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Abstract 
 
In a one-dimensional advection-diffusion equation with temporally dependent coefficients three cases may 
arise: solute dispersion parameter is time dependent while the flow domain transporting the solutes is uni-
form, the former is uniform and the latter is time dependent and lastly the both parameters are time depend-
ent. In the present work analytical solutions are obtained for the last case, studying the dispersion of con-
tinuous input point sources of uniform and increasing nature in an initially solute free semi-infinite domain. 
The solutions for the first two cases and for uniform dispersion along uniform flow are derived as particular 
cases. The dispersion parameter is not proportional to the velocity of the flow. The Laplace transformation 
technique is used. New space and time variables are introduced to get the solutions. The solutions in all pos-
sible combinations of increasing/decreasing temporal dependence are compared with each other with the 
help of graphs. It has been observed that the concentration attenuation with position and time is the fastest in 
case of decreasing dispersion in accelerating flow field. 
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1. Introduction 
 
Immiscible solute or tracer particles of pollutants are 
major cause of degradation of the hydro-environment in 
the surface water bodies and aquifers. The sources of 
such pollutants originate from human activities on the 
earth. Solute particles reach a surface water body with 
waste water drainage and reach an aquifer due to infiltra-
tions from wastes disposal sites, underground septic 
tanks, mines and polluted water bodies that recharge the 
aquifers. Solutes are transported down the stream along 
the flow and disperse due to combined effects of diffu-
sion and advection. Concentration attenuation with posi-
tion and time is described by an advection-diffusion equ-
ation which is a partial differential equation of parabolic 
type. Due to growing concern about the safe hydro-envir- 
onment for the existence of life on the earth the advec-
tion-diffusion equation has drawn significant attention of 
environmentalists, hydrologists, civil engineers and ma-
thematical modelers. Its analytical and numerical solu-
tions for the set of initial condition and boundary condi-
tions typical for real situations are useful to assess the 

time and position at which the concentration level of the 
pollutants will start affecting the health of the habitats in 
the polluted water eco-system. Also such solutions help 
estimate and examine the rehabilitation process and 
management of a polluted water body after elimination 
of the pollution. 

In the earlier analytical solutions the solute dispersion 
parameter and velocity have been considered constant in 
a homogeneous medium. The basic approach was to re-
duce the advection-diffusion equation 

2
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into a diffusion equation by eliminating the advection 
term. It was done either by introducing moving coordi-
nates 

x x ut   , t t    (2) 

or by introducing another dependent variable 
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For example the analytical solution of the advection-
diffusion equation with constant coefficients in an ini-
tially solute free semi-infinite domain for a continuous 
uniform input point source 0  at the origin has been 
reported by Ogata and Banks [1], Harleman and Rumer 
[2], Guvanasen and Volker [3], Marshall et al. [4], by 
using the transformations in Equation (2), as 

C

  0, erfc
2 2

C x ut
C x t

Dt

   
 

  (4) 

or by using the transformation in Equation (3), as 

  0, erfc exp erfc
2 2 2

C x ut ux x ut
C x t

Dt D Dt

                


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 (5) 

by Banks and Ali [5], Ogata [6], Lai and Jurinak [7], 
Marino [8] and Al-Niami and Rushton [9]. Both the so-
lutions have been obtained by using Laplace transforma-
tion technique. The former solution satisfies the advec-
tion-diffusion equation but does not satisfy the input 
condition. The omission of factor  1 2  in Equation (4) 
makes the difference between the value of  0C C  at 

 obtained from this solution and that given by the 
input source condition, just half. Also this difference 
decreases for a smaller value of the velocity. The latter 
solution satisfies the input source condition and does not 
satisfy the differential equation but the error of approxi-
mation is of negligible order. So the latter type of ana-
lytical solutions have been obtained for different disper-
sion problems incorporating the other factors such as 
zero order production, first order decay, adsorption. Such 
solutions are compiled by van Genuchten and Alves [10] 
and Lindstrom and Boersma [11]. Such solutions are 
very useful in validating the numerical solutions. 

