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ABSTRACT 

In this paper, we focused on numerical solutions of carcinogenesis mutations models that are based on reaction-dif- 
fusion systems and Lotka-Volterra food chains. We consider the case with one and two-stages of mutations with appro- 
priate initial conditions and the zero-flux boundary conditions. The main purpose is to construct a stable discretization 
scheme, which allows much accuracy than those of a standard approach. To this end, we use the spectral method to 
postprocess numerical solutions for the proposed model by using some classical methods for solving differential equa- 
tions. The implementation of the algorithm is simple and it does not need to solve the linear or nonlinear system (in case 
the model is nonlinear). We simulate the one and two-stage carcinogenesis mutations model and compared the results 
with previously published ones. 
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1. Introduction 

The struggle for finding an effective and permanent cure 
for tumor continues to challenge scientists has been made 
by a lot of progresses in discovering new methodologies 
which are helpful in successful treatments to reduce and 
even clear tumors. Mathematical modeling is one of the 
tools to improve the cancer therapy. Carcinogenesis is a 
very complicated process and one need a comprehensive 
study to fully understand it. Tumors are derived from one 
or more normal cells that have undergone malignant 
transformation. The immune response to tumors depends 
on how antigenic the tumor is. A cell that has undergone 
significant mutation results in a tumor is easier to be 
recognized as foreign (i.e. more antigenic) than one that 
differs only slightly from a healthy cell [1]. For different 
types of cancers, it is possible to divide the process into 
different number of stages, normally between 4 and 7 
stages, which depends on the type of tumor [2]. 

In this paper, we study a simple model of carcinogene- 
sis mutations of DNA, which originally comes from [3] 

and was also studied in [4-9], which describe a process of 
carcinogenesis mutations with n different steps of muta- 
tions (from normal to malignant cells). The model is ex- 
pressed in terms of system of partial differential equation, 
in which the latest stage of mutation has different forms 
depending on whether it has growth advantage in favor- 
able or competitive conditions or disadvantage of growth 
in unfavorable and competitive conditions. For simplicity 
in this paper, we only consider the latest stage in unfa- 
vorable conditions, as in the case of favorable conditions 
there is no possibility to cure the disease without any 
treatment. For more details we refer to [10,11]. 

The current work provides the computational and im- 
plementational details needed to study the dynamics of 
these equations [12]. A detailed analysis of the one-stage 
model equations was undertaken in [4]. We use spectral 
methods to postprocess numerical solutions, which use 
the numerical solutions of a lower order method to serve 
as starting value of the spectral methods. The iteration 
uses the Gauss-Seidel type strategy, which can be very 
useful in terms of improving the accuracy of the numeri- 
cal solutions. In particular for the problems in which ac- 
curacy is the only issue and some conservatives proper- 
ties are even more important for large time simulation. 
Also there is no need to solve a linear or nonlinear sys- 
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tem of equations as we do need in case of using some 
other numerical methods [13]. 

The paper is organized as follows. Section 2 and 3 is 
used for the description of models in detail. In Section 4 
and 5 we describe in detail the spectral postprocessing 
approximation for the proposed models. Section 6 is used 
for the numerical simulations and discussions, followed 
by the concluding remarks in Section 7. 

2. Formulation of the Model 

Let us consider jY  as a density of mutant cells of the j-th 
stage at position  ,t x  where 0,1, 2,3, , .j n   To 
develop a multistage model for mutant cells densities at 
stage jY , 0,1,2,3, , ,j n   where 0Y  will be the ini- 
tial stage,  1, 2,3, , 1jY j n   the density of interme- 
diate stages, and nY  represents the density of the final 
stage. The system of equations for the density function is 
given by [2]. 

