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ABSTRACT 

Until recently, computational power was insufficient to diagonalize atmospheric datasets of order 108 - 109 elements. 
Eigenanalysis of tens of thousands of variables now can achieve massive data compression for spatial fields with strong 
correlation properties. Application of eigenanalysis to 26,394 variable dimensions, for three severe weather datasets 
(tornado, hail and wind) retains 9 - 11 principal components explaining 42% - 52% of the variability. Rotated principal 
components (RPCs) detect localized coherent data variance structures for each outbreak type and are related to stan- 
dardized anomalies of the meteorological fields. Our analyses of the RPC loadings and scores show that these graphical 
displays can efficiently reduce and interpret large datasets. Data is analyzed 24 hours prior to severe weather as a fore- 
casting aid. RPC loadings of sea-level pressure fields show different morphology loadings for each outbreak type. 
Analysis of low level moisture and temperature RPCs suggests moisture fields for hail and wind which are more related 
than for tornado outbreaks. Consequently, these patterns can identify precursors of severe weather and discriminate 
between tornadic and non-tornadic outbreaks. 
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1. Introduction 

Principal Component Analysis (PCA) has been used ex- 
tensively in the atmospheric sciences for over 60 years 
[1-4]. The value of PCA in atmospheric sciences applica- 
tions stems from the compact description of space-time- 
variable datasets into two graphical displays that convey 
the dominant patterns of space variation and their associ- 
ated time behavior. One challenge of using PCA is its 
high computational time complexity. Numerical models 
often measure variables on grids of L latitudes by M lon- 
gitudes by N vertical levels, with LxMxN gridpoints, with 
model output at T times. This leads to a data matrix of 
either T x (LxMxN) or (LxMxN) x T for each model va- 
riable, P.Since LxMxN is often of order 108, an eigende- 
composition of the model output can be a daunting task, 
since PCA requires O((LxMxNxP)3) computations. With 
ten variables typically being analyzed simultaneously, 
this can lead to matrix diagonalizations of the order 109.  

The models are expected to exceed 1010 in the near future. 
To make such high dimensional applications more trac- 

table, several methods have been developed, such a block 
PCA [5], where the data are divided into blocks and the 
leading eigenstructures are drawn for each block and re- 
assembled to reconstruct the data with a relative small 
number of PCs. The scheme has been shown to have pro- 
mise for reconstructing data, such as human faces [6]. 
However, in meteorology, the individual eigenstructures 
are often interpreted as the dominant modes of variability 
or teleconnection patterns [7], making block PCA less at- 
tractive. If the dimension T << (LxMxNxP), the data may 
be analyzed in the T-dimension or a singular value de- 
composition [8] can be used to extract the T eigenvalues 
and eigenvectors. Whereas these approaches have merit 
in certain applications, they assume that the T-dimensio- 
nal decomposition contains the eigenstructures of interest, 
as either the variability is limited to the time dimension 
or the eigenvalues are drawn from the smaller time di- 
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mension of the data matrix, leading to a limited number 
of eigenmodes. In the present application, we seek to 
analyze the (LxMxNxP) dimension to determine group- 
ings of those variables that have similar time evolutions 
for severe weather outbreak types [9-12]. In so doing, we 
obtain modes of variability in the three-dimensional at- 
mosphere that corresponds to 24 hours prior to the onset 
of severe weather, useful to forecasters. Forecasting se- 
vere weather a day before it occurs is controlled largely 
by atmospheric spatial scales exceeding approximately 
2000 km in distance (referred to by meteorologists as sy- 
noptic scale or larger). Data over such an area represent a 
nearly instantaneous snap-shot of the state of the atmos- 
phere and the features at this scale tend to persist long 
enough to enhance predictability. If the validity of eigen- 
structures at these space scales is established, they can be 
investigated as precursors of the outbreaks. Knowledge 
of such patterns can assist in forecasting the location of 
the severe weather a day or more in advance of the out- 
break, thereby providing the potential to reduce casual- 
ties. 