0x 

Previous investigations have established that the lon-
gitudinal dispersion coefficient was directly proportional 
to Darcy velocity for a broad range of Reynold’s number. 
Taking advantage of this relationship, analytical solu-
tions were obtained for a class of unsteady flow prob-
lems (Jaiswal et al., [12], Kumar et al., [13]). Further 
Yates [14] considered an exponentially decreasing dis-
persion along a uniform flow through porous medium to 
solve the advection-diffusion equation without adsorp-
tion. Logan and Zlotnik [15] and Logan [16] extended 
the works of Yates by including the adsorption and decay 
effects and studying their interactions with the heteroge-
neity caused by scale-dependent dispersion of periodic 
input source along uniform flow. Aral and Liao [17] ob-
tained analytical solutions to two dimensional advec-
tion-dispersion equation with time dependent dispersion 
coefficients by eliminating convective terms by intro-
ducing moving coordinate systems and using superposi-
tion method (Haberman, [18]). Such assumptions were 
based on the observations of Matheron and De Marsily 

[19], Sposito et al. [20], Gehler et al. [21] who showed 
that large subsurface formations exhibit variable disper-
sivity properties, either as a function of distance or as a 
function of time along uniform flow. But such depend-
ency may be more prevalent in surface water bodies due 
to local effects like curved boundaries, bridges etc., and 
chemically reactive type of pollutants whose dispersion 
may marginally increase or decrease with time. To un-
derstand the hydro-environment degradation problem in 
wider perspective, while investigating unsteady disper-
sion problems, all the three cases 1) unsteady dispersion 
along uniform flow, 2) uniform dispersion along un-
steady flow and 3) unsteady dispersion along unsteady 
velocity but both being not proportional to each other, 
should be investigated. In a recent paper Jaiswal et al. 
[12] studied the first case and obtained the analytical 
solutions for pulse type uniform and varying inputs. 

The present paper considers the general case 3) and 
analytical solutions similar to those in Equation (5) are 
derived by reducing the time dependent coefficients of 
the advection-diffusion equation into constant coeffi-
cients with the help of a set of new independent variables 
of space and time different from those in the earlier work 
and then using Laplace transformation technique. Con-
tinuous input point sources of uniform and increasing 
nature are considered. The analytical solutions for the 
first two cases and that of uniform dispersion along uni-
form flow may be obtained from this solution as particu-
lar cases. The solutions in different cases are illustrated 
and compared with each other. 
 
2. Temporally Dependent Dispersion along 

Unsteady Flow 
 
The general linear form of one-dimensional advection- 
diffusion equation in Cartesian system is 

   , ,
C C

D x t u x t C
t x x

      

   (6) 

The symbol,  is the solute concentration at position C
x  of the domain at time . If the two coefficients  
and  are constants then they are referred to as solute 
dispersion coefficient and uniform velocity, respectively, 
and the above equation reduces to Equation (1). Let us 
write the solute dispersion parameter and the velocity of 
the flow in the above advection-diffusion equation as 

t D
u

   0 1, ,D x t D f x t  and   (7)    0 2,u x t u f x t ,

In the present study it is assumed that the solute dis-
persion and the velocity of the flow, both are temporally 
dependent hence we consider 

   1 1,f x t f mt  and   2 2, f x t f mt   (8) 

Copyright © 2011 SciRes.                                                                               JWARP 



D. K. JAISWAL  ET  AL. 
 

Copyright © 2011 SciRes.                                                                               JWARP 

78 

where  is a resistive of dimension being inverse of 
time variable. Thus 

m
 1f mt  and  2f mt  are non-di- 

The conditions in Equations (10) - (12) may be written in 
terms of new independent variables as 

mensional expressions. It is chosen such that  1 1f mt   
and  when either  (represents the 
case of uniform dispersion along uniform flow) or 

 2 1f mt  0m 
0t   

(the initial stage). The advection-diffusion equation in 
Equation (6) assumes the form 

