 
of its length but intersects the lower boundary by its in- 
dicated value of ultimate recovery.  

Our next task is to show how to use Equation (10) to 
model the historic distribution of production outputs, 
especially in those intervals of time where the real profile 
departs from ideal models. To illustrate the case, lets 
examine the distribution of reserves and of the PRR of 
the last ten years, based on the upper value of R0 (256.3 
BB) according to the results of the envelope of the Hub- 
bert’s plot. During that interval of time there is a clear 
break that complicates the classic production profile of 
crude oil in the US. The figure next to the last of the pre- 
sent work includes the complete profile and this example. 

First, notice how the two independent variables con- 
sidered in Equation (10) are fully featured with the 
known data of production and the estimate of R0. 

Once a figure of initial reserves R0 is determined, the 
remaining reserves at every year are given by subtracting 
the cumulative production from R0. The chosen R0 could 
be given by the envelope on the Hubbert’s linearization 
plot as indicated in Figure 1.  

The first aspect to consider is the match between the 
ideal a real distribution of reserves with time (Figure 2). 
But the same does not happens with the historical and the  
 

 

Figure 1. Hubbert’s linearization plot with an envelope to 
determine a range of the initial reserves R0. 

ideal distribution of PRR (Figure 3), derived from the 
historical and ideal ratios of production over correspond- 
ing remaining reserves. 

A third degree polynomial fit of the real PRR (brown 
segments) could provide the input in Equation (10) to 
model the real ratio. In other circumstances of departure 
of the ideal and real profiles, the model of the real PRR 
could even be linear. The case observed is non linear, but 
readily to be divided in two near linear segments with a 
pivot point in 2008.  

The exact match between the historic data of U.S. 
crude oil production and the concomitant distribution of 
points is given by applying Equation (10) considering the 
models of the distribution with time of the reserves and 
of the PRR. In the latter case, as indicated previously, a 
low degree polynomial fit will suffice. 

Let’s proceed with the simulation to forecast the future 
trend of production. The assignment of probabilities of 
occurrence of determined values of reserves during the 
simulation of production could be based on the count of 
points above and below a split line inside the envelope. 
One option for the split line could be the average or mid-  
 

 

Figure 2. 2002-2012 crude oil reserves in USA. Ideal (black 
squares) and real (green circles) distribution with time. 
 

 

Figure 3. 2002-2012 PRR of crude oil production in USA. 
Ideal (black circles) and real (brown squares) distributions 
with time. 
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dle line inside the envelope, another line of best fit.  
Under this viewpoint, in the first case the probability 

of occurrence of reserves is 78% biased to the lower end, 
while is around 22% inclined to the upper end. In the 
second case the bias is 66% and 34% to the upper and 
lower ends, respectively. So, the first result, with a bias 
higher to the lower end of values than the second gives 
an optimistic, and the second a conservative, estimate of 
reserves. Let lwb and upb designate the fractions corre- 
sponding to the percentages of the aforementioned lower 
and upper bias. Let  and  be the remaining 
upper and lower ends of the reserves at year n, for either 
the conservative or the optimistic estimates. Then, the pro- 
babilistic average of reserves for every year 

 le n  ue n

  par n  
for either the conservative or the optimistic alternatives is 
calculated by 

      par n lwb le n upb ue n  



    (15) 

The results provided in the following paragraphs are 
based on the average of the optimistic and conservative 
values of reserves, what means  

      0.72 0.28par n le n ue n      (16) 

In Table 1 are summarized the results of the study of 
likely value of U.S. reserves by the year 2012 according 
to the previous statements. 

The method will focus on the analysis of the Hubert’s 
curve under the viewpoint of Equation (10), the discrete 
piecewise version of the FEMP. As we recall from Equa- 
tion (14), the Hubbert’s curve can be decomposed in the 
product of the ideal distribution with time of the reserves 
and of the production to reserves ratio. 

By examining in Figure 4 it is seen that disregarding 
the upper or lower end, the ideal and real distributions of 
the reserves with time have a perfect coincidence be- 
tween them. 

The almost linear, high slope trend of reserves deple- 
tion observed since the second half of the last century 
was preceded by a slower pace of depletion that changed 
in the neighborhood of WWII. 
 
Table 1. Year 2012. Figures in billion barrels. Comparison 
between reserves according to official sources and as indi- 
cated by the upper and lower limits of the envelope of the 
Hubbert’s linearization plot.  

