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ABSTRACT 

Solid solutions of (1 − x)Al2TiO5-xMgTi2O5 (x = 0 - 1) doped with alkaline feldspar were prepared. Thermal decompo-
sition largely depends on the feldspar doping as same as the x value. It was found that decomposition free ceramics over 
500 hours of heat treatment at 1100˚C in an ambient atmosphere could be obtained for the feldspar-doped ceramics at x 
> 0.5 with a fracture strength of 33 - 40 MPa and coefficient of thermal expansion of 2.4 - 4.1 × 10−6 K−1. A partial de-
composition was observed for a compositional range of around x = 0.75. Both composition of the solid solution and an 
addition of the alkaline feldspar contributed synergistically to improve such thermal and mechanical properties. The 
decomposition free Al2TiO5-MgTi2O5 ceramics is expected for variety of high temperature applications including diesel 
particulate filters. 
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1. Introduction 

Most of ceramics for high temperature applications such 
as refractory, ceramics filters and so on are damaged by a 
rapid temperature change, which largely reduces the us-
ability and productivity because the heating and cooling 
rate should be less than the critical heating/cooling rates 
of the thermal shock [1]. In general, it takes several to 
tens hours just for setting the furnaces/device to required 
temperatures. Different degree of thermal expansion 
along with the thermal gradient in the ceramics causes 
such thermal shocks, therefore low-expansion ceramics 
are widely studied to reduce the energy usages and to 
improve the productivity. 

Aluminum titanate (AT) ceramic is known to be an 
excellent thermal shock resistant ceramics [2]. Therefore, 
many applications as refractory materials have been ex-
pected for the AT ceramics. The use of AT ceramics as 
refractory is, however, restricted because of the low 
fracture strength and thermal decomposition in the tem-
perature range from 800˚C to 1280˚C. Many attempts to 
improve the thermal stability have been made so far 
[3-13]. The present authors have reported that the AT 
ceramics doped with alkali feldspar ((Nay,K1−y)AlSi3O8, y 

= 0.5 - 0.8) exhibited not only low thermal expansion 
coefficient comparable to non-doped AT ceramics but 
also high thermal stability, high refractoriness, and rela-
tively large fracture strength [14]. However, even with 
the feldspar-doped AT ceramics, prolonged thermal treat- 
ment at decomposition temperature range over several 
hundred hours results in the complete degradation into 
alumina and titania. 

It is reported that MgTi2O5 (MT) shows excellent re-
sistivity to the thermal decompositions [15]. However, its 
thermal expansion coefficient is reported as ~5 × 10−6 
K−1, which is much larger than AT ceramics. Attempt 
was made to reduce the thermal expansion coefficient 
without a lack of its thermal stability by a formation of 
AT-MT solid solutions [16-20]. Hereafter, AT-MT ce-
ramic is abbreviated as MAT in this article. Prolonged 
heat treatment for over several hundred hours at 1200˚C - 
1400˚C eventually induces complete decomposition of 
MAT ceramics. Accordingly, decomposition free MAT 
ceramics with low thermal expansion coefficient and 
high mechanical strength have been strongly desired. In 
the present study, the structure and properties of the feld-
spar-doped MAT ceramics were investigated. The effects 
of the feldspar addition on the improvement of mechani-
cal strength and thermal stability are discussed. *Corresponding author. 
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2. Experimental Procedure 