2. Data and Methods 

2.1. Defining Outbreaks 

Prior to formulating composites of the different outbreak 
types, a formal definition of each outbreak type was re- 
quired. Following the ranking methods outlined in [13], 
the N15 ranking index of outbreaks was used to assess 
significant tornado outbreaks. In particular, outbreaks 
with an N15 ranking index of 2 or higher that included 6 
or more Storm Prediction Center (SPC) tornado reports 
were considered as “major” tornado outbreaks. However, 
since the N15 ranking index was developed based on cri- 
teria relevant for tornado outbreak severity (e.g. the num- 
ber of tornadoes that cause death, the number of signifi- 
cant tornadoes, etc.), using this scheme for ranking hail 
and wind-dominated outbreaks was not appropriate. Since 
no formal ranking approach exists for these outbreak 
types, a simple relationship comparing the number of 
wind reports and hail reports was utilized to define each 
group. In particular, outbreaks whose number of wind re- 
ports exceeded three times the number of hail reports that 
had an N15 ranking of less than 2 (thereby excluding 
them from the tornado group) were considered “major” 
wind outbreaks, while outbreaks with three times the 
number of hail reports as wind reports with an N15 index 
< 2 were considered “major” hail outbreaks. Through the 
use of these criteria, sets of 79 tornado outbreaks, 131 
wind outbreaks, and 245 hail outbreaks were defined for 
the time dimension. 

2.2. Data and Analysis Procedure 

High dimensional studies require some modification of 

the typical eigenanalysis methodology. Prior to the data 
reduction, rather than examining scalar values, graphical 
methods are employed where possible. The steps in the 
analysis are: (1) decision on the type of analysis dictated 
by research question, (2) sampling available data, (3) qua- 
lity control and missing data, (4) remapping the data to 
an unbiased grid, (5) scaling the data, if necessary, (6) 
formation of a similarity matrix, (7) diagonalization of si- 
milarity matrix, (8) selecting a range of the number of 
eigenvectors, (9) formation of unrotated principal com- 
ponent loadings, (10) rotation of different numbers (from 
step 7) of unrotated PC loadings to select the most ap- 
propriate number of rotated PC loading vectors, (11) ex- 
traction of rotated PC scores and (12) physical interpreta- 
tion of the results. 

Step 1. Our research goal is to identify recurring pat- 
terns of atmospheric variables associated with tornado, 
hail and wind severe weather outbreaks. This is a space- 
time analysis of the three-dimensional atmosphere and 
we form a multilevel set of grids in the data matrices, 
with the spatial gridpoint values of the variables as col- 
umns and the outbreak cases as rows. The NCEP/NCAR 
reanalysis project (NNRP) [14] provides three-dimensio- 
nal global reanalyses of numerous meteorological vari- 
ables, relevant to severe weather formation. The dataset 
is defined by a horizontal (LxM) 2.5˚ latitude-longitude 
grid spacing with 17 vertical levels (N) and over the en- 
tire globe at 6 hour time intervals from 1948 to present. 
For this study, three-dimensional fields of geopotential 
height, specific humidity, zonal and meridional wind com- 
ponents, were obtained for a study domain centered on 
North America (Figure 1) for each outbreak type. Four 
of the variables: geopotential height, temperature, zonal 
and meridional wind were measured at all 17 levels (4 × 
17 = 68 of the 83 variables). The specific humidity data 
are not provided at pressure levels less than 300 hPa; 
therefore, the eight levels closest to the surface were se- 
lected. Additionally, there were seven surface variables 
(mean sea-level pressure, surface pressure, temperature, 
zonal and meridional wind components for a total of 68 + 
8 + 7 = 83 variables for each gridpoint. Variables were 
obtained 24 hours prior to the valid time of the outbreak 
to construct each outbreak type matrix (i.e., tornado, hail, 
wind). Hence, these matrices provide information on the 
pre-outbreak atmosphere, a time frame that is particularly 
useful to severe weather forecasters or pattern recogni- 
tion algorithms looking for outbreak precursors. 

Step 2. Data from the beginning of the NNRP record 
until the last date available were used in this study. There- 
fore, our sample is the finite population of all reanalysis 
data. 

Step 3. There were no missing data and the reanalysis 
has been subject to extensive quality control prior to our 
analysis. Therefore, the data were not adjusted. 