 , 0C X T  ; , 0X  0T   (17) 

  0,C X T C ; 0X  ,   (18) 0T 

   
2

0 1 0 22

C C
D f mt u f mt

t x

 
 
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C

x


  (9) 

0
C

X





; ,   (19) X  0T 

Now advection-diffusion equation in  ,X T  domain 
given by Equation (16) is reduced into a diffusion equation 
in terms of a new independent variable, K  defined by 

We study the dispersion of a continuous input point 
source introduced at the origin of an initially solute free 
one-dimensional semi-infinite medium. Analytical solu-
tions are obtained for uniform input point source and that 
of increasing nature. 
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2

0 0

0 0

, , exp
2 4

u X u T
C X T K X T

D D

 
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  (20) 

 which is 
2.1. Uniform Input Point Source 
 2

0 2

K K
D

T X

 


 
  (21) In case of uniform continuous input point source the ini-

tial and boundary conditions for the above advection- 
diffusion equation are The conditions in Equations (17) - (19) reduce to 

 , 0C x t  ; , ,   (10) 0t  0x   , 0K X T  ; , 0X  0T    (22) 

  0,C x t C ; , ,   (11) 0x  0t     2
0, expK X T C T ; , ,  

where 

0X  0T 

 2 2
0 04u D    (23) 0
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Let us introduce a new space variable X , using a 
transformation which is 

X  0T 

 
 

 
 

2 2

1 1

f mt f mt
X dx x

f mt f mt
    (13) respectively. Applying Laplace transformation above 

initial and boundary value problem reduces to an ordi-
nary second order boundary value problem, which com-
prises of following three equations 

in terms of which the advection-diffusion equation in 
Equation (9) reduces to 

2

2
0

0
d K p

K
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  0
2

,
C

K X p
p 




; Further a new variable, T  is introduced by the 
transformation 

0X    (26) 

 
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2
2
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t f mt
T d

f mt
  0

0

0
2

udK
K

dX D
  ;   (27) t   (15) X 

It is evident that the dimension of it will be that of 
time variable  hence it is referred to as a new time 
variable. While choosing expressions for 

t
 1f mt  and 

 2f mt  it is also ascertained that  at 0T  0t  . So 
the nature of the initial condition does not change in the 
new time domain. The advection-diffusion equation in 
Equation (14) reduces to one with constant coefficients 
which is 

The particular solution of this boundary value problem 
may be obtained as 

    0
02

, exp /
C

K X p p D X
p 

 


  (28) 

Applying inverse Laplace transformation on it, using 
the appropriate tables (van Genuchten and Alves, [10]) 
and using the necessary transformations defined earlier 
in the text, backwards, we may get the desired analytical 
solution as 

2
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where  is defined in Equation (15). Also an analyti-
cal solution of the same initial and boundary value 
problem similar to that in Equation (4) may be obtained 
as either 

T

     2 1 0
0

0

/
, erfc

2
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C x t C

D T
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 
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 
 

2
2
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t f mt
T d
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  t   (30) 

or  
 0 2

0
0

, erfc
2

x u f mt dt
C x t C

D T

 
 
 
 
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 1
0

t

T f mt d  t   (31) 

where (1/2) is omitted because of the reason stated below 
the solution in Equation (4). 
 
2.2. Input Point Source of Increasing Nature 
 
Due to increasing human activities the input point source 
may not remain constant instead it will increase with 
time. This premise is expressed by a mixed type non- 
homogeneous condition as 

    0 0, ,
C

D x t u x t C u C
x


  


; ,    (32) 0x  0t 

Using the expressions in Equation (6) it may be writ-
ten in terms of and new independent variables defined in 
Equations (13) and (15), respectively, as 
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
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To proceed with it expressions    1 expf mt mt  
and    2 expf mt mt   are considered. For these ex-
pressions the new space variable and new time variable 
will be given by 

 exp 2X x m  t   (34) 