1 1 11 .j j
j j i j j j j j j j

j

Y Y
D Y a Y Y Y Y Y

t K
   

 
         

  (1) 

The final stage of mutation occurs when cancer cells 
become malignant and metastasize. We assume that for 
the malignant mutation in the final stage, the carrying 
capacity is unlimited; that is nK  , thus Equation (1) 
becomes 

1,n
n n n n n n n

Y
D Y a Y Y Y

t
 


   


         (2) 

3. Formulation of One and Two-Stage  
Mutation 

The full blown developed malignant mutation can be 
described in the following system of the n-stage model, 
that is initial, benign, and malignant, 

0 0
0 0 0 0 1 0 1

0

1 1 1

1

1 ,

1 ,

,

j j
j j i j j j j j j j

j

n
n n n n n n n

Y Y
D Y a Y Y Y

t K

Y Y
D Y a Y Y Y Y Y

t K

Y
D Y a Y Y Y

t



 



  



 
       

 
         


   



  (3) 

After rescaling Equation (3) it can be written in the 
following simplified form 

         
 

     
   

0
0 0 1

0 0

1
1 0 1

1 1

, , 1 , ,

, ,

, , ,

, , ,

y
t x y t x a y t x y t x

t
d y t x

y
t x y t x y t x y

t
t x d y t x



 




  


 


   


   

   (4) 

where 0y  represents the density of normal cells at time 
,t  and position ,x  1y  stands for malignant cells, con- 

stant 

0 01 1 1
0 1

1 1 1 1

,  ,  ,  ,  
a d D

a d d
a a a d a

 
       

are positive, delay 
1

s

a


   is non-negative and  

 0, ,x   with the Neumann boundary and initial con- 
ditions 

 

       
0,

, 0,   0,1,

, , 0,  ,0 ,  0, ,  0,1.

i

x

i i

y
t x i

t

y t x t x t x i 
 


 



      

 

It is reasonable to consider interaction not only be- 
tween cells on subsequent stages of mutations, and there- 
fore we consider the following two-stage model 

        
   

         
     

       

     

0
0 0 0 1 1

1 2 0 0

1
1 1 1 2 2

1 0 1 1 1 1

2
2 2 1 2 1 2

2 0 2 2 2

, , 1 , ,

, , ,

, , 1 , ,

, , , ,  

, , ,  ,

, , , ,

y
t x y t x a y t x y t x

t

y t x d y t x

y
t x y t x a y t x y t x

t
y t x y t x d y t x

y
t x y t x y t x y t x

t
y t x y t x d y t x







  

  




  


  


  


    


    


  

 (5) 

subject to 

 

       
0,

, 0,   0,1, 2

, , 0,  ,0 ,  0, ,  0,1, 2.

i

x

i i

y
t x i

t

y t x t x t x i 
 


 



      

 

4. Spectral Postprocessing Technique 

In this section, we will describe in detail the spectral 
methods for Equations (4) and (5). We first use a finite 
difference scheme in time and spectral methods in space. 

4.1. Finite Difference Scheme 

Let 
 1

,
2

j

j

s
x

 
  nt n t   with  

0

M

j j
s


 are  

are Legendre-Gauss-Lobatto points in  1,1  and  

.
T

t
N

   Without losing any generality, we can choose  

N  such that k t   , where k  is an integer. Denote 
by 

   1
1, 1 1 1 1 0, 1

T T

1 1,0 1, 0 0,0 0,

, ,  , ,  

, ,  ,  , , ,

n n
j n j j n j

n n n n n n
M M

y y t x y y t x

y y y y y y


   

        
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then the implicit difference scheme is given by enforc- 
ing Equation (4) at  1,n jt x  

1
1, 1, 1 1

1, 1 2 1

1 1
0, 1, for 1 1,

n n
j j n n

j

n k n k
j j

y y
y d D y

t

y y j M


 

   


  


   

        (6) 

where 
2

2

2
D D

    
 with D  is the differential ma  

trix associated with Legendre-Gauss-Lobatto nodes, 
see [13] for details. Rearranging Equation (6) in terms 
of matrix form, we have 

   1 1 1
1 2 1 1 0 11 n n n k n k

nt I d D y y t y y              (7) 

where   means element-wise multiplication of two 
vectors. Here we should remark, considering the bound- 
ary conditions in Equation (4), that is the first and the last 
equation in the above equation, that is Equation (7) do 
not hold any more. Instead, we must replace those two 
equations by directly discretizing the boundary condi- 
tions respectively. Similarly the semi-implicit scheme for 

