
Applied Mathematics, 2013, 4, 1450-1454 
http://dx.doi.org/10.4236/am.2013.410195 Published Online October 2013 (http://www.scirp.org/journal/am) 

Existence of Positive Solutions for Boundary Value  
Problem of Nonlinear Fractional q-Difference Equation* 

Liu Yang 
Department of Mathematics and Computing Sciences, Hengyang Normal University, Hengyang, China 

Email: yangliu19731974@yahoo.com.cn 
 

Received April 14, 2013; revised May 14, 2013; accetped May 21, 2013 
 

Copyright © 2013 Liu Yang. This is an open access article distributed under the Creative Commons Attribution License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value 
problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained. 
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1. Introduction 

Considering the following boundary value problem of 
nonlinear fractional q-difference equation: 
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where f  is a nonnegative continuous function and qD  
 fractional q-derivative of the Riemann-Liouville 

type. 
is the

Fractional differential calculus is a discipline to which 
many researchers are dedicating their time, perhaps be-
cause of its demonstrated applications in various fields of 
science and engineering [1]. Recently, there are many 
papers dealing with the boundary value problem of frac-
tional differential equations, see [2-5] and references 
therein. 

The q-difference calculus or quantum calculus is an 
old subject that was initially developed by Jackson [6,7], 
and basic definitions and properties of q-difference cal- 
culus can be found in [8]. The fractional q-difference 
calculus had its origin in the works by Al-Salam [9] and 
Agarwal [10]. More recently, maybe due to the explosion 
in research within the fractional differential calculus set-
ting, new developments in this theory of fractional q- 
difference calculus were made, see [11,12]. 

The question of the existence of positive solutions for 

fractional q-difference boundary value problems is in its 
infancy, see [13-16]. No contributions exist, as far as we 
know, concerning the existence of positive solutions for 
problem (P). 

This paper is organized as follows. In Section 2, some 
preliminaries are presented. In Section 3, we discuss the 
existence of positive solutions for problem (P). 

2. Preliminaries 

Let  0,1q  and define  
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The q-analogue of the power function  with  n
a b 

0n  is  
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More generally, if a , then  
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Note that, if 0b   then  a a  . The q-gamma 
function is defined by  
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and satisfies      1 .q qq
x x x     The q-derivative of 

a function f  is here defined by  

Copyright © 2013 SciRes.                                                                                  AM 



L. YANG 1451

      
       

0
, 0 lim

1q q
x

f x f qx
D f x D f D f x

q x 


 

 q

1 , .

 

(2.5) 

and q-derivative of higher order by  

          0 , n n
q q q qD f x f x D f x D D f x n    

(2.6) 

The q-integral of a function f  defined in the interval 
 0,b  is given by 
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(2.7) 

If  0,a b  and f  defined in the interval  0,b , 
its integral from  to  is defined by a b

     
0 0

.
b b a

q qa qf t d t f t d t f t d t          (2.8) 

Remark 2.1. (see [17]) If ,na bq n   and  
   f t g t  on  ,a b , then  

    .q qa a

b b
f t d t g t d t   

Similarly as done for derivatives, an operator n
qI  can 

be defined, namely,  

          0 1, n n
q q q qI f x f x I f x I I f x n  , .  

(2.9) 

The fundamental theorem of calculus applies to these 
operators qI  and , i.e.,  qD

    q qD I f x f x            (2.10) 

and if f  is continuous at 0x  , then  

      0 .q qI D f x f x f          (2.11) 

Basic properties of the two operators can be found in 
[14]. We now point out three formulas that will be used 
later (  denotes the derivative with respect to variable 

) 
i qD

i

     ,a t s a t s
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Remark 2.2. (see [14]) We note that if 0   and 
, then  a b t 

      .t a t b
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Definition 2.3. (see [10]) Let 0   and f  be a 
function defined on  0,1 . The fractional q-integral of 
the Riemann-Liouville type is    0

q I f x  f x  and 
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Definition 2.4. (see [14-16]) The fractional q-deriva- 
tive of the Riemann-Liouville type of order 0   is 
defined by     0

qD f x f x  and 

      ,q q qD f x D I f x  0,m m       (2.14) 

where  is the smallest integer greater than or equal to m
 . 

Next, we list some properties that are already known 
in the literature. 

Lemma 2.5. (see [14-16]) Let , 0    and f  be a 
function defined on  0,1 , Then, the next formulas hold: 

1)        ,q q qI I f x f x   I   

2)     .q qD I f x f x    

Lemma 2.6. (see [14-16]) Let 0   and  be a 
positive integer. Then, the following equality holds: 

p
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Let 4p  , in view of Lemma 2.5 and Lemma 2.6, we 
see that  
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for some constants 1 2 3 4  Using the boundary 
condition 

, , , .c c c c 
 0y 0  we have 4  Differentiating 

both side of the above equality, one gets 
0.c 
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Using the boundary condition , we have   0qD y  0

3 0.c   similarly, we have c  From  2  0.
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and boundary value problem , one can 
obtain  

   3 1 0qD y 

       1 4

1 0

1
1 , q

q

c qt f t y



 

  d .t t   (2.18) 

Putting all things together we finally have  
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(2.19) 
If we define a function  by G
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 (2.20) 

Hence, in order to solve the problem (P), it is suffi-
cient to find positive solutions of the following integral 
equation  

      1

0
, , dqy t G x qt f t y t t  .

,

1.
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Some properties of the function  needed in the 
sequel are now stated and proved.  

G

Lemma 2.7. Function  defined above satisfies the 
following conditions: 

G
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i.e.,  1 ,g x qt  is an increasing function of x. Obviously, 
 ,2g x qt  is increasing in x, therefore,  is an 

increasing function of x for fixed 
 ,G x qt 

 0,1 .t  This con-
cludes the proof of (2.22). 

Suppose now that ,x qt  then  
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(2.28) 

If x qt , then  
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and this finishes the proof of (2.23). 
Let  0,1C   be the Banach space endowed with 

norm    0,1 .sup tu u t  Define the cone  by  C

  1: .C u u x x u     

It follows from the non-negativeness and continuity of 
 and G f  that the operator  defined by :T C 

       1

0
, , dqTu x G x qt f t u t t       (2.30) 

is completely continuous [18]. Moreover, for ,u C  in 
view of (2.22) and (2.23), we have    0x Tu  on 
 0,1  and  
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that is   .T C C  

0.
 (2.26) 

Lemma 2.8. (see [19]) Let  be a Banach space, 
 a cone, and 1 2

E
P E ,   two bounded open balls of 

 centered at the origin with E 1 2 . Suppose that   
 2 1  :T P P  is a completely continuous op-
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erator such that either  
1) 1 2, and ,Tu u u P Tu u u P      ,  

or 
2) 1 2, and ,Tu u u P Tu u u P         

holds. Then  has a fixed point in T  2 1 .P     

3. Main Results 

Let   10,1 : , 1, 2, 3, 4,i y C y r i      where  
 will be defined later. 0ir 

Theorem 3.1. Suppose that  ,f t u  is a nonnegative 
continuous function on    0,0,1   . In addition, sup-
pose that one of the following two conditions holds: 
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