Integral Mean Estimates for Polynomials Whose Zeros are within a Circle

Yash Paul ${ }^{1}$, Wali Mohammad Shah ${ }^{2}$, Gulshan Singh ${ }^{1}$
${ }^{1}$ Bharathiar University Coimbatore, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, Kashmir University Srinagar, India
E-mail: yashpaul2011@rediffmail.com, wmshah@rediffmail.com, gulshansingh1@rediffmail.com
Received December 28, 2010, revised January 12, 2011, accepted January 18, 2011

Abstract

Let $P(z)$ be a polynomial of degree n having all its zeros in $|z| \leq K \leq 1$, then for each $r>0, p>1$, $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, Aziz and Ahemad (1996) proved that $n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+K e^{i \theta}\right|^{q r} d \theta\right\}^{\frac{1}{a r}}\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{p r} d \theta\right\}^{\frac{1}{p r}}$. In this paper, we extend the above inequality to the class of polynomials $P(z):=a_{n} z^{n}+\sum_{j=m}^{n} a_{n-j} z^{n-j}, 1 \leq m \leq n$, having all its zeros in $|z| \leq K \leq 1$, and obtain a generalization as well as refinement of the above result.

Keywords: Derivative of a Polynomial, Integral Mean Estimates, Complex Domain Inequalities

1. Introduction and Statement of Results

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ be its derivative. If $P(z)$ has all its zeros in $|z| \leq 1$, then it was shown by Turan [1] that

$$
\begin{equation*}
\operatorname{Max}_{||z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| . \tag{1}
\end{equation*}
$$

Inequality (1) is best possible with equality for $P(z)=\alpha z^{n}+\beta$, where $|\alpha|=|\beta|$. As an extension of (1) Malik [2] proved that if $P(z)$ has all its zeros in $|z| \leq K$, where $K \leq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+K} \operatorname{Max}_{|z|=1}|P(z)| . \tag{2}
\end{equation*}
$$

Malik [3] obtained a generalization of (1) in the sense that the right-hand side of (1) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z|=1$. In fact he proved the following theorem.

Theorem A. If $P(z)$ has all its zeros in $|z| \leq 1$, then for each $r>0$

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| . \tag{3}
\end{equation*}
$$

The result is sharp and equality in (3) holds for $P(z)=(z+1)^{n}$.
If we let $r \rightarrow \infty$ in (3), we get (1).
As a generalization of Theorem A, Aziz and Shah [4] proved the following:

Theorem B. If $P(z):=a_{n} z^{n}+\sum_{j=m}^{n} a_{n-j} z^{n-j}, 1 \leq m \leq n$ is a polynomial of degree n having all its zeros in the disk $|z| \leq K, \quad K \leq 1$, then for each $r>0$,

$$
\begin{align*}
& n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+K^{m} e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| . \tag{4}
\end{align*}
$$

Aziz and Ahemad [5] generalized (3) in the sense that $\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right|$ on $|z|=1$ on the right-hand side of (3) is replaced by a factor involving the integral mean of $\left|P^{\prime}(z)\right|$ on $|z|=1$ and proved the following:

Theorem C. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq K \leq 1$, then for $r>0$, $p>1, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$,

$$
\begin{align*}
& n\left\{\left.\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{5}\\
& \leq\left\{\int_{0}^{2 \pi}\left|1+K e^{i \theta}\right|^{q r} d \theta\right\}^{\frac{1}{a r}}\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{p r} d \theta\right\}^{\frac{1}{p r}} .
\end{align*}
$$

If we let $r \rightarrow \infty$ and $p \rightarrow \infty$ (so that $q \rightarrow 1$) in (5), we get (2).

In this paper, we extend Theorem B to the class of
polynomials $\quad P(z):=a_{n} z^{n}+\sum_{j=m}^{n} a_{n-j} z^{n-j}, \quad 1 \leq m \leq n$, having all the zeros in $|z| \leq K \leq 1$, and thereby obtain a more general result by proving the following.