1
0,
n

jy   is given by 

    1 1
1 2 0 0 0 0 11 ,n n n n nI td D y y ty a y y          (8) 

where we utilize the updated 1
1
ny   in Equation (7). More- 

over, to replace the first and the last equations in Equa- 
tion (8), we also need to enforce the boundary conditions 
of 0y  that 

1 1
0 1 1,: 0 and ,: 0.n n

MD y D y    

Applying the same implicit and semi-implicit finite 
difference scheme to the two-stage mutation model, we 
have the following system 

  

 

  

 

  

2 2

1 1

1
2 2 2

1 1
2 2 1 2 2 0 2

1
1 2 1

1
1 1 1 1 2 2

1 1
1 0 1

1
0 2 0

1 1
0 0 0 0 1 1 1 2

,

1

,

1

n

n k n kn n n

n

n n n n

n k n k

n

n n n n n

I t I td D y

y t y y t y y

I td D y

y ty a y y

t y y

I td D y

y ty a y y y

 





 



   





   



 

   

    

 

    



 

     

 







     (9) 

where i
ik

t





 are assumed to be integer for simplicity.  

In fact, we can deal with any i  by interpolation if there 
is no suitable t  such that ik  be integers. Moreover, 
to satisfy the boundary conditions which is similar to 

one-stage mutation model, we can replace the first and 
the last equations in each matrix form by 

1 1
0 1 1,: 0 and ,: 0,n n

MD y D y    

for 0,1,2,i   respectively. 

5. Postprocessing 

It is well known that backward Euler finite difference 
scheme in time direction is of the first order accuracy, 
which is much worse than the spectral accuracy in spatial 
direction. Therefore, to achieve the balance between the 
errors in two directions, we use spectral postprocessing 
in [13] to enhance the accuracy in time direction based 
upon the backward Euler finite difference scheme. 

To describe the time marching scheme clearly, we give 
some notations as follows. Split the time interval  0,T  
into several subintervals, i.e.,  

1
0, , ,

i ii p pT U t t


     for 
simplicity we can take 

1
.

i ip pt t


   Let  

 1
2iij p jt s
     with js  given above as Legendre- 

Gauss-Lobatto points in  1,1 . 

Integrating Equation (4) from 
ipt  to ,ik  we get 

   

   

 

1 1

0 1

2

1 12

, d , d

, , d

, d

ik ik

p pi i

ik

pi

ik

pi

t t

j j
t

t

y x y x
t

y x y x

d y x
x

 





   

     

 


 



  






 





      (10) 

using the  1N  -point Legendre Gauss-Lobatto quad- 
rature formula relative to the Legendre weights on the 
right hand side of Equation (10) gives 

     

   

   

1 1

0 1
0

1 1 1
0

, , 1
4

, ,  

, 2 , ,

iik j p j k

M

ikm j ikm j
m

M

ikm j jk ikm k m
n

y x y t x s

y x y x

y x d D y x



    

  





  

  

 





    (11) 

where   1 1 .
4iikm p k mt s s
      In the above for-  

mula, to explicitly update  1 ,ik jy x , we need to evalu- 
ate  1 ,ikm jy x  by some approximations. Fortunately, 
we have the Euler scheme solution (7) as an initial ap- 
proximation and then interpolation to the Legendre- 
Gauss-Lobatto points in 

1
,

i ip pt t


   . Denote by 
 1 ,n

ik jy x  the n-th loop of post-processing solution, 
whereas for 0n  , it is the linear interpolation of the 
solution (7). The full numerical scheme for Equation (4) 
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is given by 

     
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 



    (12) 

where  eF   is the e-th Lagrangian interpolation poly- 
nomials associated with Legendre-Gauss-Lobatto points. 
Here we remark that in Equation (12) the updated infor- 
mation of  1 ,n

ik jy x  is immediately used to obtain 
 1 , 1,i k jy x  . Similarly, we can get the spectral post 

processing scheme for 0y  in Equation (4): 
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where 
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

 

For the sake of compactness, we shall not give the full 
spectral post processing scheme for the two stage Equa- 
tion (5) here. However, the idea is same as the one stage 
model. Instead, we give an algorithm to implement the 
spectral post processing scheme in detail. 