Copyright © 2013 SciRes.                                                                                  OJS 



M. B. RICHMAN  ET  AL. 358 

Step 4. The NNRP are provided on a latitude-longitude 
grid (Figure 1(a)). The goal of the analyses is to provide 
modes of variability of the spatial coherence of the data. 
Owing to the poleward convergence of the longitude lin- 
es in the NNRP data, there is an artificial inflation of as- 
sociation among nearby gridpoints (i.e., their covariances) 
that is a function of latitude. As eigenanalysis is a de- 
composition of the variance structure of the data, it is 
necessary to remove this source of bias by interpolating 
to a Fibonacci grid [15] (Figure 1(b)), by providing 
equally spaced gridpoints over the entire domain (318 Fi- 
bonacci gridpoints). Three final datasets resulted from 
these analyses, consisting of all gridpoints (ordered lon- 
gitude-latitude-level-variable) along the columns of each 
matrix (26,394 columns) and the events on the rows 
(numbers match number of outbreaks of each type). This 
defines an S-mode analysis [16]. 

Step 5. Because the variables have vastly different 
units and values (e.g. specific humidity ~ 1 × 10−3 kg/kg 
versus geopotential height at 500 hPa ~ 5400 m), the data 
were pre-standardized through z-score calculations 
ateach vertical level and for each variable prior to place 
 

 
(a) 

 
(b) 

Figure 1. The study domain on the original NNRP grid (a) 
and on the Fibonacci grid (b). 

ment in the data matrices that were to be eigenanalyzed. 
Since the data were standardized to a zero mean and unit 
standard deviation at each vertical level to account for 
the varied units and large variation in the values as a 
function of pressure level, values in the data matrices are 
standardized anomalies (Z). 

Step 6. As values in the data matrices are standardized 
anomalies (Z) from the mean (step 5), similarity is mea- 
sured by forming correlation matrices (R) of order 26,394. 
Three correlation matrices are formed for tornado, hail 
and wind outbreaks. 

Step 7. Each correlation matrix was decomposed into a 
square matrix of eigenvectors (V) and associated diago- 
nal matrix of eigenvalues (D), given by the decomposi- 
tion 

 TR VDV                  (1) 

Step 8. The rank of the eigenvector matrix is equal to 
the smaller of the number of gridpoints (n) or number of 
observations (m) minus 1. Because there were m = 79 
observations for tornado outbreaks, only 78 eigenvalues 
were nonzero and 78 eigenvectors were extracted. Simi-
larly, 244 (130) non-zero eigenvalues existed for the hail 
(wind) outbreaks. The goal of this stage of the analysis is 
to create a set of basis vectors that compress the original 
variability in R into a new reference frame. It is possible 
to plot the n elements of each eigenvector (V) on spatial 
maps; however, the patterns in V do not result in any 
localization of the spatial variance, nor do they represent 
well the variability in R [16]. 

For high dimensional problems, interpretation requires 
that the analyst must explain the relationships among 
many thousands of variables for each eigenvector retain- 
ed. The eigenvectors are ordered indexed by decreasing 
eigenvalue. Many of the 78 eigenvectors depict small- 
scale (sub-synoptic scale) signals with variance proper- 
ties indistinguishable from noise, having very small ei- 
genvalues. We truncate the number of principal compo- 
nents to represent only that variance associated with sy- 
noptic scales or larger that correspond to spatial patterns 
present in the 26,394 × 26,394 correlation matrix, using a 
two step process. First, the magnitudes of the eigenvalues 
are examined and those with relatively large eigenvalues 
are retained to yield a subset of l principal component 
loading vectors. The value l is selected by implementing 
the scree [17] and standard error tests [4] to provide a vi- 
sual estimate of the approximate number of non-degen- 
erate eigenvectors to retain. Figure 2 shows the results of 
those tests. Note that the 95% CI of each eigenvalue tend 
to overlap with adjacent eigenvalues. This can lead to in- 
termixing of the information on the eigenvectors with 
closely spaced eigenvalues [4], known as eigenvalue de- 
generacy, unless the eigenvectors are post-processed. 
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(a) 

 
(b) 

 
(c) 

Figure 2. Scree test plots of eigenvalue number against ei- 
genvalue magnitudes for tornadoes (a), hail (b) and wind (c) 
outbreaks. The error bars represent the 95% CI for each 
eigenvalue. 
 