Official 

Probabilistic  
average of reserves 

(par(2012))  
conservative 

Percentage of 
change to  
official 

Probabilistic  
average of reserves 

(par(2012))  
optimistic 

26.5 34.0 28% 36.5 

Perc. of change 
to official 

Lower 
limit 

Perc. of change to 
official 

Upper 
limit 

Perc. of change 
to official 

38% 29.5 11% 50.1 89% 

 

Figure 4. Distribution of reserves with time. Comparative 
plot of the real (brown dots) and the upper and lower Hub- 
bert’s ideal distributions (black and green traces inside 
brown dots, respectively). 
 

For the simulation of production according to the 
method presented in [1], the official data of reserves will 
be used to raise concomitant statistical parameters. A 
Weibull distribution was selected from the set of best 
fitted distributions to the historical data of reserves 
(2002-2012), following the criteria offered in [1] and also 
considering the highest minimum value supported by the 
ideal fit (around 18 billion barrels). In Figure 5 is seen 
the histogram and best curve fit of the historical data of 
reserves for the decade 2002-2012. The mean value has 
90% chance of being between 19.12 and 26.54 Billion 
Barrels The coefficient of variation indicates one stan- 
dard deviation of the data oscillates 9% from the mean.   

But when the real and the Hubbert’s ideal distributions 
of PRR with time are compared some issues are raised.  

First, notice the onset of changes in the trends of both 
variables is not coincidental. For instance, there is no a 
remarkably change in the slope of the PRR with time in 
coincidence with the sharp increase in the depletion of 
reserves with time appreciated by the middle of the last 
century  

Second, the ideal and real trend of the PRR is not fully 
concurrent as in the case of the reserves. Both trends fol- 
low a rather close pattern up to the early seventies of the 
last century. Since then, the real distribution presents 
intervals where the PRR either: 

Steps away from the ideal Hubbert’s profile, following 
a near constant value with time (1971-1976 and 1985- 
2005); 

Keeps a tendency to follow Hubbert’s ideal profile 
(1976-1985); 

Or to reach again (2007-2012) the ideal Hubbert’s pro- 
file.  

So, as far as concerns the comparative analysis of the 
two factors that characterizes the real and the ideal pro- 
duction profiles of the USA crude oil production, differ- 
ences, if any, are seen only reflected in the distribution 
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with time of the PRR (Figure 6). 
The two end limits for ultimate recovery (or R0) as 

given by the Hubbert’s linearization analysis can be used 
to model likely ideal patterns of production. 

The distribution of real data is then confined inside the 
envelope provided by the ideal curve boundaries (Figure 
7). 

In the case of crude oil production in USA, both ideal 
curves fairly match the real distribution up to the 50’s of 
the last century. Since then, the lower boundary catches 
up the low end outputs of production of the real distribu- 
tion, while the upper boundary confines below those 
points above the lower boundary.  

The 2013-2018 forecast of averaged outputs (brown 
circles) and estimated from official reserves (blues 
crosses) are displayed with the years in labels. They were 
obtained by applying Equation (10) and the methodology 
for stochastic forecast outlined previously. 

A bidimensional forecast, or summary graph, can be 
produce with the aid of the software @Risk, after run- 
ning the MonteCarlo simulation in microsoft Excel.  

The yellow line in Figure 8 indicates the most likely  
 

 

Figure 5. Historical data of crude oil reserves 2002-2012. 
Histogram and best curve fit. 
 

 

Figure 6. Upper end of R0. Distribution of PRR with time. 
Comparative plot of the real (brown circles) and the Hub- 
bert’s ideal (black points) data. 

 

Figure 7. The upper and lower ideal Hubbert’s curves of 
production (black and green intertwines, respectively) as 
they side with the real historic distribution of US production 
data (brown squares). 
 
or average outcome of oil production after running the 
MonteCarlo simulation according to the settings pro- 
vided to the variables of the EMPF. 

The statistical record of outputs of the simulation al- 
lows to make probabilistic intervals of confidence for the 
mean value of the production for every year. The inner 
interval provides a interval of confidence one standard 
deviation above and below the average value where the 
simulation converged. So there is around 66% of prob- 
ability the size of the output of production inside this 
inner band. The outermost band provides 90% of prob- 
ability for the interval of confidence. 