Algorithm 5.1 (Spectral Post-Processing) 

1) Initialize    0 0
1 0,0 0 0,0,  and ,j jy x y x   by interpo- 

lation from Equations (7) and (8) 
2) For 1 to #i   of subintervals 
3) For 0n   to # of loops on post processing 
4) For 0 to k M  

5)     1 ,  1 1
2 4i iik p k ikm p k mt s t s s
          

6) Compute  1 ,ik jy x  by Equation (12) 
7) Compute  0 ,ik jy x  by Equation (13) 
8) End k  
9) End n  
10) End i  

6. Numerical Simulation and Discussion 

In the following, some numerical simulations were car- 
ried out. In our computations we use the Legendre-Gauss 
quadrature with weights 

    2
2

1

1
,  0 .

1
j

j N j

j N
x L x




  
   

 

In case of one-stage model the initial functions 
     0 1, 0.2 0.1cos 4 ,  , 1.77t x x t x      for healthy 

and cancer cells respectively and the parameters value 

6 6
0 12,  1e ,  4e ,  0.9, 5.a d d             (14) 

and for the two-stage model, we use 

6 6
0 1 0 1

6
2 1 2 1

2 1 2

2,  1,  1e ,  4e ,

4e , 0.5, 0.25,  2,

3,  0.1, 0.2.

a a d d

d   

  

 



   

   

  

      (15) 

with 

     
 

0 1

2

, 0.2 0.1cos 4 ,  , 1.77

, 1.77

t x x t x

t x

 



   


 

We start our simulation for the one-stage model, which 
is system of Equation (4) with small delay in which the 
steady state is positive; we observe the oscillatory be- 
havior of the system with different mode of frequencies. 
The oscillation is then smooth because of the steady state 
(Figures 1 and 2). Increasing the delay term and fixing 
the other parameters, one can observe a very strong os- 
cillatory behavior of the system. For a very large value of 
delay term, the solution behaves like traveling waves 
(Figures 3 and 4). As the dynamics of the system is pe- 
riod, it suggests that traveling wave solutions appear for 
the system with delay and diffusion. The same was ob- 
served for the two-stage model, which is system Equa- 
tion (5) (Figures 5-10). In conclusion, we can say that 
the stability switch is only because of the increasing in 
delay and the diffusion itself cannot destabilize the sys- 
tem. 
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Figure 1. Simulated solution of system (4) for 0.1,   
using the parameters values of Equation (14). 
 

 

Figure 2. Simulated solution of system (4) for 0.1,   
using the parameters values of Equation (14). 
 

 

Figure 3. Simulated solution of system (4) for 5,   using 
the parameters values of Equation (14). 

 

Figure 4. Simulated solution of system (4) for 5,   using 
the parameters values of Equation (14). 
 

 

Figure 5. Simulated solution of system (5) for 1 2 0,    

using the parameters values of Equation (15). 
 

 

Figure 6. Simulated solution of system (5) for 1 2 0,    
using the parameters values of Equation (15). 
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Figure 7. Simulated solution of system (5) for 1 2 0,    

using the parameters values of Equation (15). 
 

 

Figure 8. Simulated solution of system (5) for 1 25, 2,    

using the parameters value of Equation (15). 
 

 

Figure 9. Simulated solution of system (5) for 1 25, 2,    

using the parameters value of Equation (15). 

 

Figure 10. Simulated solution of system (5) for 1 5,   

2 2   using the parameters value of Equation (15). 

7. Concluding Remarks 

It has been the aim of this paper to use a spectral post- 
processing technique for the numerical solutions of one 
and two-stage model of carcinogenesis mutations with 
time delay and diffusion. The spectral postprocessing 
with the coarse-mesh symplectic initial guess produces 
high accurate approximate solution. It also saves a sig- 
nificant amount of computational time over the standard 
schemes. We compared the results obtained by simulate- 
ing the one and two-stage model with the available one 
and find it with good agreement. The future work in- 
cludes the theoretical stability analysis of the proposed 
method and its extension to higher dimensions. 
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