Theorem 1. If $P(z):=a_{n} z^{n}+\sum_{j=m}^{n} a_{n-j} z^{n-j}, 1 \leq m \leq n$ is a polynomial of degree n having all its zeros in the disk $|z| \leq K, K \leq 1$, then for each $r>0, \quad s>1, t>1$ with $\frac{1}{s}+\frac{1}{t}=1$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] e^{i \theta}\right|^{s r} d \theta\right\}^{\frac{1}{s r}}\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{t r} d \theta\right\}^{\frac{1}{t r}} \tag{6}
\end{equation*}
$$

If we take $m=1$ in Theorem 1 , we get the following:

Corollary 1. If $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of
degree n having all its zeros in the disk $|z| \leq K, K \leq 1$,
then for each $r>0, s>1, t>1$ with $\frac{1}{s}+\frac{1}{t}=1$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2}+\left|a_{n-1}\right|}{n\left|a_{n}\right|+\left|a_{n-1}\right|}\right] e^{i \theta}\right|^{s r} d \theta\right\}^{\frac{1}{s r}}\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{t r} d \theta\right\}^{\frac{1}{t r}} \tag{7}
\end{equation*}
$$

The next result immediately follows from Theorem 1, if we let $t \rightarrow \infty$ so that $s \rightarrow 1$

Corollary 2. If $P(z):=a_{n} z^{n}+\sum_{j=m}^{n} a_{n-j} z^{n-j}, 1 \leq m \leq n$

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \tag{8}
\end{equation*}
$$

Also if we let $r \rightarrow \infty$ in the Theorem 1 and note that

$$
\lim _{r \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}=\operatorname{Max}_{|z|=1}|P(z)| .
$$

We get the following:
Corollary 3. If $P(z):=a_{n} z^{n}+\sum_{j=m}^{n} a_{n-j} z^{n-j}, 1 \leq m \leq n$ is a polynomial of degree n having all its zeros in the disk $|z| \leq K, K \leq 1$, then

$$
\begin{align*}
& \operatorname{Max}_{|| |=1}\left|P^{\prime}(z)\right| \\
& \geq \frac{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}{n\left|a_{n}\right|\left(K^{2 m}+K^{m-1}\right)+m\left|a_{n-m}\right|\left(1+K^{m-1}\right)} \operatorname{Max}_{|z|=1}|P(z)| . \tag{9}
\end{align*}
$$

For $K=1$, Corollary 3 reduces to Inequality (1) (the result of Turan[1]).

2. Lemmas

For the proof of this theorem, we need the following lemmas.

The first lemma is due to Qazi [6].
Lemma 1. If $P(z):=a_{0}+\sum_{j=m}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in the disk $|z|<K, K \geq 1$. Then

$$
\begin{aligned}
& {\left[\frac{n\left|a_{0}\right| K^{m+1}+m\left|a_{m}\right| K^{2 m}}{n\left|a_{0}\right|+m\left|a_{m}\right| K^{m+1}}\right]\left|P^{\prime}(z)\right| \leq\left|Q^{\prime}(z)\right|} \\
& \text { for }|z|=1, \quad 1 \leq m \leq n,
\end{aligned}
$$

where

$$
Q(z)=z^{n} P\left(\frac{1}{\bar{z}}\right) \text { and } \frac{m}{n}\left|\frac{a_{m}}{a_{0}}\right| K^{m} \leq 1 .
$$

Lemma 2. If $P(z):=a_{n} z^{n}+\sum_{j=m}^{n} a_{n-j} z^{n-j} \quad$ is a polynomial of degree n having all its zeros in the disk $|z| \leq K \leq 1$ s then

$$
\begin{aligned}
& \left|Q^{\prime}(z)\right| \leq\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right]\left|P^{\prime}(z)\right| \\
& \text { for }|z|=1, \quad 1 \leq m \leq n .
\end{aligned}
$$

Proof of Lemma 2

Since all the zeros of $P(z)$ lie in $|z| \leq K \leq 1$, therefore all the zeros of $Q(z)=z^{n} P\left(\frac{1}{\bar{Z}}\right)$ lie in $|z| \geq \frac{1}{K} \geq 1$.