  1
1 exp 3

3
T m

m
   t   (35) 

Solving old time variable  in terms of new time va-
riable  from the expression in Equation (35), and us-
ing that relationship, the condition in Equation (33) may 
be written as 

t
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where the series  2o m  is neglected from the binomial 
expansion as  is chosen much smaller than one. Us-
ing the transformation in Equation (20), above condition 
may be written as 

m
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Applying Laplace transformation on it we may get 
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0
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; 

0X    (38) 

The particular solution of the boundary value problem 
comprising of Equations (25), (38) and (27) may be ob-
tained as 

0X  ,   (33) 0t 

       
  0 0

022 2
0

1
, e

u C m
xp /K X p p D X

pD p p 

 
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  (39)

Applying inverse Laplace transformation on it, using the 
appropriate tables (van Genuchten and Alves, [10]) and 

using the necessary transformations defined in the text, 
backwards, we may get the desired analytical solution as 

 
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where X  and T  are given by Equations (34) and (35), 
respectively. 
 
2.3. Particular Cases 
 
2.3.1. Uniform Dispersion along Unsteady Flow 
An analytical solutio of the dispersion problem in 

which solutes of a uniform input point source disperse 
uniformly along a flow domain of temporally dependent 
velocity under the same conditions may be obtained by 
substituting 

n 

 1 ,f x t 1  and   2 , f x t f mt   (41) 

the solution in Equation (29) as  

       0 00 0

00 0

, erfc exp erfc
2 2 2

xf mt u T xf mt u TC u x
C x t f mt

DD T D T

     
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t



  (42)

The new time variable in this solution has the expression 

 2

0

t

T f mt d    (43) 

Similarly the analytical solution of this particular 
problem in case of increasing input point source will be 
defined by the solution (40) but the expressions for the 
new space and time variables will be 

expX x m  t  and   1
1 exp 2

2
T

m
   mt   (44) 

 
2.3.2. Temporally Dependent Dispersion along  

Uniform Flow 
The analytical solutions of this particular dispersion pro- 
blem in case of uniform and increasing input point sour- 
ces may be obtained by substituting 

   1 ,f x t f mt  and   (45)  2 , 1f x t 

in the solutions in Equation (29) and Equation (40) 
which have been obtained independently in a recent 
work (Jaiswal et al., [12]). 
 
2.3.3. Uniform Dispersion along Uniform Flow 
The analytical solutions in this particular dispersion 
problem may be obtained by substituting 

 1 ,f x t 1 and   (46)  2 , 1f x t 

in the solutions in Equation (29) and Equation (40), 
which are reported as problems (A1) and (A2), respec-
tively, in time domain , by van Genuchten and 
Alves [10]. 

00 t t 

 
3. Result and Discussions 
 
The solution in Equation (29) describes the solute dis-
persion of uniform input point source concentration 
through a medium in all the four cases of temporal de-
pendence of the two coefficients of the advection-diffu- 
sion equation: 1) temporally dependent solute dispersion 
along temporally dependent flow, 2) temporally depend-
ent dispersion along uniform flow, 3) uniform dispersion 
along temporally dependent flow and 4) uniform disper-
sion along uniform flow. The analytical solutions for last 
three cases may be obtained from (29) for 

   1f mt f mt ,  2 1f mt  ;  1 1f mt  , 
   2f mt f mt  and  1 1f mt  , , respec-

tively. The concentration values 
  1t 2f m

 

0m

0  are evaluated 
from the solution in Equation (29) in all the above four 
cases and are illustrated in Figures (1)-(4). Temporal 
dependences of increasing and decreasing nature are con-
sidered. The different combinations for which the curves 
in these figures are drawn are given in Table 1. The last 
combination may be obtained by putting 

C C

  in any 
of the first six combinations. Concentration values are 
evaluated in a long domain 0 (  at km) 10x 
(years) 1.3,1.9,t 2.5 . The values assigned to different 

parameters to draw these four figures are: 0 1.u 14  
 km year , 0 1.25D    year2km  and 0.1m   

. The input concentration  -1
year  at 0x0C C   in all 

these figures is 1.0 as considered in the first boundary 
condition in Equation (11), stating the input point source 
of uniform nature. 

