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ABSTRACT 

Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of 
nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the material is taken into account 
when using the method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic prob- 
lems. Developed PIV’s significant savings of computer calculation has been compared with the calculation on a fine 
mesh of traditional FEM. Designed scheme allows analysis of the mutual influence of openings. Analysis of the trans- 
formation zone of plastic deformation is developed. For definiteness, the cylindrical shell structures with several rec- 
tangular openings are considered. 
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1. Introduction 

Structures in the form of nonhomogeneous shells are com- 
mon in the priority areas of modern technology (aviation, 
space technology, oil and gas industry). The main mani- 
festation of nonhomogeneity is the presence of openings 
of different shapes. 

Openings characterize the design features and dam- 
age defects that appear in various cases of exploitation or 
in manufacturing processes. They reduce to concentra- 
tion of stresses [1,2]. 

High load levels lead to plastic deformation. This fact 
is taken into account when using the methods of elastic 
solutions that reduce the solution of elastoplastic prob- 
lems to solution of elastic problems [3]. 

The fields of stresses and strains that arise near open- 
ings’ edges have the mutual influence on each other. This 
influence depends on the openings’ shapes, dimensions, 
quantities, and spacings. Plastic deformation appreciably 
changes the pattern of this interaction. Transformation of 
above-mentioned fields near the openings cause changes 
to the process of exhausting the carrying capacity. 

The plastic deformation zones, stress distributions and 

loads that correspond to the start of merging and further 
transformation in the course of loading make it possible 
to predict load-carrying ability of shell-type structures 
with openings. 

Let us consider shell-type structures in view of cylin- 
drical shell with rectangular openings. 

2. Features of Used Solution Methods 

The numerical finite element method (FEM) is an effi- 
cient method for solution of various complex problems 
of stress-strain state (SSS) and critical states (carrying 
capacity, stability) of various structures.  

The projective-iterative versions (PIV) of FEM essen- 
tially reduces the needed for calculations performed by 
means of personal computers, which is of importance in 
simulation of complex nonlinear deformation of shell- 
type structures with openings of various types. 

The theoretical foundations of PIV FEM in [4-8] and 
in series of works in mathematics problems are presented. 
The basic idea is as follows. 

The problem of finding the minimum of the potential 
energy functional, defining the SSS of shell structures 
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members is the conditional minimization problem 

  inf, ,F u u U   H           (1) 

where  F u  is the functional bounded on a set of cine- 
matically possible displacements  of the real Hilbert 
space 

U
H . 

The extremum problem Equation (1) is approximated, 
through the use of FEM, by a series of discrete extremum 
problems . Each of the problem is solved 
via some iterative process, but not completely. Starting 
from an arbitrary rather rough breakdown of the mesh, 
one constructs just a few approximations  to the 
minimum point of the n-th multivariable function. The 
last approximation is interpolated into a finer finite ele-
ment mesh and serves an initial approximation to the 
minimum point of the next function at the (n + 1)-th step 
of the PIV process that goes on until a present calculation 
accuracy is achieved. 

 1,2,n  

 nk

The PIV FEM models have been applied successfully 
of elastic boundary value problems, elastoplastic stress- 
strain state problems for plates with various openings, 
plane elastoplastic deformation problems for structured 
media containing assembles of pores, cracks, inclusions 
[2,8]. Use of this models provides a significant (dozens- 
fold) saving in computation time in comparison to the 
conventional FEM. 

For solution of elastoplastic problems we use the 
method of variable elastic parameters (VEP)—version of 
elastic solutions methods [3,8]. The method give con- 
struction of iterative process, in each approximation an 
elasticity problem with variable elasticity and shear mod- 
ulus ,  and Poisson’s ratio G E    is solved. For 
deformation theory of plasticity we have for each ap- 
proximation 
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where ij  and ij  are the of stresses strains, i  and 

i  are the stress and strain intensities,  is the mean 
stress, 


ij  is the Kronecker delta. 

For a first approximation, we have 1 , 1E E     
and determine 1ij , 1i , 1i , 1 . In a second ap- 
proximation we have 2 1 1i iE    , 2   obtained from 
Equation (2) at 1  and so on. The process is run until 
two successive approximations coincide to within a given 
accuracy, . 1m m

Corresponding schemes for the flow theory of plastic- 
ity may be constructed. 

E E  

The corresponding minimized energy functional for 

shell with openings is written as [9] 
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where , , and  are the displacements of the mid- 
dle surface, 

u v w
  and  —coordinates,  is the shell 

thickness, 
h

  is the sheet surface,  and G   are the 
variable elastic parameters for each method VEP ap- 
proximation, 1 , 1 , 1  and 1T S Q M  are the longitudinal, 
tangential, transverse force and bending moment, respec-
tively which are applied to the shell edges  , comma 
denotes differentiation in the coordinate. Stresses in the 
shell middle surface are given by  
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3. Results of Numerical Analysis 

Founded on the PIV FEM procedure, a program in C++ 
language has been written for the stress-strain state ana- 
lysis of cylindrical shell with three rectangular openings.  