Hence applying lemma 1 to the polynomial $Q(z):=\bar{a}_{n}+\sum_{j=m}^{n} \bar{a}_{n-j} z^{j}$, we get

$$
\left[\frac{n\left|a_{n}\right| \frac{1}{K^{m+1}}+m\left|a_{n-m}\right| \frac{1}{K^{2 m}}}{n\left|a_{n}\right|+m\left|a_{n-m}\right| \frac{1}{K^{m+1}}}\right]\left|Q^{\prime}(z)\right| \leq\left|P^{\prime}(z)\right|
$$

Or, equivalently

$$
\left|Q^{\prime}(z)\right| \leq\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right]\left|P^{\prime}(z)\right|
$$

This proves lemma 2.
Remark 1: Lemma 3 of Govil and Mc Tume [7] is a special case of this lemma when $m=1$.

Proof of Theorem 1

Since $Q(z)=z^{n} P\left(\frac{1}{\bar{z}}\right)$, therefore, we have
$P(z)=z^{n} \overline{Q\left(\frac{1}{\bar{z}}\right)}$. This gives

$$
\begin{equation*}
P^{\prime}(z)=n z^{n-1} \overline{Q\left(\frac{1}{\bar{z}}\right)}-z^{n-2} \overline{Q^{\prime}\left(\frac{1}{\bar{z}}\right)} \tag{10}
\end{equation*}
$$

Equivalently

$$
\begin{equation*}
z P^{\prime}(z)=n z^{n} Q\left(\frac{1}{\bar{z}}\right)-z^{n-1} \overline{Q^{\prime}\left(\frac{1}{\bar{z}}\right)} \tag{11}
\end{equation*}
$$

this implies

$$
\begin{equation*}
\left|P^{\prime}(z)\right|=\left|n Q(z)-z Q^{\prime}(z)\right| \quad \text { for }|z|=1 \tag{12}
\end{equation*}
$$

Now by hypothesis, $P(z)$ has all its zeros in $|z| \leq K \leq 1$, therefore, by Lemma 2, we have for $|z|=1$

$$
\begin{equation*}
\left|Q^{\prime}(z)\right| \leq \frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\left|P^{\prime}(z)\right|, 1 \leq m \leq n . \tag{13}
\end{equation*}
$$

Using (12) in (13), we get

$$
\left|Q^{\prime}(z)\right| \leq\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right]\left|n Q(z)-z Q^{\prime}(z)\right|
$$

$$
\begin{equation*}
\text { for }|z|=1,1 \leq m \leq n \tag{14}
\end{equation*}
$$

Since $P(z)$ has all its zeros in $|z| \leq K \leq 1$, by Gauss-Lucas theorem all the zeros of $P^{\prime}(z)$ also lie in $|z| \leq 1$, therefore, it follows that the polynomial

$$
\begin{equation*}
z^{n-1} \overline{P^{\prime}\left(\frac{1}{\bar{z}}\right)}=n Q(z)-z Q^{\prime}(z) \tag{15}
\end{equation*}
$$

has all its zeros in $|z| \geq \frac{1}{k} \geq 1$ and hence, we conclude that the function

$$
\begin{equation*}
W(z)=\left[\frac{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}\right] \cdot \frac{z Q^{\prime}(z)}{\left(n Q(z)-z Q^{\prime}(z)\right)} \tag{16}
\end{equation*}
$$

is analytic for $|z|<1, \mathrm{~W}(0)=0$ and by (14) $|W(z)| \leq 1$ for $|z|=1$. Thus the function

$$
1+\left[\frac{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}\right] \cdot W(z)
$$

is subordinate to the function

$$
1+\left[\frac{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}\right] Z
$$

for $|z| \leq 1$. Hence by a well known property of subordination [8], we have for each $r>0$ and $0 \leq \theta<2 \pi$,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] W\left(e^{i \theta}\right)\right|^{r} d \theta \tag{17}\\
& \leq \int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] e^{i \theta}\right|^{r} d \theta
\end{align*}
$$