In Figure 1, the three solid curves show the solute  
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Table 1. Different combinations of temporally dependent/uniform solute dispersion and velocity of the flow. 

S.No. 1( )f mt  2 ( )f mt  Description of dispersion, 0 1( )D D f mt  
( )u u f mt

in a flow 
of velocity,  0 2

(1) exp( )mt ;  exp(0m  )mt ; 0m  exponentially increasing dispersion in exponentially decelerating flow

(2) exp( )mt ;  0m  exp( )mt ; 0m  exponentially decreasing dispersion in exponentially accelerating flow

(3) 1 exp( )mt ; 0m  uniform dispersion in exponentially accelerating flow 

(4) exp( )mt ;  0m  1 exponentially increasing dispersion in uniform flow 

(5) 1 exp( )mt ; 0m  uniform dispersion in exponentially decelerating flow 

(6) exp( )mt ;  0m  1 exponentially decreasing dispersion in uniform flow 

(7) 1 mt ;  0m  uniform dispersion in linearly accelerating flow 
(8) 1 1 uniform dispersion in uniform flow 

 

 

Figure 1. Continuous curves refer to temporally increasing 
dispersion in decelerating flow, dashed curve refers to 
temporally decreasing dispersion in accelerating flow and 
dotted curve refers to uniform dispersion in uniform flow. 
Concentration values are evaluated from solution in Equa-
tion (29) for uniform input point source. 
 

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

10

t = 2.5 (yr)

t = 1.9 (yr)

t = 1.3 (yr)

--------- D = D
0
exp(mt) ;  u = u

0

D = D
0
 ;  u = u

0
exp(mt)

C
/C

0

x(km)  

Figure 2. Continuous curves refer to uniform dispersion in 
accelerating flow and dashed curve refers to temporally 
increasing dispersion in uniform flow. Concentration values 
are evaluated from solution in Equation (29) for uniform 
input point source. 
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Figure 3. Continuous curves refer to uniform dispersion in 
decelerating flow and dashed curve refers to temporally 
decreasing dispersion in uniform flow. Concentration val-
ues are evaluated from solution in Equation (29) for uni-
form input point source. 
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Figure 4. Concentration values evaluated from solution in 
Equation (29). Curves refer to uniform dispersion in line-
arly accelerated flow. 
 
transport pattern for the temporally dependent dispersion 
problem stated by the combination (1) of Table 1. The  
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pattern is on the expected lines, i.e., in the presence of 
uniform point source of pollution the concentration level 
decreases with position at a time and increases with time 
at a particular position. This solution is compared with 
two other solutions obtained for the combinations (2) and 
(8), respectively at  (years). Thus the concentra-
tion distribution behaviors in cases of increasing disper-
sion in decelerating flow; decreasing dispersion in accel-
erating flow; and uniform dispersion in uniform flow, are 
compared with each other. It may be observed that the 
concentration values in the combination (8) occur in be-
tween the concentration values in other two combina-
tions, those for the combination (2) being the least. It 
means in case of decreasing dispersion in an accelerated 
flow field the concentration will reach the danger level in 
a region away from the source of the pollution, in the 
longest time. The solid curves in Figure 2 represent the 
solution (29) of the dispersion problem described by the 
combinations (3) at the three times mentioned at the out-
set of this section. One curve of this combination is 
compared with the curve drawn for the combination (4), 
at  (years). It may be observed that the concen-
tration level in case of uniform dispersion in accelerating 
flow domain is lower than that in case of increasing dis-
persion in uniform flow. Figure 3 depicts the solution 
(29) representing the combination (5) by the three solid 
curves and the combination (6) by the single dotted curve. 
It shows that the concentration level at a particular time 