Starting oxide powders of MgCO3 (Kamishima, Japan), 
TiO2 (rutile, Sakai Kagaku, Japan) and Al2O3 (corundum, 
Sumitomo Chemical, Japan) were weighed in a molar 
ratio of (1 − x)Al2TiO5-xMgTi2O5 (x = 0 - 1) and 4 wt% 
of alkali feldspar (Fukushima Choseki, Japan) was added 
to the mixture. The chemical composition of alkali feld-
spar used in the present study was analyzed as (Na0.6,K0.4) 
AlSi3O8 by fluorescence X-ray analysis (Rigaku ZSX- 
100e, Rh source). Hereafter, (1 − x)Al2TiO5-xMgTi2O5 is 
abbreviated to MAT100x (x value in %, indicating a frac- 
tion of MT component) and feldspar-doped MAT ce- 
ramics is to f-MAT100x. For example, f-MAT25 indi- 
cates the ceramics of feldspar-doped 0.75Al2TiO5- 
0.25MgTi2O5 composition. Alkali feldspar is simply 
called feldspar for convenience. The mixture of the 
starting reagents with 0.5 wt% peptizer Aron A-6114 
(Toa Gosei, Japan) and 30 wt% water was put into the 
alumina pot with alumina balls, and mixed for 5 hours by 
using a planetary mill (Fritsch Pulversette 5, Germany). 
After being dried, the mixture with 10 wt% of a binder 
M30 (Kyoeisha Kagaku, Japan) was molded into 10  10 
 40 mm shape under a pressure of 60 MPa and sub-
jected to drying at 180˚C for 2 hours. The molded sam-
ples were calcined at 340˚C for 4 hours and successively 
at 700˚C for 2 hours to remove organic matters com-
pletely. Then, the samples were sintered at 1500˚C for 2 
hours to form MAT ceramics. 

A degree of decomposition was estimated by the 
method reported in Ref. [14]. SEM-EDX analysis of 
f-MAT75 was carried out with JEOL 6500F with 15 kV 
acceleration voltage. Three point flexure strengths of the 
MAT and f-MAT ceramics were evaluated with Minerva 
TG-10kN testing machine according to JIS-1601. The 
values are estimated by averaging five measurements. 
Experiment error was estimated below 10%. Porosities 
were estimated by a conventional Archimedian method 
according to JIS R2205-74. Kerosene was used as a liq-
uid media. The values were estimated by averaging three 
measurements and error was estimated below 5%. Ther-
mal expansion coefficients (CTE) of the ceramics were 
measured by a thermal mechanical analysis equipment 
(Rigaku TMA 8227, Japan). CTE value was estimated 
from a difference of sample length at 20˚C and 800˚C. 
Formation temperatures of MAT0, MAT50, f-MAT0 and 
f-MAT50 were measured with differential scanning calo-
rimeter (Rigaku DSC 8270, Japan). 

3. Results and Discussion 

3.1. Physical Properties of the Feldspar-Doped 
AT-MT Ceramics 

Figure 1 shows the X-ray diffraction patterns of MAT50 
and f-MAT50 ceramics. Precipitated crystalline phases 
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Figure 1. X-ray diffraction pattern of MAT50 and f-MAT. 
 
in all the prepared ceramics are assigned to MAT with a 
pseudo-brookite structure (space group Cmnm) [14,16]. 
Small diffractions due to corundum impurity were ob-
served in the XRD spectra for all the ceramics obtained. 
Coefficient of thermal expansion (CTE) from 30˚C to 
800˚C, fracture strength estimated by 3-point bending 
test, porosity, and AT-MT formation temperature of the 
representative compositions are summarized in Table 1. 
Although CTEs are independent of feldspar doping, 
fracture strength and porosity largely depends on the 
doping; fracture strength increased almost twice and po-
rosity decreased.  

It has been reported that the formation temperature of 
AT phase is decreased by the feldspar-addition [14], 
which is also shown in Table 1. It was explained that the 
decrease of the formation temperature is due to the en-
tropic contribution by the existence of liquid phase feld-
spar at the formation temperature range, resulting in the 
denser and thermally stable AT ceramics formation 
through a liquid phase sintering. On the other hand, for-
mation temperatures of MAT50 and f-MAT50 ceramics 
are almost identical irrespective of the feldspar addition. 
This is explained by that the formation temperature of 
MAT50 ceramics (~1225˚C) is closer to the melting 
temperature of the feldspar (1130˚C) than that of AT 
ceramics. Therefore, the effect of the liquid phase sinter-
ing for f-MAT ceramics would be less than that of feld-
spar-doped AT ceramics. This is in consistent with that 
the decrease of porosity of the f-MAT ceramics for 
higher MT ratios is less than that for lower MT rations. 