Also from (16), we have

$$
1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] W(z)=\frac{n Q(z)}{n Q(z)-z Q^{\prime}(z)} .
$$

Therefore,

$$
\begin{equation*}
\left.n|Q(z)|=\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] W(z)\right| n Q(z)-z Q^{\prime}(z) \right\rvert\, . \tag{18}
\end{equation*}
$$

Using (12) and the fact that $|Q(z)|=|P(z)|$ for $|z|=1$, we get from (18)

$$
\begin{equation*}
n|P(z)|=\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] W(z)\right|\left|P^{\prime}(z)\right| \quad \text { for }|z|=1 \tag{19}
\end{equation*}
$$

Combining (17) and (19), we get

$$
\begin{equation*}
n^{r} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] e^{i \theta}\right|\left|P^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta \text { for } r>0 \tag{20}
\end{equation*}
$$

Now applying Hölder's inequality for $s>1, t>1$, with $\frac{1}{s}+\frac{1}{t}=1$ to (20), we get

$$
\begin{equation*}
n^{r} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta \leq\left\{\int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] e^{i \theta}\right|^{s r} d \theta\right\}^{\frac{1}{s}}\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{t r} d \theta\right\}^{\frac{1}{t}} \text { for } r>0 \tag{21}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+\left[\frac{n\left|a_{n}\right| K^{2 m}+m\left|a_{n-m}\right| K^{m-1}}{n\left|a_{n}\right| K^{m-1}+m\left|a_{n-m}\right|}\right] e^{i \theta}\right|^{s r} d \theta\right\}^{\frac{1}{s r}}\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{t r} d \theta\right\}^{\frac{1}{t r}} \quad \text { for } r>0 \tag{22}
\end{equation*}
$$

which proves the desired result.

3. Acknowledgements

The authors are grateful to the referee for useful suggestions.

4. References

[1] P. Turan, "Über die Ableitung von Polynomen," Compositio Mathematica, Vol. 7, 1939, pp. 89-95.
[2] M. A. Malik, "On the Derivative of a Polynomial," Journal of the London Mathematical Society, Vol. 2, No. 1, 1969, pp. 57-60. doi:10.1112/jlms/s2-1.1.57
[3] M. A. Malik, "An Integral Mean Estimate for Polynomials," Proceedings of the American Mathematical Society, Vol. 91, No. 2, 1984, pp. 281-284.
[4] A. Aziz and W. M. Shah, "An Integral Mean Estimate for Polynomials," Indian Journal of Pure and Applied Mathematics, Vol. 28, No. 10, 1997, pp. 1413-1419.
[5] A. Aziz and N. Ahemad, "Integral Mean Estimates for Polynomials Whose Zeros Are within a Circle," Glasnik Matematicki Series, III, Vol. 31, No. 2, 1996, pp. 229-237.
[6] M. A. Qazi, "On the Maximum Modulus of Polynomials," Proceedings of the American Mathematical Society, Vol. 115, 1990, pp. 337-343. doi:10.1090/S0002-9939-1992-1113648-1
[7] N. K. Govil and G. N. McTume, "Some Generalizations Involving the Polar Derivative for an Inequality of Paul Turan," Acta Mathematica Thunder, Vol. 104, No. 1-2, 2004, pp. 115-126. doi:10.1023/B:AMHU. 0000034366. 66170.01
[8] E. Hille, "Analytic Function Theory, Vol. II," Introduction to Higher Mathematics, Ginn and Company, New York, 1962.