Owing to the aforementioned degeneracy, a number of 
roots retained, l, is selected liberally, intentionally repre- 
senting more than the ideal number of roots, k, associated 
with the signals representing spatial scales of at least the 

synoptic-scale. 
Step 9. As the magnitude of the eigenvector elements 

varies as a function of the number of variables (n), the 
eigenvectors (V) were scaled by the square root of the 
corresponding eigenvalue, VD1/2 to create principal com- 
ponent loadings (A). Doing so converts the eigenvectors 
to units of the similarity matrix (i.e., correlations) with a 
known range and permits the data to be expressed as 

 TZ FA                     (2) 

where the vectors in F represent the new set of basis 
functions, known as principal component scores and A is 
the matrix of weights that relates the original standard- 
ized data (Z) to F. The vectors in A contain elements that 
are correlation coefficients between Z and F. 

Step 10. To assess the coherency gained through loca- 
lization of the signal, the l vectors identified in A are 
post-processed by linearly transforming them to a new 
set of vectors, B, known as rotated principal component 
(RPC) loadings. The rotation of PC loadings simplifies or 
localizes the variables by finding the orientation of the 
PCs that results in many of the variables having small 
projections or loading values and other variables having 
large projections. Such simplified loadings correspond 
better with the correlation structure of the data [16], en- 
hancing physical interpretation. The rotation process can 
be summarized by the equation 

B AT                   (3) 

where T is an invertible kxk orthonormal transformation 
matrix that represents a rotation of the reference frame 
into a position that results in the greatest simplification in 
the vectors of B. Then from (3) 

 T T TBB ATT A AAT           (4) 

and from (1) and (2), B represents the similarity matrix 
or data set as does A. Moreover, an infinite number of 
transformation matrices will satisfy (4); therefore, some 
additional constraint is required. For high dimensional 
problems, it is desirable to find T that simplifies each 
vector, B, as much as the data permit. Doing so allows 
for a smaller subset of variables (as opposed to tens of 
thousands) to be interpreted for each column of B. For 
our problem, the column vectors in B are plotted on a 
spatial map, and the simplification corresponds to detect- 
ing localizations of coherent signal in standardized ano- 
maly patterns that recur often in the correlation structure 
of the variables. The rotation algorithm used in this ana- 
lysis is Varimax [16]. Varimax is termed an “orthogonal” 
rotation, indicating the transformation matrix (T) in (3) is 
orthogonal as TTT = I. The Varimax simplification algo- 
rithm maximizes the variance,  of the PC loadings, 

 and is given by 
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This algorithm proceeds with a planar rotation of all 
possible pairs of PC loading vectors and maximizing  
in (5). Once the final  is achieved, the solution is 
simplified in the sense that each column of B corre- 
sponds to the solution that maximizes simultaneously the 
number of near-zero loadings  and large load- 
ings , while minimizing the number of moderate 
magnitude loadings. Values of i  near-zero explain lit- 
tle variance, , for a given PC loading vector j in B and 
those variables with near-zero loadings, for a given PC 
loading vector, do not need to be interpreted. This solu- 
tions that result from a Varimax rotation are character- 
ized by groups of variables having high magnitude load- 
ings on one PC and other groups of variables with high 
magnitude loadings on a different PC loading vector. 
Since 

1j
 for the correlation-based analysis, 

most of the variable’s variance is accounted for in a Va- 
rimax solution, when the loadings are large. 
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Given the high dimensionality of the problem (the 
26,394 row entries in B) the larger the number of near- 
zero and large i , the more binary (simpler) solution 
leads to easier the interpretation loadings in a Varimax 
solution. The simplicity of the solution is seen by inspec-
tion of the density functions for the PC loadings before 
and after rotation. Figure 3 shows the empirical probabi- 
lity density functions (PDFs) concentration of near-zero 
loadings for the rotated solution in comparison to the 
unrotated solution for the first PC for tornado outbreaks. 
The improved simplicity, seen in Figure 3, is document- 
ed in Table 1 for all PCs and outbreak types by examin- 
ing the kurtosis of the loadings before and after rotation. 
Most unrotated PC loading vectors had platy-kurtotic or 
mesokurtotic distributions; whereas, after rotation, the di- 
stributions become leptokurtotic (Table 1), reflecting the 
more simplified (peaked) distributions. When the columns 
of Varimax loadings are mapped to the grid (Figure 1(b)), 
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Figure 3. Empirical PDFs for PC loading vector 1 unrotated 
(red) and Varimax rotated (blue). 

Table 1. Kurtosis statistics for PC loading vectors of tor- 
nado, hail and wind outbreaks. 