We calculated shells ( ,  and 1.5 mL  1.1 mR 
0.004 mh  ) of D16T aluminum alloy (Figure 1). The  

 

 

Figure 1. Scheme of shell structure and loading. 
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The plastic strain zones affect on stiffness. The forma 
tion of the zones common for the openings considerably 
impairs the resistance of shall-type structures with open- 
ings to effective loads. This finding can be used in pre- 
dicting their load-carrying capacity. 

larger openings measures 0.4 0.4 m  and the smaller 
one . Compressive loads  were varied 
from 55 to 100 MPa. The center-to-center distances: 

1 —between the small opening and the nearest larger 
opening, 2 —between two larger openings were varied. 
The offset yield stress 

0.2 0.2 m

l

p

l

s  was taken 200 MPa. 
4. Conclusions The PIV FEM has been implemented on eight dou-

ble-folded FE meshes of rectangular Hermitian elements. 
The number n  of approximations at the n-th step 

 of the PIV process was chosen as the 
smallest integer k satisfying the condition 

k
 1,2, ,8n  

Founded on PIV, FEM models have significantly reduce 
the computation time (in comparison to the conventional 
FEM models). Therefore, methods of numerical simulation 
of strength for elastoplastic shell-type structures contain-
ing several rectangular openings are developed. The vari- 
ation of openings parameters, quantities, and center-to- 
center distances allows one to study the formation and 
transformation of plastic strain zones in the process of 
loading. Merging of the zones leads to a decrease in 
stiffness. This fact is used in predicting the load-carrying 
capacity. 



   1 , 1, ,k k
n n nu u k k    n ,      (5) 

where  is the solution to the n-th finite-dimensional 
problems and n

 nk
nu

  is the preset accuracy of computations 
on the n-th mesh. 

Let us consider some results of the numerical analysis. 
By way of plane projections of the shell evolvent, 

Figure 2 shows how the plastic strain zones develop in a 
shell with openings:  

The developed schemes for numerical simulation can 
be expended to the plate-shell structures members with 
openings of other shapes (circular, elliptical). This is partly 
done in [2,8]. 

1 2 0.8 ml l  ,  45 MPap 

(Figure 2(a));  
REFERENCES 

1 0.6 ml  , ,  2 0.8 ml  35 MPap 
[1] V. S. Hudramovich, “Features of Nonlinear Deformation 

and Critical States of Shell Systems with Geometrical 
Imperfections,” Journal of Applied Mechanics, Vol. 42, 
No. 12, 2006, pp. 1323-1355. 

(Figure 2(b)). 
These zones arise locally at the openings edges and at 

shell ends, merge as the load  grow and  decreases. 
The variants of mutual influence of the openings will 
differ as the shell and openings parameters are changed. 

p l
[2] E. Hart and V. Hudramovich, “Applications of the Pro- 

jective-Iterative Versions of FEM in Problems of Damage 
for Engineering Structures,” Proceedings of the 2th In- 
ternational Conference “Maintenance 2012”, Zenica, 
Bosnia and Herzegovina, 13-16 June 2012, pp. 157-163. 

Using the computation program we can determine the 
loads whereby the plastic strain zones start merging to be 
become integral ones. The use PIV FEM models in these 
problems has provided a saving of computer time by a 
factor of 30 to 50 (depending on the class of problems) in 
comparison to the traditional FEM models (on a single 
mesh). 

[3] A. A. Il’yushin, “Collected Works in 4 Volumes, Vol. 2: 
Plasticity (1946-1966),” Fizmatlit, Moscow, 2004. 

[4] M. A. Krasnosel’skii, G. M. Vainikko and P. P. Zabreiko, 
“Approximate Solution of Operator Equations,” Nauka, 
Moscow, 1969. 

 [5] R. Kluge, “Ein Projektions-Iterationsverfahren bei Fix- 
punktproblemen und Gleichungen mit Monothonen Ope- 
ratoren,” Monatsber. Dtsch. Akad. Wissenschaft, Vol. 11, 
No. 8-9, 1969, pp. 599-609. 

 

[6] W. Hackbusch, “Multigrid Methods and Applications,” 
Springer, Berlin, 1985.  
http://dx.doi.org/10.1007/978-3-662-02427-0 

[7] E. L. Hart, “Projection-Iterative Version of the Pointwise 
Relaxation Method,” Journal of Mathematical Sciences, 
Vol. 167, No. 1, 2010, pp. 76-88.  
http://dx.doi.org/10.1007/s10958-010-9903-3 

[8] V. Hudramovich, E. Hart and S. Ryabokon, “Elastoplastic 
Deformation of Nonhomogeneous Plates,” Journal of 
Engineering Mathematics, Vol. 78, No. 1, 2013, pp. 181- 
197. http://dx.doi.org/10.1007/s10665-010-9409-5 

[9] V. V. Novozhilov, K. F. Chernych and E. I. Michailovskii, 
“Linear Theory of Thin Shells,” Politechnica, Leningrad, 
1991.  

Figure 2. Distribution of plastic strain zones in a shell with 
openings. 

http://dx.doi.org/10.1007/978-3-662-02427-0
http://dx.doi.org/10.1007/s10958-010-9903-3
http://dx.doi.org/10.1007/s10665-010-9409-5