 (years) in case of uniform dispersion in a decel-
erating flow is higher than that in case of decreasing dis-
persion in an uniform flow. This trend will be same at all 
times but the difference between concentration values of 
the two combinations decreases with time more evidently 
in the middle region of the considered domain. Figure 4 
depicts the concentration values obtained from the solu-
tion in Equation (29) for uniform dispersion along a time 
dependent flow domain in which velocity increases line-
arly defined by the combination (7). It may be noted that 
the expression 

1.3t 

1.3t 

1.3t

 f mt mt  cannot be used for 0m  . 
The solute distribution pattern in this case being much 
slower as compared to those obtained for the other com-
binations considered above. As evident from Equation 
(15) the solution in Equation (29) cannot be traced for 

1  f mt  mt , 2 but the solutions in Equa-
tions (30-31) can be used to trace this case (the figure is 
not drawn). From Figures (1-3) it may be observed that 
at a particular position rs)

  1f mt   

at 1.3(yeat  the concentra-
tion values for the combinations (1), (4), (5), (8), (3), (6), 
and (2) are in decreasing order. 

Figure 5 depicts the concentration distribution behav-
ior of increasing input point source described by the so-
lution in Equation (40) for the combination (1) by the 
solid curves for the same input values but in a shorter  
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0
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0
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           D = D
0
exp(-mt) and u = u

0
exp(mt)

 

Figure 5. Continuous curves refer to temporally increasing 
dispersion in decelerating flow and dotted curve refers to 
temporally decreasing dispersion in accelerating flow. 
Concentration values are evaluated from solution in Equa-
tion (40) for input point source of increasing nature. 
 
domain  0 kmx 1   at lesser times  yearst   

. The solution for this input for the combina-
tion (2) is also depicted in the same figure at 
0.1,0.7,1.3

 ears

0x 

1.3 yt   by the only dotted curve. It may be ob-
served that concentration values for the latter combina-
tion at  are less than those for the former combi-
nation. It may be noted that the input concentration 
 0x0 atC C   increases with time as demanded by the 
condition in Equation (32). The solute transport pattern is 
same as in case of the uniform input. The solution for the 
latter combination may be obtained by replacing  by m
 m  in the solution in Equation (40) but in that solu-
tion the expressions for the new independent variables 
will be 

 exp 2X x m t , and   1
exp 3 1

3
T mt

m
  . 

 
4. Conclusions 
 
There is growing concern in understanding and evaluat-
ing the pollutants solute particles transport along the me-
dium due to diffusion and advection degrading the hy-
dro-environment. It is important to solve advection- 
diffusion equation in real cases. In that order this equa-
tion in one-dimension is solved for a general case of 
temporally dependent dispersion along temporally de-
pendent flow where dispersion is not proportional to the 
velocity, with respect to a homogeneous first type initial 
condition, non-homogeneous first and third type input 
conditions, respectively and homogeneous flux type 
condition at the far end of the semi-infinite medium. The 
solutions for other cases of temporally dependent disper-
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sion along uniform flow; uniform dispersion along un-
steady flow and uniform dispersion along uniform flow, 
are obtained as particular cases. The analytical solutions 
in each of the four cases are compared with each other. A 
clear distinction between them may be observed from the 
figures. Two functions one exponentially increasing with 
time and other exponentially decreasing with time are 
considered for the purpose. The present study establishes 
that among all the possibilities considered the degrada-
tion of a water domain in slowest in case of the decreas-
ing solute dispersion in an accelerated flow domain. It is 
slightly better than that in case of decreasing dispersion 
in uniform flow. It has also been established that the 
concentration attenuation in a semi-infinite medium is 
faster than that in a finite medium (Kumar et al., [22]). 
So a position farther away from the source in a 
semi-infinite medium is safe for longer period of time. 
Relying upon such studies the reason of low concentra-
tion levels may be thought of, enforcing which techno-
logically or by other means degradation of hydro-envi- 
ronment may be controlled. The similar dispersion prob-
lems may be solved analytically in cases of pulse type 
input condition and initial spatial distribution described 
by Fischer et al. [23]. 
 