Unrotated Kurtosis Rotated Kurtosis 
PC

Tornado Hail Wind Tornado Hail Wind 

1 −0.51 −0.10 −0.05 0.66 0.72 1.15 

2 −0.40 −0.21 −0.31 0.75 1.43 1.37 

3 −0.52 −0.12 −0.56 0.32 2.14 1.41 

4 −0.45 −0.14 −0.18 0.84 1.15 1.14 

5 0.12 −0.21 −0.20 2.32 0.83 1.37 

6 0.96 0.26 −0.16 1.65 0.55 0.13 

7 −0.09 −0.24 −0.27 0.52 1.31 1.72 

8 −0.44 0.03 0.25 0.45 2.18 1..01 

9 −0.30 −0.05 −0.14 1.02 1.09 1.47 

10 0.14 -- −0.18 0.31 -- 0.54 

11 -- -- −0.21 -- -- 3.13 

 
the large loadings are grouped in isolated clusters with 
areas on near-zero loadings between the clusters, accor- 
ding to the correlation structure of the data. This process 
of rotation and mapping makes analyzing high dimen- 
sional problems tractable and is amenable to physical in- 
terpretation. 

The spatial properties of each vector in B depend on 
the number of rotated PC vectors retained (l). Therefore, 
it is critical to select the optimal number of vectors, k, 
that correspond to data signal and reject small-scale noise 
from eigenvalues k + 1 to the dimension associated with 
the order on R. 

To accomplish that goal, the matrix A is transformed 
to B for a variable number of retained RPC vectors (i.e., 
2 to l). Each solution, based on a different number of 
RPCs, yields a different set of patterns when the elements 
of B are mapped back to the Fibonacci grid. We require a 
set k < l that captures as much coherent large scale signal 
as possible that matches the patterns embedded within R. 
The one set of k PC loadings that relates best to the cor- 
relation matrix generating them is determined and the 
number of PCs retained is set to k. 

The process, outlined in [18], and refined in [16], se- 
lects each vector in B and identifies the location or grid- 
point associated with the largest absolute RPC loading. 
Next, the RPC loading vector is matched to the vector in 
R corresponding to the gridpoint identified with the ma- 
ximum absolute loading. This method incorporates the 
logic that the solution associated with k PCs must have 
spatial structures that match optimally to those spatial 
structures in R. An additional advantage to post-process- 
ing or rotating the PCs is that there is no longer a predis- 
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position to eigenvector degeneracy [18]. The two vectors 
are matched, through the congruence coefficient [16], a 
scalar quantity that is the uncentered correlation coeffi- 
cient (or the cosine of the geometric angle between the 
two vectors). The congruence coefficient measures both 
phase and magnitude match. The values of congruence 
range from −1 to +1, with +1 being a perfect match. The 
application of the congruence coefficient in this manner 
provides an objective procedure to select k objectively. 
For the tornadic outbreak set, the Varimax solution with 
the optimum match occurred as k = 10 (average congru- 
ence was 0.90) associated with 51.5% of the explained 
variance, for the hail outbreak set the optimum match 
was at k = 9 (average congruence was 0.91) with 41.2% 
of the explained variance and for the wind data set, k = 
11 (average congruence was 0.92) with 48.9% of the ex- 
plained variance. Thus, among these datasets, the data 
compression was impressive (12.8%, 3.6% and 8.5% of 
the basis vectors associated with non-zero eigenvalues of 
tornadoes, hail and wind outbreaks accounted for 51.5%, 
41.2% and 48.9% of the total variance, respectively). 

Step 11. Once the spatial patterns have been identified, 
the projections of the standardized data on the loadings 
are calculated to obtain the amount of each RPC pattern 
associated with each outbreak (e.g., how much of RPC 1 
exists in the outbreak 1 for tornadoes?). To accomplish 
this, the RPC scores (F) are calculated as 

 
1TF ZB B B                (6) 

The PC scores are in units of standard deviations from 
the mean. 

Step 12. A physical interpretation of the standardized 
anomaly fields associated with each mode involves mul- 
tiplying the PC score is by the PC loading [7]. For exam- 
ple, a negative anomaly in a RPC loading map of geopo- 
tential multiplied by a negative PC score gives the inter- 
pretation of a positive height anomaly. Interpretation of 
the graphical and mapped RPC loadings and time series 
of the RPC scores will now be presented. 