For the purpose of the simulation of production, the 
reserves as stochastic variables are modeled with two 
main controls. One is the coefficient of variation deter- 
mined from the statistical analysis of the data. The first 
the limit imposed by the definition of proven reserves. In 
this latter case the stochastical distribution is set to be 
confined between a fraction between 0.9 to 1.1 times the 
average value.  

So, taking advantage of working with two dimensional 
forecasts as in Figure 8, lets appreciate the range of val- 
ues the production could end up under a probabilistic 
window. First, the probabilistic forecast based on the 
method explained is featured by the yellow line inside 
the grey bands. 

It is also seen an upper and a lower ideal Hubbert’s 
curves of production (black and green segments, respec-
tively) confining the production estimated from official 
reserves (blue line).  

For instance, for 2013 there is 90% probability the 
production of oil between 1.28 and 3.52 Billion Barrels, 
with an average value of 2.40 BB given by the yellow 
line. By 2018, although the average value drops to 2.25 
BB, the 90% probability window is wider than in 2013. 
As a result, there is 90% probability the production in 
2018 be between 0.65 and 3.75 BB. The difference be- 
tween the average values between 2013 and 2018 is less 
than 10%, an indication of a slow decline for the interval 
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Figure 8. Probabilistic forecast of US crude oil production 
(yellow line inside grey bands). 
 
under study.  

Both the Hubbert’s curve for a total recovery of 256 
BB (HCTRU, black segments) ,and the estimated pro- 
duction based on the official recovery of reserves 
(HCTRD, blue points), keep inside the lower side of the 
66% probability window from 2013 until 2018. The Hub- 
bert’s curve for a total recovery of 235 BB (green seg- 
ments) stays inside the lower side of the interval between 
the 66% to 90% probability window. The estimated pro- 
duction based on the official recovery of reserves departs 
from the HCTRU to approach the HCTRD from 2013 to 
2018. 

5. Discussion  

The dissection of the formula of the Hubbert’s curve in 
the variables that define Equation (10) paves the way to 
understand the difference between the real and the ideal 
dynamic of mineral production. 

The readers are invited to compare models based on 
the FEMP with other proposals achieving the same goal. 
The use of the FEMP relies on the real distribution of the 
PRR with time as a single time dependent variable to 
correct departures of ideal from real profiles. In other 
valid proposals [4,18], there are at least two variables to 
input the control on how far the production decreases (or 
increases) below (above) the ideal, and how quickly the 
production recovers (declines) toward the real. Time is 
an additional explicit variable. The distribution of the 
PRR with time collapses in one single set of variables 
such corrections.  

Regarding the use of Equation (10) to model the his- 
toric distribution of production, it can be argued that in 
shape of the variable PRR there is a circular reference to 
the object of the model, the production itself.  

This can be sustained if Equation (10) were applied 
year by year, without formulating any mathematical con- 
jecture of its behavior with time. But this is not the case, 

tribution of production working by intervals using as a 
reference a functional fit of the distribution with time of 
the PRR. A polynomial or other suitable approach for the 
fit will model the distribution of the PRR with time, as 
shown in the example of Figure 3. The intervals of the 
piecewise model could account with linear or non linear 
fits of the change of the PRR with time. For intervals 
where the PRR is constant, the direct use of Equation (9) 
is viable. As to calculate the component of distribution of 
reserves with time is synchronized for both the ideal 
Hubbert’s curve and real profiles, disregarding whether 
they match or not. This is a consequence of how is built 
the interpolation in time of the cumulative production for 
the Hubbert’s curve. In Equation (10), the input for the 
Hubbert’s curve of the distribution in time of the reserves 
is given as in the real profile. It consists of the straight- 
forward difference between the initial reserves and the 
cumulative production with time. But the input of the 
PRR to the Hubbert’s curve, as indicated by Equation 
(12), takes a direct proportion of the distribution of the 
cumulative production with time for this factor. The con- 
stant of proportion being the ratio 

since it is considered the piecewise modeling of the dis- 

0a R . The ideal and 
real PRR will coincide as far as the ideal PRR coincides 
with the corresponding real ratio of production to re- 
serves, but as the latter obeys the control on the dynamics 
of production of issues. In a formula, for both PRR to 
coincide must occur that at every simultaneous point of 
time the ratio of the production to the multiplication of 
the cumulative production by the reserves be constant. 
The constant equals the ratio of the “a” intersection of 
the Hubbert’s linearization model to the initial reserves: 

 
     

   0 0

PA n
R n R PA n R n R

      (17) 

The departure or coincidence of real profiles from the 
id

t is inferred the production can be 
en

e the PRR of crude oil 
in

nalysis and projection of the trend 
of

P n P na a

eal Hubbert’s curve lies on the differences or corre- 
spondences of the distribution with time of the produc- 
tion to reserves ratio.  