3.2. Thermal Decomposition Behavior of MAT 
Ceramics Doped with Feldspar 

Degrees of decomposition of MAT ceramics after heat 
treatment at 1100˚C for 500 hours are shown in Figure 2. 
The thermal decomposition is most severe at 1100˚C 
where modified AT ceramics is completely decomposed 
into alumina and titania in less than several tens hours 
[14]. As shown in Figure 2, MAT ceramics (without   
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Table 1. Compositional dependence of CTE, fracture strength, and porosity of AT-MT ceramics. 

Composition 

MT (%) AT (%) 

Feldspar addition 
(mass%) 

CTE 
[30 - 800]˚C 

(10−6/˚C) 

Fracture strength
(MPa) 

Porosity 
(%) 

Formation  
temperature 

(˚C) 

0 100 0 0.4 16 17.4 1380 

25 75 0 0.0 20 15.3 - 

50 50 0 1.6 22 11.5 1225 

75 25 0 2.4 21 8.8 - 

100 0 0 3.6 11 6.5 - 

0 100 4 0.9 46 7.6 1340 

25 75 4 1.0 27 9.9 - 

50 50 4 2.4 40 6.3 1225 

75 25 4 3.2 32 5.7 - 

100 0 4 4.1 33 3.9 - 
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Figure 2. Degree of decomposition of MAT ceramics with 
and without feldspar addition after heat treated at 1100˚C 
for 500 hours. 
 
feldspar addition) showed almost complete decomposi-
tion below x = 0.8 (MAT80). On the other hand, f-MAT 
ceramics of large MT ratio beyond x = 0.5 (MAT50) ex-
hibited excellent thermal stability against the heat treat-
ment. A partial decomposition was observed around 
f-MAT75. However, even f-MAT75 ceramics remain 
70% of its original phase by the heat treatment. We do 
not have clear explanation on this behavior; however it 
may be explained by that the decomposition around 
f-MAT75 composition is due to the cation site order-dis- 
order. It has been reported that the cation ordering among 
two kinds of cation sites in pseudobrookite structure is 
related to the mechanical and thermal properties. At the 
f-MAT75 composition, exactly a half of the cation site is 
occupied by Al ions. The compositional regularity may 

affect the site ordering and also entropic stabilization.  

3.3. Effect of Feldspar Addition 

At larger MT ratio, a decrease of the formation tempera-
ture reduces the upper limit of the decomposition tem-
perature range. Beyond x = 0.85, the ceramics exhibited 
excellent thermal stabilities irrespective of the feldspar 
addition. On the other hand, at medium composition 
range from x = 0.5 to x = 0.85, the thermal stability was 
improved a lot by the feldspar addition. Figure 3 shows 
the SEM-EDX images of fractured surface of f-MAT75 
ceramics. It is found that the Si accommodated in the 
triangular points of the ceramics grains or grain bounda-
ries. The existence of the glassy phase on the surface of 
grains may reduce the nucleation of alumina at the grain 
boundaries which reduces the thermal decomposition of 
f-MAT ceramics with larger MT ratios. This is the most 
plausible explanation of the improved thermal stability of 
the f-MAT ceramics. The existence of the glassy phase 
also contributes reduce the pore volume and to the im-
proved mechanical properties of f-MAT ceramics. 

4. Conclusion 

Feldspar-doped (1 − x)Al2TiO5-xMgTi2O5 (x = 0 - 1) ce- 
ramics were prepared and they showed excellent thermal 
stability for prolonged heat treatment at the decomposi- 
tion temperature. Decomposition-free (1 − x)Al2TiO5- 
xMgTi2O5ceramics could be obtained for the ceramics 
with x > 0.5. A partial decomposition was observed for 
f-MAT ceramics with MT ratio around 75%. Even the 
ceramics (~MAT75), great improvement of the thermal 
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Figure 3. SEM-EDX images of fraction surface of f-MAT75 ceramics (a) SEM image; EDX mapping image for (b) O; (c) Mg; 
(d) Al; (e) Si; and (f) Ti (white: larger amount of the element). 
 
stability was realized. The thermal expansion coefficient 
of these ceramics were low enough comparable to that of 
AT ceramics. The mechanical properties are also im- 
proved by the feldspar addition. 
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