3. Interpretation of RPCA of Severe 
Weather Outbreak Types 

3.1. Scatterplot Analysis of RPC Loadings 

Normally, for datasets with a small number of variables, 
the RPC loadings are inspected in a table and similarities 
noted. However, in the present analysis, there are 26,394 
elements for each loading vector, making a tabular in-
spection of each element intractable. To assess the co-
herence of the loadings for such a large number of ele-
ments requires a graphical technique that plots the RPC 
loadings for each vector retained as a biplot or scatterplot. 
The goal is to investigate whether the variables cluster 
into coherent groups that can be interpreted when 

mapped back to the Fibonacci grid. Because PC (or RPC) 
loading values of < |0.25| are considered essentially sam- 
pling deviations from zero [19], those variables exist in a 
hyperplane of width ± 0.25. Interpretation of the scatter- 
plots of the pairs of PC loadings (the first two for each 
outbreak type are shown in Figure 4) indicates that the  
 

Tornado Outbreaks 

 
PRC1 

(a) 

Hail Outbreaks 

 
PRC1 

(b) 

Wind Outbreaks 

 
PRC1 

(c) 

Figure 4. Scatterplots of the leading two rotated PC load- 
ings for tornado, hail and wind outbreaks. The hyperplane 
on each plot is identified as the region < |0.25|.  
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majority of variables exist close to the origin of the graph, 
within the hyperplane. 

For the tornado outbreaks (Figure 4), there is a clear 
orientation of variables along the RPC axes in the x- and 
y-axis directions, suggesting well-defined modes of va- 
riation as the axes represent the RPCs. In contrast, the 
hail outbreaks exhibit more of a “bulls-eye” pattern with 
the highest concentration in the hyperplane and less dis- 
tinct clustering along the RPC axes (Figure 4). This con- 
figuration of variables is indicative of the lower variance 
explained in hail events. The wind outbreaks plot (Fig- 
ure 4) has a configuration of clustering along the RPC 
axes, consistent with the higher amount of variance ex- 
plained with fewer PCs retained. Overall, Figure 4 de- 
monstrates that modes of variation have clusters of vari- 
ables that can be investigated further in spatial analyses 
of the RPC loadings plotted on the Fibonacci grids and 
the associated time series graphics. 

3.2. Interpretation of the RPC Loading Maps for 
Each Outbreak Type 

The outbreak RPC loadings can be interpreted when plot- 
ted to the Fibonacci grids and then isoplethed to produce 
fields of the variables. As there are 83 variables per out- 
break type, three outbreak types with 9, 10 and 11 RPCs, 
that is 83 × 30 maps of PC loadings. Since the atmos- 
phere is sampled for many variables in 3-dimensions, it is 
possible to examine many additional vertical slice maps. 
We will present just a small fraction of the results to il- 
lustrate the differences in the physical meteorological 
variables as a function of outbreak type. The mean sea- 
level pressure for the three outbreak types is shown in 
Figure 5. Convective storms are often linked to cyclones 
that are associated with relatively low pressure. Such cy- 
clones induce low-level convergence and the associated 
vertical motion. It is important to note that these maps 
are generated for data that were collected 24 hours prior 
to the onset of the outbreak. Hence these are precursor 
fields. Additionally, the grid the data are placed on was 
moved to be centered on the outbreak centroid. Therefore, 
the “X” in Figure 5 in southeastern Kansas, meant to 
show the center of the outbreak is not referenced to the 
specific geographical location; rather, the map is provid- 
ed to convey an idea of the spatial scale and configura- 
tions of the RPC loading anomalies relative to the center 
of the outbreak. 

Tornado outbreaks (Figure 5(a)) are characterized by 
negative RPC loadings to the east of the outbreak and 
positive loadings to the west of the outbreak. Since the 
sign of the loadings is arbitrary, there is ambiguity in the 
sign of the anomalies in Figure 5 and the RPC scores 
must be examined for each outbreak to assign a sign to 
that case. For tornadic outbreak cases with positive large  

 

Figure 5. RPC loadings of mean sea level pressure for tor- 
nado (a), hail (b) and wind outbreaks (c). 
 