From Equation (10) i
vision as a composite function of the distribution with 

time of the reserves and the PRR. 
The envelope used to extrapolat
 USA widens with time. This enlarges the size of the 

probability window for oil production in the country 
from 2013 to 2018.  

The focus on the a
 the PRR component of the fundamental equation to 

forecast future outputs of mineral production has caveats. 
First, the dependence of the production output to the 
variables involved in the fundamental equation changes 
according whether Equation (9) or Equation (10) are 
considered. In the first case, although for every interval 
the PRR and the initial reserves are constants and the 
only variable that changes is time, it is also true that for 
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the whole picture of a simulation it will be noticed the 
variation of the aforesaid constants from one interval to 
the next. In the second case time is always constant and 
is set up to zero. The variables that change are the PRR 
and the reserves. In both cases a sensitivity analysis of 
the response of the production output to the independent 
variables is recommended as a way to ponder they rela- 
tive weight on the dependent variable. Further studies 
will provide insights on the connection of the variables of 
the FEMP and aspects as cycles and sub-cycles presented 
in the yield profiles of minerals [20,21].  

6. Conclusions 
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Annex 1 

Proof by mathematical induction of the fundamental equation of mineral production forecast:    0 1
n

P n CR C
  . 

To do the proof, we need some additional elements of support:  
Statement 1. By the definition of the Production Reserves Ratio, the reserves at successive years since the start of 

production are linked by the relationship:      1 1R j R j CR j    . 
First it is established that Proposition 1.  

   0 1
n

R n R C   

where  represents the Reserves at year n, and R0 stands for the reserves at the beginning of the first year of pro-
duction, or the Reserves at year zero, before production starts: 

 R n
  00R R . 

Demonstration 1. 
Theorem 1): For n = 1 the hypothesis of Proposition 1 is valid since .      1

0 0 01 1 1R R C R C R C     
   0 1

m
R m R C 

0

Theorem 2): Lets suppose the hypothesis is valid for n = m, what means: , where m is a natural 
number.  

R

Lets show the hypothesis is valid for n = m + 1, that is     1

01 1
m

R m R C
   . 

That it is true since that from statement 1: 

                1

0 0 0 01 1 1 1 1
m m m

R m R m C R m R C C R C R C C R C
                 1

m
.□ 

Having demonstrated Theorems 1) and 2) we can rely on the principle of mathematical induction (Sominsky, 2000) 
to sustain .    0 1

n
R n R C 

Having demonstrated Proposition 1, the basis to support the Fundamental Equation requires the following develop-
ments: 

Statement 2. By the law of conservation of matter, at year j the Production  P j  equals the difference between the 
reserves at the end of the previous year minus the reserves at the end of the current year  

     1P j R j R j   .□ 

Statement 3. By Statement 1, Statement 2 means the Production  P j  at the end of the current year j equals the 
multiplication of the production to reserves ratio C times the amount  1R j   of reserves available at the end of the 
previous year, j − 1: 

     1R j R j CR j   1 , By Statement 1. 

       1 1R j R j CR j P j     .□  

With the support of the preceding results, lets proceed to demonstrate the fundamental equation of mineral production 
forecast:     1

0 1
n

P n CR C
  .  

Theorem 1: For n = 1 the hypothesis is valid since .      1 1 0

0 01 1 1P CR C CR C C
    

  P m C R m 
0

   1

01 1
m

C R C
      

 1 1m m 

R

1
m

Theorem 2: Lets suppose the hypothesis is valid for n = m, what means: , 
where m is a natural number.  

Lets show the hypothesis is valid for n = m+1, that is .      1 1 1P m C R C CR C         01 1
m

m CR C 
0 0

That it is true since by Statement 3: .  P m CR 
A detailed development of the above account is also available: 

                1

0 0 0 01 1 1 1 1
m m m

P m R m C R m R C C R C R C C R C
                 . 

Having demonstrated Theorems 1 and 2 we can rely on the principle of mathematical induction [22] to uphold  

    1

0 1
n

P n CR C
  .□ 
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