5. Acknowledgements 
 
This work is part of the Post Doctoral Fellowship pro-
gram of first two authors. Financial assistance provided 
by the funding agency to first author in the form of Dr. D. 
S. Khothari Post Doctoral Fellowship, University Grant 
Commission and second author in the form of NBHM 
Post Doctoral Fellowship, Department of Atomic Energy, 
Government of India, are gratefully acknowledged. 
 
6. References 
 
[1] A. Ogata and R. B. Banks, “A Solution of the Differential 

Equation of Longitudinal Dispersion in Porous Media,” 
US Geological Survey Professional Papers, No. 34, 1961, 
p. 411-A. 

[2] D. R. F. Harleman and R. R. Rumer, “Longitudinal and 
Lateral Dispersion in an Isotropic Porous Medium,” 
Journal of Fluid Mechanics, Vol. 16, No. 3, 1963, pp. 
385- 394. doi:10.1017/S0022112063000847 

[3] V. Guvanasen and R. E. Volker, “Experimental Investi-
gations of Unconfined Aquifer Pollution from Recharge 
Basins,” Water Resources Research, Vol. 19, No. 3, 1983, 
pp. 707-717. doi:10.1029/WR019i003p00707 

[4] T. J. Marshal, J. W. Holmes and C. W. Rose, “Soil Phys-
ics,” 3rd Edition, Cambridge University Press, Cam-
bridge, 1996. 

[5] R. B. Banks and J. Ali, “Dispersion and Adsorption in 
Porous Media Flow,” Journal of Hydraulic Division, Vol. 
90, No. 5, 1964, pp. 13-31. 

[6] A. Ogata, “Theory of Dispersion in Granular Media,” US 
Geological Survey Professional Papers, No. 411-1, p. 34, 
1970. 

[7] S. H. Lai and J. J. Jurinak, “Numerical Approximation of 
Cation Exchange in Miscible Displacement Through Soil 
Columns,” Soil Science Society American Proceeding, 
Vol. 35, No. 6, 1971, pp. 894-899. 
doi:10.2136/sssaj1971.03615995003500060017x   

[8] M. A. Marino, “Distribution of Contaminants in Porous 
Media Flow,” Water Resources Research, Vol. 10, No. 5, 
1974, pp. 1013-1018. doi:10.1029/WR010i005p01013 

[9] A. N. S. Al-Niami and K. R. Rushton, “Analysis of Flow 
against Dispersion in Porous Media,” Journal of Hydrol-
ogy, Vol. 33, No. 1-2, 1977, pp. 87-97. 
doi:10.1016/0022-1694(77)90100-7  

[10] M. Th. van Genuchten and W. J. Alves, “Analytical Solu-
tions of the One Dimensional Convective-Dispersive So-
lute Transport Equation,” US Department of Agriculture, 
Technical Bulletin, No. 1661, 1982. 

[11] F. T. Lindstrom and L. Boersma, “Analytical Solutions 
for Convective Dispersive Transport in Confined Aqui-
fers with Different Initial and Boundary Conditions,” 
Water Resources Research, Vol. 25, No. 2, 1989, pp. 
241-256. doi:10.1029/WR025i002p00241 

[12] D. K. Jaiswal, A. Kumar, N. Kumar and R. R. Yadav, 
“Analytical Solutions for Temporally and Spatially De-
Pendent Solute Dispersion of Pulse Type Input Concen-
Tration in One-Dimensional Semi-Infinite Media,” Jour-
nal of Hydro-Environment Research, Vol. 2, 2009, pp. 
254-263. doi:10.1016/j.jher.2009.01.003 

[13] A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical So-
lutions to One-Dimensional Advection-Diffusion Equa-
tion with Variable Coefficients in Semi-Infinite Media,” 
Journal of Hydrology, Vol. 380, No. 3-4, 2010, pp. 
330-337. doi:10.1016/j.jhydrol.2009.11.008 