magnitude RPC scores, the physical interpretation would 
be anomalously high pressure to the east and anomalous- 
ly low pressure to the west. Conversely, for cases with 
large negative RPC scores, the interpretation would be 
anomalously high pressure to the east and anomalously 
low pressure to the west. Twenty-four hours prior to the 
tornado outbreaks, the center of the outbreak is on a zero 
line between the two anomalies. In contrast, for hail out- 
breaks (Figure 5(b)), there is a tripole pattern of sea-le- 
vel pressure anomalies, with positive loadings close to 
the outbreak center and negative anomalies about 1500 
km to the east and also negative anomalies to the west 
northwest of the outbreak centroid. Assignment of the 
pressure anomalies would require the same process as 
before: investigating the RPC scores for outbreaks of hail 
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for a large magnitude positive or negative sign and inde- 
xing the RPC loading sign accordingly. Unlike the pre- 
vious two outbreak maps, the wind outbreaks have a 
much weaker gradient of RPC loadings in the east-west 
direction (Figure 5(c)) with the center of the outbreak 
located in an area of weakly positive PC loadings. Recall, 
in the discussion of hyperplanes, any PC loading with an 
absolute magnitude of less than 0.25 is considered essen- 
tially zero. Therefore, the loadings to the west of the cen- 
ter of the outbreak correspond to near-zero anomalous 
pressure. Examination of the three plots in Figure 5 sug- 
gests that the sea-level pressure patterns, associated with 
the three outbreak types 24 hours prior to the onset of the 
outbreak, have different in spatial structures. 

Another ingredient in severe weather outbreaks is the 
availability of moisture for convection. The measure of 
moisture used in this study is specific humidity at the 850 
hPa level and is shown for the three outbreak types in Fi- 
gure 6. As was the case for the sea-level pressure, these 
moisture data were collected 24 hours prior to the onset 
of the outbreak. Unlike the pressure fields, the moisture 
fields have a more common pattern with smaller differ-
ences in the patterns for outbreak types. For tornado out-
breaks (Figure 6(a)) the RPC pattern has a negative ano- 
maly to the southwest of the outbreak centroid, indicative 
of drier than average air in that location. Since the sign of 
the loadings is arbitrary, the sign of the anomalies re- 
quires inspecting the RPC score for any given outbreak. 
If that score has a large positive value, the pattern on the 
map is likely to be found. Alternately, for cases with large 
negative RPC scores, the interpretation would be ano- 
malously moist region to the southwest of the outbreak. 
The leading RPC specific humidity pattern associated 
with hail outbreaks (Figure 6(b)) indicates a spatially ex- 
tensive anomaly centered to the east northeast of the out- 
break center with a strong PC loading gradient over the 
outbreak area. The wind outbreak RPC of specific humi- 
dity (Figure 6(c)) has a spatially extensive anomaly of 
loadings centered to the east of the outbreak centroid. 
The difference between the hail and wind outbreak pat- 
terns is the lack of a strong gradient in the latter. The 
third field being investigated is air temperature at 850 
hPa (Figure 7). Since 850 hPa is situated relatively low 
in the troposphere, it gives an indication of low-level 
thermal properties. The change in the pattern over time is 
considered important for assessing the instability of the 
atmosphere. As for the previous two fields, these tempe- 
rature data were collected 24 hours prior to the onset of 
the outbreak. The leading RPC loadings for the tempera- 
ture field taken from the tornado outbreaks (Figure 7(a)) 
has a negative anomaly to the south of the outbreak cen- 
troid, indicative of cooler than average air in that location. 
Additionally, about 1500 km to the west of the outbreak 
center, there is a region of positive RPC loadings, indi- 

 

Figure 6. RPC loadings of 850 hPa specific humidity for tor- 
nado (a), hail (b) and wind outbreaks (c). 
 
cative of anomalously warm air. As before, since the sign 
of the loadings is arbitrary, the sign of the anomalies re- 
quires inspecting the RPC score for any given outbreak. 
If that score has a large positive value, the pattern on the 
map is likely to be found. Alternately, for cases with 
large negative RPC scores, the interpretation would be 
anomalously warm region to the south of the outbreak 
and a cool anomaly to the west. The leading RPC 850 
hPa temperature pattern associated with hail outbreaks 
(Figure 7(b)) and wind outbreaks (Figure 7(c)) have si- 
milar patterns, with a region of negative RPC loadings to 
the east of the outbreak region. This would indicate a 
spatially extensive anomaly of cold air if the RPC scores 
were positive. 
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Figure 7. RPC loadings of 850 hPa temperatures for tor- 
nado (a), hail (b) and wind outbreaks (c). 

3.3. Interpretation of RPC Score Time Series for 
Each Outbreak Type 

Because this is a multi-field PCA, the RPC scores aver- 
age all the fields in (6) with equal weight to generate 
standardized scores; fields with fewer levels, such as the 
surface variables will be represented less than those 
fields with 17 levels. Typically, examining the extreme 
positive (scores ≥ 1) and negative values (scores ≤ −1) 
and then identifying the outbreak cases that correspond 
to the extreme values facilitate interpretation of the RPC 
scores. The tornado outbreak RPC 1 score plot (Figure 8) 
indicates there are multiple outbreaks that have patterns 

similar to the RPC 1 loadings. The first RPC score clas- 
sifies 12 (of the 79) cases (15.2%) as having spatial con- 
figurations of the standardized anomaly patterns of the 
variables similar to the maps shows in Figures 5-7. Only 
3 of the outbreaks occurred with the spatial patterns of 
opposite signs to those shown in the aforementioned fig- 
ures. 

As suggested by the lower degree of clustering for the 
scatterplots of PC loadings for hail (Figure 4(b)), the 
hail outbreak RPC 1 score plot (Figure 9) reveals a more 
variable pattern compared to the tornado outbreaks. The 
hail outbreak scores have 41 cases (16.7%) with scores 
greater than or equal to 1 and 16 cases (6.5%) with 
scores less than or equal to −1. There is evidence in the 
meteorological literature that hail events can occur with 
varied atmospheric patterns [20]. The events with ex- 
treme scores can have their standardized anomalies com- 
pared to the spatial patterns in Figures 5-7. 

The wind outbreak RPC 1 score plot (Figure 10) shows 
that most of the extreme score cases (29% or 22.1%) had 
values less than or equal to −1 and only 3 cases (2.3%) had 
scores greater than of equal to 1. As the majority of  
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Figure 8. RPC scores for the 79 tornado outbreaks. 
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Figure 9. RPC scores for the 245 hail outbreak cases. 

Copyright © 2013 SciRes.                                                                                  OJS 



M. B. RICHMAN  ET  AL. 365

Wind Outbreak Case Number 

RPC1 Wind Outbreak RPC Scores 

0 20 40 60 80 100 120

-1
.5

 
-1

.0
 

-1
.0

 
0.

0 
0.

5 
1.

0
 

R
P

C
 S

co
re

s 
M

a
gn

itu
d

e 

 

Figure 10. RPC scores for the 131 wind outbreak cases. 
 
the scores are negative, the patterns shown for the load- 
ings (Figures 5-7) should have the signs multiplied by 
−1 for proper interpretation of those cases associated 
with the negative scores. 

4. Conclusions 

As observation systems generate increasingly dense da- 
tasets in space and time, the spatial correlations of the 
fields can be characterized by the efficient data compres- 
sion provided by principal component analysis. Until re- 
cently, computational power was insufficient to diagona- 
lize the massive data sets of the three-dimensional atmo- 
sphere, as currently they are of order 108 - 109 elements 
and will increase further to 1010 elements and greater in 
the near future. The exception has been in situations 
where the number of cases was relatively small and the 
analyst was interested in time domain decomposition. 
We have shown that eigenanalysis of tens of thousands 
of variables is now achievable. The data reduction achi- 
eved in the present analyses diagonalize correlation ma- 
trices of order 26,394 dimensions and retain approxima- 
tely 10 principal components for close to 50% of the va- 
riability explained. These principal components are rotat- 
ed to find the localized coherent variance structures in 
the data. The RPCs are related to standardized anomalies 
of the meteorological fields analyzed. Our analyses of the 
RPC loadings and scores indicate these graphical dis- 
plays are useful to interpret large datasets in an efficient 
manner. The results of the rotated PCs for defined out- 
break types build upon our previous research [9-12] by 
indicating that the atmospheric variables investigated ex- 
hibit different spatial configurations for each outbreak 
type. 

The challenge is how to use the output of such analy- 
ses to improve forecasting of severe weather events. By 
examining fields of key meteorological variables at lead 
times (e.g., 24 hours) sufficient to allow for societal re- 
sponse prior to these outbreaks, we have created a poten- 

tially useful product. The next step is to devise a pattern 
recognition system that compares model predictions of 
the atmosphere to the patterns produced in this work. 
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