[14] S. R. Yates, “An Analytical Solution for One Dimen-
sional Transport in Porous Media with an Experimental 
Dispersion Function,” Water Resources Research, Vol. 
28, No. 8, 1992, pp. 2149-2154. doi:10.1029/92WR01006 

[15] J. D. Logan and V. Zlotnik, “The convection-Diffusion 
Equation with Periodic Boundary Conditions,” Applied 
Mathematics Letter, Vol. 8, No. 3, 1995, pp. 55-61. 
doi:10.1016/0893-9659(95)00030-T  

[16] J. D. Logan, “Solute Transport in Porous Media with 
Scale-Dependent Dispersion and Periodic Boundary Con-
ditions,” Journal of Hydrology, Vol. 184, No. 3, 1996, pp. 
261-276. doi:10.1016/0022-1694(95)02976-1 

[17] M. M. Aral and B. Liao, “Analytical Solutions for Two- 
Dimensional Transport Equation with Time-Dependent 
Dispersion Coefficients,” Journal of Hydrologic Engi-
neering, Vol. 1, No. 1, 1996, pp. 20-32. 
doi:10.1061/(ASCE)1084-0699(1996)1:1(20)  

[18] R. Haberman, “Elementary Applied Partial Differential 
Equations,” Prentice-Hall, Englewood Cliffs, 1987. 

[19] G. Matheron and G. De Marsily, “Is Transport in Porous 
Media Always Diffusive, a Counterexample,” Water Re-
sources Research, Vol. 16, No. 5, 1980, pp. 901-917. 
doi:10.1029/WR016i005p00901  

Copyright © 2011 SciRes.                                                                               JWARP 

http://dx.doi.org/10.1017/S0022112063000847
http://dx.doi.org/10.1029/WR019i003p00707
http://dx.doi.org/10.2136/sssaj1971.03615995003500060017x
http://dx.doi.org/10.1029/WR010i005p01013
http://dx.doi.org/10.1016/0022-1694(77)90100-7
http://dx.doi.org/10.1029/WR025i002p00241
http://dx.doi.org/10.1016/j.jher.2009.01.003
http://dx.doi.org/10.1016/j.jhydrol.2009.11.008
http://dx.doi.org/10.1029/92WR01006
http://dx.doi.org/10.1016/0893-9659(95)00030-T
http://dx.doi.org/10.1016/0022-1694(95)02976-1
http://dx.doi.org/10.1061/(ASCE)1084-0699(1996)1:1(20)
http://dx.doi.org/10.1029/WR016i005p00901


D. K. JAISWAL  ET  AL. 
 

Copyright © 2011 SciRes.                                                                               JWARP 

84 

[20] G. Sposito, W. A. Jury and V. K. Gupta, “Fundamental 
Problems in the Stochastic Convection-Dispersion Model 
for Solute Transport in Aquifers and Field Soils,” Water 
Resources Research, Vol. 22, No. 1, 1986, pp. 77-88. 
doi:10.1029/WR022i001p00077  

[21] L. W. Gelhar, C. Welty and K. R. Rehfeldt, “A Critical 
Review of Data on Field-Scale Dispersion in Aquifers,” 
Water Resources Research, Vol. 28, No. 7, 1992, pp. 
1955-1974. doi:10.1029/92WR00607 

[22] A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical So-
lutions of One-Dimensional Advection-Diffusion Equa-
tion with Variable Coefficients in a Finite Domain,” 
Journal of Earth System Science, Vol. 118, No. 5, 2009, 
pp. 539-549. doi:10.1007/s12040-009-0049-y 

[23] H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger and N. 
H. Brooks, “Mixing in Inland and Coastal Waters,” Aca-
demic Press, New York, 1979. 

 

http://dx.doi.org/10.1029/WR022i001p00077
http://dx.doi.org/10.1029/92WR00607
http://dx.doi.org/10.1007/s12040-009-0049-y

